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AbstractSince Critical Infrastructures (CIs) use systems and equipment that are separated by long distances, Supervisory
Control And Data Acquisition (SCADA) systems are used to monitor their behaviour and to send commands remotely. 
For a long time, operator of CIs applied the air gap principle, a security strategy that physically isolates the control 
network from other communication channels. True isolation, however, is difficult nowadays due to the massive spread of 
connectivity: using open protocols and more connectivity opens new network attacks against CIs. To cope with this dilemma, 
sophisticated security measures are needed to address malicious intrusions, which are steadily increasing in number and 
variety. However, traditional Intrusion Detection Systems (IDSs) cannot detect attacks that are not already present in their 
databases. To this end, we assess in this paper Machine Learning (ML) techniques for anomaly detection in SCADA systems 
using a real data set collected from a gas pipeline system and provided by the Mississippi State University (MSU). The 
contribution of this paper is two-fold: 1) The evaluation of four techniques for missing data estimation and two techniques 
for data normalization, 2) The performances of Support Vector Machine (SVM), Random Forest (RF), Bidirectional Long 
Short Term Memory (BLSTM) are assessed in terms of accuracy, precision, recall and F1 score for intrusion detection. 
Two cases are differentiated: binary and categorical classifications. Our experiments reveal that RF and BLSTM detect 
intrusions effectively, with an F1 score of respectively > 99% and > 96%.
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1. Introduction and Problem Statement

Supervisory Control And Data Acquisition (SCADA)
systems are commonly used by Critical Infrastructures
(CIs) or industries which are vital to citizens’ daily
lives and countries’ economies. It includes oil pipelines,
water treatment, and chemical manufacturing plants
to name but a few. Typically, SCADA systems consist
of (1) field instrument devices for sensing conditions
of the CI (power level, pressure, throughput, etc.);
(2) operating equipment such as valves, pumps, etc.
controlled by actuators; (3) field local processors such
as Programmable Logic Controllers (PLCs) and Remote
Terminal Units (RTUs) that communicate with field
instrument devices and operating equipment; and
finally (4) the Human Machine Interface (HMI) that acts
as a central controller and monitoring host. To operate
properly in a synchronized manner, these different
components must communicate. While short-range
communications are used to establish links between

local processors, instrument devices and operating
equipments, long-range communications are used to
connect PLCs and RTUs with the HMI or the Master
Terminal Unit (MTU).

Historically, SCADA systems implemented a security
principle known as air gap, a strategy that physically
isolates the control network from the rest of the net-
work, including the Internet. True isolation, however,
is difficult in a real-world environment. First, true iso-
lation may lead to outdated software [1, 2]. Without
connectivity to the Internet, the software cannot eas-
ily receive security updates from the vendor. Second,
true isolation is hard to implement since CI is often
geographically distributed. To avoid the high costs of
laying direct fiber cable to substations, CI operators
make use of radio, Asymmetric Digital Subscriber Line
(ADSL), General Packet Radio Service (GPRS), or leased
lines. Moreover, malware like Stuxnet [3] or Flame [4]
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has shown us that even a USB flash drive can pro-
vide connectivity to the outside world. Besides the
air gap principle, SCADA systems have made use of
proprietary software, hardware, and communication
protocols which have provided a false sense of security
through obscurity [1].

Nowadays, the use of standardized communications
protocols has enabled the integration of SCADA sys-
tems with the Internet and corporate networks. Given
this new context, SCADA systems are prone to numer-
ous threats due to their large deployment areas, dis-
tributed operating mode and growing interconnectiv-
ity [5]. Indeed, the widespread use of the TCP/IP stack
has led to the its adoption in SCADA systems. Modicom
Communication Bus (Modbus) TCP, Distributed Net-
work Protocol (DNP3) [6], and IEC 60870-5-104 are the
main communication protocols used. These protocols
were designed over twenty years ago and are known
to be highly vulnerable to simple network attacks [7–
10]. Mirian et al. [11], using Internet-wide scanners
such as ZMap [12], identified 60,000 vulnerable SCADA
devices connected to the Internet. Clearly, these pro-
tocols stacks are subject to increasing risks. This can
also be seen in the cyberattacks against the Ukrainian
power grid in 2015, where 225,000 Ukrainian people
were without electricity. These attacks were the first
that resulted in a power outage [13].

Intrusion Detection Systems (IDSs) are the de-
facto protection standard for any IT system. The
detection of intrusions with a traditional IDS requires
a database containing signatures of different attacks,
each signature corresponding to a specific attack and
its characteristics. The main disadvantage of this
technique is the need for human intervention to analyse
vulnerabilities and threats to create unique signatures.
Consequently, Machine Learnings (MLs) techniques
are a good candidate to develop anomaly detection
algorithms that can learn about normal behaviour
and autonomously adapt to variations, acting without
being pre-programmed or provided with an explicit
pattern [14].
Our contributions: In this paper, we focus on

assessing the performances of ML techniques such as
Support Vector Machine (SVM), Random Forest (RF),
and Bidirectional Long Short Term Memory (BLSTM)
in detecting anomalies in SCADA systems. Section 2
lays out the foundation of the SCADA architecture
and the ML algorithms used. We analyze SCADA
protocols from monthly Internet-wide scans and see
an increasing number of SCADA services reachable
and attackable over the Internet. Section 3 describes
the data set and the experimental setup in detail.
In Section 4, we analyze four missing data strategies
and two data normalization techniques, characterizing
the performances of the ML algorithms in terms of
accuracy, precision, recall and F1 score for binary and

categorical classification. We describe related works in
Section 5 and compare them with our approach. Finally,
we conclude our work in Section 6 and give directions
for future research.

2. Technical Background
In this section, we provide a brief overview of the
SCADA architecture, its network protocols, and the ML
algorithms that we have used in this work. While
discussing the technical background, we also highlight
the vulnerabilities that exist in SCADA protocols.

2.1. Attack Vectors on SCADA
As described in Section 1, adversaries can often reach
the control system from the Internet, because the air gap
principle is no longer not applicable in modern SCADA
networks [1]. Most of these networks are geographically
distributed. Hence, they need to be connected to the
HMI, either via ADSL, GPRS, or leased lines. All of
these connections can be used to gain access to the
control system.

After an attacker has gained access to the network,
there are three attack vectors against a SCADA pro-
tocol: First, by exploiting vendor-specific implementa-
tion faults like memory-corruption bugs; second, by
exploiting weaknesses in the infrastructure like missing
or inadequate firewall rules; and third, by exploiting
protocol-specific weaknesses in the specification. In this
paper, we focus on the third attack vector. An attacker
wanting to exploit SCADA protocols weaknesses, has
four general attacks to choose from [7], as shown in
Figure 1:

1. Interception: An attacker is able to analyse the
network traffic and gather information about the
network infrastructure;

2. Interruption: An attacker intercepts packets and
does not forward them to the next node;

3. Modification: The attacker is a man-in-the-middle
(MITM) modifying packets in a network stream;

4. Fabrication: An attacker is able to inject packets
into the network.

Figure 1 depicts a simplified SCADA architecture in
which an attacker (red square) has gained access to the
network. All four attacks can target the HMI (a), the
network infrastructure itself (b), or the RTU/PLC (c).
The field devices shown in Figure 1 are sensors and
actuators. A sensor monitors the environment, e.g. the
pressure of a gas pipeline, and sends the information to
the next higher level; an actuator, in contrast, receives
commands to control the environment, e.g. opening and
closing a valve. The RTU or PLC controls and monitors
the field devices, building a substation. One advantage
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of the SCADA architecture is that substations can be
geographically distributed; this is often a necessity
for a CI. The control centre is located in a different
physical location and contains the HMI which monitors
and controls the RTUs and PLCs. The RTUs/PLCs are
connected to the HMI via communication links such
as radio, fibre-optics, or dial-up lines. All information
converges to the HMI or SCADA master, which is
monitored and controlled by an employee.

Human Machine Interface

Communication
Network

RTU/PLC

Sensors
Actuators

RTU/PLC

Sensors
Actuators

RTU/PLC

Sensors
Actuators

Attacker A
1: Intercept
2: Interrupt
3: Modify
4: Fabricate

a

b

c
Substation

Figure 1. Attack model demonstrating four network attacks,
denoted as (1–4), against a simplified SCADA architecture with
three attack targets (a–c) based on [7].

In this context, one question arises: how many
SCADA services are really reachable and therefore
attackable over the Internet? With Internet-wide
scanners such as ZMap [12], we can make an estimate
of which SCADA protocols and how many sites are
publicly available. The Censys [15] database uses
ZMap to scan the whole IPv4 address space monthly
for common network protocols. Among these SCADA
protocols are Tridium Fox, Modbus [16], BACnet,
Siemens S7, and DNP3 [6]. We analysed the data
starting from August 2015 for Modbus and for the other
protocols from September 2015 up to the beginning of
October 2018. Results are plotted in Figure 2.

As shown in Figure 2, Tridium Fox and Modbus
are the SCADA protocols most frequently encountered.
On average over the measurement period, there are
402 DNP3 services available. We can measure a small
decrease from 2016 to 2017 of 9% for DNP3. From 2017
to 2018 we have an 12% increase. For the Siemens S7
protocol, we have on average 4,142 available services
with an clear increase in 2016. We measure 19.3%
increase from 2016 to 2017 and 10.8% increase from
2017 to 2018. On average there are 16,686 available
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Figure 2. Available SCADA services reachable from the Internet
starting from September 2015 up to the beginning of October
2018 based on data from the Censys database [15].

BACnet services without any significant change over
the years. For Modbus, however, we measured 23,725
reachable services on average with an increase of 9.7%
from 2016 to 2017 and from 2017 to 2018 we have
an increase of 12%. The Tridium Fox protocol has on
average 26,743 available services in the IPv4 address
space without any significant changes over the previous
year. It can be seen that Modbus is one of most heavily
used protocols and its use is increasing. This is a
dangerous trend and is our main motivation when
working on the gas pipeline system data set provided
by the Mississippi State University (MSU), as detailed
in Section 3.

It is also worth mentioning that services of different
operators are increasingly interlinked and consequently
the boundaries of CIs are expanding beyond the
previous single operator scenario. Hence, CIs are cyber-
dependent: the information outputs of one CI are inputs
to an other infrastructure. A failure in one CI can spread
through cascading effects to other CIs, impacting
large geographical regions. Consequently, attacks that
manage to target interdependencies between CIs can
result in the disappearance of vital operator services.

2.2. Machine-Learning Techniques for Anomaly
Detection
Machine Learning methods play a key role in building
models that separate normal behavioural patterns from
abnormal ones within a data set [17]. Consequently,
these techniques are considered suitable for anomaly
detection problems [14]. Usually, anomalous patterns
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appear in the data as outliers, peculiarities, alterations,
conflicting observations or exceptions. In general, com-
plying system behaviour patterns are easily localized
and labelled as normal or expected behaviour within
large amount of data. In contrast, non-complying pat-
terns are less frequent and it is a challenging task to
detect them. The use of an unsupervised algorithm
can hinder anomalous patterns detection, since several
anomaly detection approaches require labelled observa-
tion samples of normal and/or anomalous behaviours.
Hence, researchers often opt for the use of semi-
supervised or supervised learning algorithms to per-
form anomaly detection.

In this work, which is part of the Advanced Tools to
assEss and mitigate the criticality of ICT compoNents
and their dependencies over Critical InfrAstructures
(ATENA) architecture [18], we aim to develop a
Network Intrusion Detection System (NIDS) based on
ML techniques to recognize attacks targeting SCADA
systems, in an industrial use-case. In the following,
SVM, RF and BLSTM will be introduced.

Support Vector Machine (SVM). SVM is a type of feed-
forward neural network utilizing kernelized learning
algorithms [19]. SVMs can be used for classifying
linearly separable and non-linearly separable patterns,
as a precursor to finding the optimal separating
hyperplane by using a linear SVM.

Random Forest (RF). RF are based on the standard
automatic learning technique known as a decision
tree. The decision tree ensemble technique, developed
by Leo Breiman, improves classification accuracy by
incorporating randomness in the construction of each
individual tree or classifier [20]. The training phase of
RF works as follows:

• k independent and different bootstrapped sam-
ples, each of size n, are drawn as separate decision
trees.

• Each of these decision trees is trained separately.
The final classifier is the set of these trees.

In the testing phase, a novel or test observation
flows through every decision tree, following one path
or another, depending on the decisions at each node.
The predicted class label is given by the decision having
most votes from the different classifiers.

Long Short Term Memory (LSTM). LSTM is a powerful
type of Recurrent Neural Network (RNN) used in
Deep Learning (DL), designed to handle sequence
dependences. It is trained using back-propagation
through time, overcoming the vanishing and exploding
gradient problems. A LSTM model uses a gating
mechanism that allows the cells to keep a block of
information for long periods of time [21] and protects
the gradient inside the cell from harmful changes

during the training phase. A LSTM model is composed
of memory blocks, which contain one or more memory
cells with a forget gate, an input gate and an output
gate. The gates are multiplicative units with continuous
activation, and are shared by all cells belonging to the
same memory block. The key feature of LSTM units is
their ability to to recall values for either long or short
time periods. This is due to the lack of an activation
function within its recurrent components and the
presence of an additive interaction between the input
transformations. This interaction ensures a smooth
change of the cell state instead of abruptly modifying it.
Thus, the stored value is not continuously reduced over
time. Therefore, the gradient does not tend to vanish
when performing back-propagation. Generally, additive
operations distribute gradients equally and therefore
LSTM allows much more effective back propagation of
the error.

Long Short Term Memory can operate over sequences
at the input and/or output at the same time. Given
a fixed input vector size (red block in Figure 3),
the recurrent neural network processes it using some
hidden layers (green blocks) to produce a fixed output
vector (blue blocks). Long Short Term Memory offers
four different architectures [22]. In the current study,
we use the many-to-many architecture, depicted in
Figure 3. This architecture is suitable for synchronized
input and output sequences. The LSTM layer returns
sequences in order to transfer its information both to
the next layer and to itself for the next time step. Thus,
the many-to-many architecture will allow us to perform
classification of sequence of packets where we wish to
label each packet of the sequence, while still using the
temporal information.

Figure 3. Many-to-many architecture of the LSTM algorithm.
Rectangles represent vectors and arrows represent functions.
Based on [22].

The mathematical concepts of the computational
operations of a LSTM cell (depicted in Figure 4) are the
following [21]:

ft or forget gate: defines the amount of information,
coming from the preceding cell that the current
cell will maintain. ft is multiplied by the Ct−1
information and added to the current cell C̃t state.
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it or input gate: defines the new candidate values that
the current cell will maintain, scaled by the
amount of computed information. Therefore, the
current cell state becomes Ct = ft · Ct−1 + it · C̃t .

ot or output gate: defines the amount of information
the cell needs to output: ot = sigm(Woh · ht−1 +
Wox · xt), and finally the current hidden block
state is ht = ot · tanh(C̃t). The hidden state con-
tributes to both the prediction (rnnout) and to the
next iteration of the LSTM. The notationsWoh and
Wox represent the synaptic weights of the out-
put gate, which determine how much importance
should be given to both the present input and the
past hidden state. The sigmoid and tanh are the
activation functions that regulate the output of
the neural network by ensuring that the values
stay between 0 and 1, and -1 and 1 respectively.

Figure 4. Basic Long Short Term Memory cell.

In our experiments, we used a bidirectional LSTM
(BLSTM) algorithm. Unlike unidirectional LSTMs,
BLSTMs preserve information from the past and the
future [23]. This feature helps the model to converge
faster, to consider both forward and backward time
series dependencies, and therefore improves the overall
prediction. It has been shown in several studies
that the BLSTM algorithm performs better than the
unidirectional LSTM algorithm [24–26] demonstrating
that the future data also contains relevant information.

Figure 5 shows our BLSTM followed by a dropout
layer, a dense layer and an activation function. All
layers share parameters along the time dimension. The
model’s input is a sequence of network packets while
the output is their corresponding predictions (benign
or malicious network packet). For binary classification
models, we use sigmoid activation function, binary
cross-entropy loss function and adam optimizer. For
multi-class classification models, we use softmax

activation function, categorical cross-entropy loss
function and adam optimizer.

Figure 5. Bidirectional LSTM with a dropout and dense layer.

3. Anomaly Detection in SCADA Systems: Data
Set and Methodology
To investigate the merits of the ML-based techniques for
anomaly detection in SCADA systems, a real-world gas
pipeline data set is used for anomaly detection in our
experiments. We now describe the data set in detail,
as well as the different steps of our methodology for
anomaly detection.

3.1. The Gas Pipeline Data Set
The SCADA data set used in this work is hosted
on the Industrial Control System (ICS) Cyber Attack
Data Sets [27] website. The real-world raw data was
generated using a gas pipeline system provided by
the MSU’s in-house SCADA lab. It contains a total of
274,628 instances.

The methodology for the data set collection is
described in the study carried out by Turnipseed [28].
The data set, presents in the Attribute-Relation File
Format (ARFF), is used to create ML models once it
has been pre-processed. It contains 20 features from
Modbus RTU packets, three different types of labels
and also pure raw data, which is provided to aid in the
pre-processing stage. Table 1 lists the features and their
corresponding types.

The features from Table 1 are strongly linked to
a Modbus frame in a gas-pipe scenario. The address
feature is an unique eight-bit value used for device
identification. It is assigned to each master and slave
device allowing them to recognize each other while
establishing a communication. This feature is used
to overcome scan attacks which broadcast commands
to all possible station addresses to determine which
addresses are in use. The second feature is the function
code. An example of a Modbus frame can be seen
in Figure 6. The two main modes in a gas pipeline
infrastructure are read 0x03 and write commands 0x16,
among other 256 different possible function codes.
Some function codes can be used for malicious purposes
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Table 1. List of features from the gas pipeline data set.

Nr. Features Types
1 Address Network
2 Function Code Command Payload
3 Length Network
4 Setpoint Command Payload
5 Gain Command Payload
6 Reset Rate Command Payload
7 Deadband Command Payload
8 Cycle Time Command Payload
9 Rate Command Payload

10 System Mode Command Payload
11 Control Scheme Command Payload
12 Pump Command Payload
13 Solenoid Command Payload
14 Pressure Measurement Response Payload
15 CRC rate Network
16 Command Response Network
17 Time Network
18 Binary Result Label
19 Categorized Result Label
20 Specific Result Label

(DoS attack), such as 0x08, which can be used to force a
slave device to stay in listening mode.

The length field gives the Modbus frame length.
This feature may help detecting attacks by identifying
frames which are not of an ordinary length. The set
point feature is the most critical, since it controls the
pressure in the gas pipeline when the system is in
automatic mode.

Other features such as gain, reset rate, dead band,
cycle time, and rate allow the PID controller to open
and/or close the gas valve as well as turn on and/or
turn off the pump, based on a calculated error value.
The system mode, which represents how the system
is operating, may have three possible values: (1) off
or inactive, (2) manual configuration or (3) automatic
configuration. The control scheme feature determines
whether the gas pipeline system will be controlled by
the pump or by the solenoid. The pump field controls
the pump state when the system mode is set to manual.
An adversary was able to change the gas pipeline
system mode to manual and turn the pump on, the
system would become over-pressurized.

The pressure measurement feature provides the gas
pressure measurement value provided by a pressure
gauge attached to the pipeline. An attacker could use
this feature to provide false measurements emulating
fabricated behaviours in the system. An adversary
may perform an attack by constantly transmitting a
incorrect Cyclic Redundancy Check (CRC) value to
cause a Denial-of-Service (DoS) attack. The command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Address Func. Code

Register Addr

Value to write

 Payload

CRC

Figure 6. Example of a Modbus frame with a payload containing
messages between MTU and RTU.

response feature, as its name indicates, helps the IDS
to differentiate between commands and requests. This
feature, along with the timestamp, the binary result, the
categorized result and the specific result features were
not parsed from the Modbus RTU frame itself, but from
Modbus TCP/IP traffic.

As discussed in Section 1, SCADA systems are a
focus of attention for cyber-attacks. The MSU’s in-house
SCADA lab used seven categories of attacks which were
previously developed in Gao’s research [29] to provide a
broader perspective on the attacks that SCADA systems
may suffer.

Table 2. Description, category and type of the attacks.

Description Category Attack Type #
Naive Response Injection Response Injection Modify/Fabricate 7,753
Complex Response Injection Response Injection Modify/Fabricate 13,035
State Command Injection Command Injection Modify/Fabricate 7,900
Parameter Command Injection Command Injection Modify/Fabricate 20,412
Function Code Injection Command Injection Modify/Fabricate 4,898
Denial of Service Denial of Service Interrupt 2,176
Reconnaissance Reconnaissance Intercept 3,874

These attacks, set out in the Table 2, are the result of
one or a series of external malicious activities through
Modbus RTU packets. The attacks in Table 2 include a
description of the attacks, a category and an attack type
according to our attack model in Figure 1.

3.2. Methodology
Developing an ML-based IDS for intrusion detection
in SCADA systems requires the steps illustrated in
Figure 7. In some cases attribute values (“features”)
were missing from the data set used in our experiments.
As these values are useful in prediction modelling, the
first phase of our approach cleans and transforms the
data to eliminate incomplete records. Next, to train
our data, it was fundamental to follow the Holdout
method and split each of the sixteen data sets into
training, validation and test sets containing respectively
60% (164,776 instances), 20% (54,926 instances) and
20% (54,926 instances) of the observations. The
validation set and the test set were respectively
pre-processed based on the statistics obtained from
the training set and the combined training set and
validation set. Because parameters of prior distribution,
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called hyperparameters, may significantly impact
the performance of ML methods, we performed a
hyperparameter search for the selected ML algorithms.
Given that the data set is comprised of normal traffic
and variants of attack types, we distinguish two
classifiers: binary classification (normal, anomaly) and
seven-category classification (see attacks depicted in
Table 2).

Data Set

Training Set Training +
Val Sets

Pre-Processing

Data Cleaning

Data Transf.

Pre-Processing

Data Cleaning

Data Transf.Val Set Test Set

Hyper
Params
Search

SVM Model
RF Model

BLSTM Model

Classification

Statistics Statistics

Figure 7. Flow chart diagram illustrating the steps of our work
pipeline.

Data Cleaning. We observed that many feature values
were missing or non-existent. The Table 3 depicts the
first three rows of the data set in ARFF. Addr, funct
and c/r refer respectively to the address, function and
command response features.

Table 3, presents three different types of payloads
where data is missing: 1) All values are missing
or nonexistent; 2) only the pressure measurement
is present; and 3) all values except the pressure
measurement are present. To handle the feature values
in the data set that do not have any representation or
meaning, we used four techniques:

Gaussian Mixture Model (GMM) can find the best
number k of Gaussian distributions needed to
cluster our data. To this end, the algorithm finds
the best mean or centre, µ and variance σ of the
Gaussian distributions that best separate our data.

K-means allows us to find the best number k of
clusters by computing the Euclidean distance
between the given samples and a pre-assigned

centroid point, assigning them to a certain cluster
and updating the centroids of the clusters until
convergence on the best separation of the data.

In both GMM and K-means techniques, the first
payload type were considered as cluster k = 0, and the
second and third payload types were assigned to k
number of clusters defined by the elbow method. This
method determined the best number of clusters based
on the cost function or distortion:

 =
K∑
k=1

∑
i∈Ck

||xi − µk ||2. (1)

Lower values of  determine a preferable number k
of clusters and thus, better data separation. With this
strategy, payloads are classified into k clusters, which
are represented in the pre-processed data as a one-
hot encoded notation. One hot encoding is a process of
converting categorical variables into form more suitable
for ML algorithms.

Zero imputation & indicators is a technique in which
we substituted missing values with 0 and
indicated their positions by adding corresponding
indicators with 1 values to the payload feature. If
the feature value existed in the payload then the
value was kept and the indicator set to 0 [30].

Keep prior value, also known as forward-filling, deals
with the non-existent values by replacing them
with the immediately preceding existing feature
value. In the case where forward-filling is
not possible due to a lack of existing prior
feature values, backward-filling is conducted. The
intuition behind this technique is that the missing
values are not dues to data loss but simply cannot
exist, since the type of the packet does not support
these features. Therefore, they appear in the data
as non-existent values and they may be inferred
from previously seen feature values.

Data Transformation. This step was conducted by
performing, first, the mean-standard deviation and
then min-max methods. The mean-standard deviation
method consists of subtracting the calculated overall
mean and dividing by the calculated overall standard
deviation for each of the values within a certain feature.
Thus,

zi =
xi − µ
σ

, (2)

where x is a feature value, µ is the mean, and
σ is the standard deviation. Performing this pre-
processing strategy ensures the minimization of the
sample deviations from the mean. The second method
is min-max approach, which consists of finding the
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Table 3. Examples of the missing values in the gas pipeline data set.

Address Function Length Payload CRC C/R Timestamp
4 3 16 ?,?,?,?,?,?,?,?,?,?,? 12869 1 1418682163.170388
4 3 46 ?,?,?,?,?,?,?,?,?,?,0.689655 12356 0 1418682163.269946
4 16 90 10,115,0.2,0.5,1,0,0,1,0,0,? 17219 1 1418682164.995590

minimum and maximum value from a given feature and
normalizing the feature values between 0 and 1. Hence,

zi =
xi −min(x)

max(x) −min(x)
, (3)

where xi is a feature value, min(x) and max(x) are the
minimum and maximum values calculated from the
overall feature values.

Hyperparameter Search. In a SVM, the hyperparameters
C and γ must be correctly set for each of the
sixteen data sets. Hence, we performed a random
search to determine the best hyperparameters for our
models. Although grid search and manual search are
the most widely used techniques for hyperparameter
optimization, it has been empirically and theoretically
demonstrated that randomly chosen tests are more
efficient [31].

For each of the sixteen pre-processed data sets, we ran
thirty different prediction trials over the corresponding
validation set, during the hyperparameter search. The
seven most notable results are analyzed to investigate
how the algorithms converge to a good result after
the best hyperparameters are found. Due to the long
training time of SVMs, we used only 25% from the
entire data set.

In RF, the hyperparameters number of estimators and
maximum depth of the trees must be correctly set for
each of the sixteen data sets. Once again, we performed
a random search, through thirty different prediction
trials, to define the best hyperparameters for these
models.

In BLSTM, the hyperparameters learning rate, batch
size, sequence length, dropout and hidden layer size must
be correctly set for each of the sixteen data sets. Again,
we conducted a random search, by running through
fifty epochs, a parameter for BLSTM, to define the best
hyperparameters for these models. For each data set, we
ran thirty different predictions over the corresponding
validation set during the hyperparameter search. The
seven most significant results are used in this study
to show how the algorithm converges once the best
hyperparameters are found.

Classification. In this step, models are created with
the aim of classifying novel observations on a set of
predefined classes. If only two possible classes exist,
then it is called binary classification. In contrast, if
more than two classes are differentiated, it is called
multi-class classification. In the context of this work,
a classification task is performed to correctly classify

benign and malicious packets. The trained model
output would be 0 or 1, for a binary classification
approach and from 0 to n classes’, for a multi-class
classification approach.

4. Detecting Anomalies in SCADA: Experiment and
Results Analysis
We developed our classification scripts with Scikit-
learn1, TensorFlow2 and Keras3. Our source code is
available on GitHub [32]. In the following, we evaluate
our test results, together with the performance results
of SVM, RF and BLSTM for anomaly detection using the
gas pipeline system data set.

4.1. Key Performance Indicators
In any binary classification, the result can have four
outcomes, two positive and two negative. This is
illustrated in Table 4.

Table 4. Confusion matrix summarizing the outcome of any binary
classification.

Actual positive Actual negative

Predicted positive True Positive (TP) False Positive (FP)
Predicted negative False Negative (FN) True Negative (TN)

To evaluate the classification of our ML algorithms,
we used four Key Performance Indicators (KPIs): accu-
racy, precision, recall, and F1 score. The hyperparam-
eter search was performed by calculating the F1 score
of the validation set over the training set. In the litera-
ture [33], the frequently used measurement to evaluate
the total number of correct predictions is

accuracy =
T P + TN

T P + TN + FP + FN
. (4)

In predictive analytics, the accuracy paradox suggests
that predictive models with a certain accuracy value
may have more significant predictive capability than
other models with higher accuracy, making the accu-
racy an unreliable measure [34] [35]. Consequently,
we used the accuracy measurement together with three
other less misleading measures: precision, recall and F1.
The first measure is defined by

1http://scikit-learn.org/
2https://www.tensorflow.org/
3https://keras.io/

8

Rocio Lopez Perez et al.

EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 01 2019 | Volume 6 | Issue 19 | e3



precision =
T P

T P + FP
, (5)

which describes the samples correctly classified into
a category relative to the total amount of samples
classified into this category. The recall is defined by

recall =
T P

T P + FN
, (6)

and describes the samples correctly classified into a
category relative to the total amount of correct samples
in this category. Finally,

F1 = 2 ·
precision · recall
precision + recall

, (7)

is a weighted average of recall and precision. The best
value of F1 is 1 and the worst 0. In the next Section, we
describe the techniques that we have used to deal with
missing features in our data set.

4.2. Anomaly Detection Results
We split each of the sixteen data sets into training,
validation and test sets according to the division in
Section 3.2. Once we obtain the best configuration for
a given classifier, the validation set is combined with
the training set, leaving the final split into 80% of the
observations in training set and 20% in the testing set.
Two classifiers were used to study the performance of
the different SVM, RF and BLSTM-based IDS models:
binary (normal, anomaly) and categorical (see attacks
listed in Table 2). We denote these respectively by
“BIN” and “CAT”. For each experiment, we compared
the performance of each ML technique under mean-
standard deviation (MEAN) and min-max (MIN-MAX)
approaches.

SVM Performance. Figures 8a, 8d, 8g, and 8j show the
performance of SVMs for the binary and categorical
classifier and for the MEAN and MIN-MAX data
normalization. As we can see, the BIN classifier achieves
a better F1 score in both cases of data normalization
(MEAN and MIN-MAX) using the Keep prior value.
Indeed, the lowest F1 score for binary classification
is 92.04% (see Figure 8g while for CAT classification
this value drops to 88.45 % (see Figure 8j). The worst
performance in terms of F1 score for both classifiers
was obtained by GMM and K-means algorithms. The
Zeros & Indicators method performs better than GMM
but worse than Keep prior value. For both binary
and categorical classifiers, the MEAN normalization
strategy outperforms MIN-MAX normalization. Table 5
summarizes the results, highlighting the best for BIN
and CAT SVM classifiers employing the split criterion
of 80% for the training set and 20% for the test set,
and using the hyperparameters that gave us the best

performance. We obtained a F1 score of 94.34% for BIN
and a F1 score of 92.50% for the CAT classifier. These
were achieved using MEAN normalization and keep the
prior existing value strategy respectively to deal with
missing values.

Table 5. Best binary and categorical classifiers modeled with
SVM.

SVM Hyper-parameters Measurements
Test sets C gamma Acc Prec Recall F1-score

binary-mean-keep 346.219 0.3975 94.36 % 94.33 % 94.36 % 94.34 %
binary-minmax-keep 579.161 0.6270 92.78 % 92.91 % 92.78 % 92.83 %
categorical-mean-keep 107.411 0.2689 92.56 % 92.47 % 92.56 % 92.50 %
categorical-minmax-keep 536.672 0.7150 89.70 % 90.50 % 89.70 % 89.97 %

RF Performance. Figures 8b, 8e, 8h, and 8k present the
contrasting configurations in a binary and categorical
classifier modelled with the RF algorithm. The highest
F1 score was achieved by the binary classifier: 99.40%
with MIN-MAX technique for data normalization and
using the Keep prior value approach for dealing with
missing data.

Table 6 depicts the final results obtained using the
best hyperparameters, and the 80%–20% split criterion,
for the training and test sets. We obtained a F1
score of 99.58% for BIN and a F1 score of 99.41%
for CAT. It is worth mentioning that for the final
results, the difference between MEAN and MIN-MAX
normalization strategies is very small: as illustrated in
Table 6, the difference is 0.02% for binary classification
and 0.03% for categorical classification. Therefore,
similar results can be achieved with both normalization
strategies.

Table 6. Best binary and categorical classifiers modelled with
Random Forest Algorithm; ne and md correspond to number of
estimators and maximum depth.

Random Forest Hyper-parameters Measurements
Test sets ne md Acc Prec Recall F1-score

binary-mean-keep 47 49 99.58 % 99.58 % 99.58 % 99.58 %
binary-minmax-keep 44 71 99.56 % 99.57 % 99.56 % 99.56 %
categorical-mean-keep 71 80 99.41 % 99.41 % 99.41 % 99.41 %
categorical-minmax-keep 64 88 99.39 % 99.39 % 99.39 % 99.38 %

BLSTM Performance. In Figures 8c, 8f, 8i, and 8l, which
show the results for BLSTM, the Zeros imputation
& indicators strategy for dealing with missing values
outperforms other techniques, such as K-means and
GMM, and slightly outperforms the Keep prior value
approach. This is consistent with the theory and
experiments presented in [30]. The Table 7 summarizes
the results for BIN and CAT BLSTM classifiers, running
three hundred epochs with the best hyperparameters
and using the 80%–20% split criterion. Bidirectional
Long Short Term Memory outperforms SVM. We
obtained a F1 score of 98.39% for BIN and a F1 score
of 97.68% for CAT. As shown in Table 7, for both
binary and categorical classifiers, the MEAN is better
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than MIN-MAX. The difference between these two
normalization strategies is 0.77% for BIN and 1.2% for
CAT classification.

Table 7. Best binary and categorical classifiers modelled with
BLSTM Algorithm; lr, batch, seq, drop and h_layer correspond
to learning rate, batch size, sequence length, dropout and hidden
layer size.

BLSTM Hyper-parameters Measurements
Test sets lr batch seq drop h_layer Acc Prec Recall F1-score

binary-mean-indi 0.008308 67 4 0.019025 110 98.40 % 98.40 % 98.40 % 98.39 %
binary-minmax-indi 0.011490 121 4 0.027915 218 97.64 % 97.64 % 97.65 % 97.62 %
categorical-mean-indi 0.009908 138 4 0.032404 136 97.71 % 97.69 % 97.71 % 97.68 %
categorical-minmax-indi 0.013236 138 4 0.039841 254 96.57 % 96.53 % 96.57 % 96.48 %

Results Analysis. Although BLSTM models are widely
used for time-dependent problems given their capabil-
ities of using forward and backward information, RF
results outperform those achieved with BLSTM algo-
rithm, as illustrated in Table 6 & 7. This may be due
to both a lack of collective attacks, and the existence
of high randomness in the occurrence of attacks within
the data set. Since the data set was generated, the
developers made sure to avoid the appearance of unin-
tended patterns and did not inject collective attacks. For
instance, DoS could be performed as a set of packets
that overwhelm the system, of which one single packet
may not mean anything to the predictor. Taken together,
however, they do matter and represent an attack. In our
case, DoS attacks are performed by sending Modbus
packets with incorrect CRC values. We emphasize that
the data was generated, whereas in reality collective
or sequential attacks may appear. This is why it is
interesting to study the BLSTM algorithm and integrate
it into a NIDS.

The results from RF, which are listed in Table 9 show
that it correctly classifies large numbers of normal and
malicious packets. The categorical classification report
in Table 8 shows the detection rate for each of the
data type. The distinction between Complex Malicious
Response Injection (CMRI) and Naive Malicious
Response Injection (NMRI) presents low recall value.
This is due to the randomness of NMRI attacks,
which are likely to overlap in values with the CMRI
attacks and normal data: since a CMRI attack consists
of designing malicious packets that imitate normal
behaviours, some of these overlap with normal packets.
For a DoS attack, the cause for the low detection rate, in
comparison with the rest of attacks, is due to the bad
CRC attack. This attack injects an invalid CRC value
in a write multiple register command, which makes the
RTU to disregard the command, in turn causing a DoS.
Random Forest algorithm was able to accurately classify
the write command with the incorrect CRC value as
an attack, but some responses from the RTU were not
classified as a DoS attack.

It is worth to mention that our ML-based intrusion
detection can be carried out in real time once the model

Table 8. Classification report of the RF algorithm.

Random Forest Accuracy test data = 99.41 %
Type of Data precision recall f1-score support

Normal 99.48 % 99.90 % 99.69 % 42953
NMRI 98.14 % 96.99 % 97.56 % 1526
CMRI 98.84 % 96.40 % 97.60 % 2641
MSCI 99.28 % 98.63 % 98.96 % 1538
MPCI 99.90 % 98.00 % 98.94 % 4101
MFCI 98.77 % 100 % 99.38 % 967
DoS 97.54 % 95.42 % 96.47 % 415

Recon 99.61 % 97.96 % 98.78 % 786
avg / total 99.41 % 99.41 % 99.41 % 54927

Table 9. Confusion matrix of the RF algorithm.

Normal NMRI CMRI MSCI MPCI MFCI DoS Recon
42908 12 9 9 4 0 8 3 Normal

25 1480 21 0 0 0 0 0 NMRI
79 16 2546 0 0 0 0 0 CMRI
20 0 0 1517 0 0 1 0 MSCI
79 0 0 2 4019 0 1 0 MPCI
0 0 0 0 0 967 0 0 MFCI

19 0 0 0 0 0 396 0 DoS
4 0 0 0 0 12 0 770 Recon

is trained correctly. This real-time capability has been
demonstrated in several studies such as [36–39].

5. Related Work
Due to the advancements in connectivity and the
sharp rise in the number of networks attacks, network
anomaly detection has become a dynamic research
area. Several surveys and review articles, which are
available in the literature [36, 40, 41], discuss datasets
and the common tools used during the different steps
of anomaly detection. Readers are encouraged to refer
to these paper for a comprehensive overview of up-
to-date anomaly detection methods, their classification
and open challenges. In this section, we focus on ML
techniques for detecting anomalies in SCADA systems.

The SCADA systems were originally designed
following the air gap principle and therefore without
security measures in mind. Nowadays, these systems
are in the spotlight of network attacks, due to
standardization and connectivity to the Internet [2,
42]. While using ML for predicting anomalies in
networks has motivated many studies, little research
has tackled the advantage of using ML in SCADA
systems by using real data sets and a varied
set of ML algorithms. In the literature, a large
number of studies used the Knowledge Discovery and
Data Mining (KDD) 99 data set to evaluate their
solutions for intrusion detection [37, 43–45]. However,
this data set does not consider the specificities of
SCADA architecture, communication protocols and
traffic patterns. Moreover, it is seen by the research
community as biased, outdated, and not relevant for
modern network attacks detection. In the following,
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we detail different intrusion detection approaches for
SCADA systems using real data sets.

The authors of [46] combine the signature-based
and model-based approaches to design a rule-based
IDS for SCADA networks. Their IDS overcomes
the main disadvantage of signature-based systems,
i.e only known attacks are detected using pre-
established rules. In [47], authors presented a multi-
algorithm model-based IDS. Models that represent the
expected/acceptable system behaviour are created, and
any behaviour that causes violations of these models is
detected as an attack. The same approach was adopted
in [48] to detect anomalies in wind turbines in an early
stage. However ML is used in the first step to estimate
the values of Wind Turbines parameters. Deviation
between the estimated values and the measurement
using the Mahalanobis distance.

Both [38] and [39] presented an IDS that detects
malicious network traffic in SCADA systems, based
on One Class Support Vector Machine (OCSVM)
technique. While authors of [38] use OCSVM to classify
malicious observations by comparing them with benign
ones, the study carried out in [39] aims at detecting
intruders in SCADA networks by analysing variables of
the control devices. Two different approaches of one-
class classification, the Support Vector Data Description
(SVDD) and the Kernel Principle Component Analysis
(KPCA), were proposed as well in [49]. Lp-norms are
studied in Radial Basis Function (RBF) kernels for
intrusion detection.

An IDS that detects SCADA attacks based on the
network traffic behaviour was proposed in [50]. The IDS
extracts the time correlation between different network
packets and then monitors the system to determine
if it is behaving normally or not. An alarm is raised
when anomalies are detected. Authors of [51] presented
an IDS using Neural Network based Modelling (IDS-
NNM) algorithm following the supervised learning
approach. They adopted a specific window based
attribute extraction approach to capture the time series
nature of the network packet stream. More recently, a
Recurrent Neural Network (RNN) with unidirectional
LSTM architecture was proposed in [52] to detect
industrial control system anomalies.

While majority of researchers often opt for the use
of semi-supervised or supervised learning algorithms
to perform anomaly detection, Schuster et al. demon-
strated the merit of using unsupervised learning for
training anomaly detectors to identify intrusions in
power plants [53]. To this end, they carried out a
deep packet inspection of ongoing traffic followed by
unsupervised ML for training the detection process.

In a previous work [54], we investigated how the ML
techniques RF and SVM can detect attacks in a SCADA
environment with the same data set. In comparison,
in this paper we provide in-depth performances study

of several ML algorithms for anomaly detection.
Specifically, we introduce a more elaborated section
on the attacks vectors in SCADA systems; BLSTM
algorithm for binary and categorical classification with
several normalization techniques; and extended related
work section.

6. Conclusion and Future Work
Until not too long ago, the most common security
strategy for SCADA systems was the air gap principle:
an operator of SCADA networks segregated the control
network from other networks. Hence, attackers could
not access them. The attacker had to be physically close
to the SCADA system to access the communication
channel, inject malicious data or even interfere with
the protocol. Nowadays, with growing demands for
connectivity between the SCADA control network and
the corporate network, novel network attacks have
appeared as PLCs or RTUs devices are managed
over IP communication protocols. This increased
interconnectivity results in the de-isolation of SCADA
systems, making them more vulnerable. Attackers no
longer need to gain physical access to on-site circuits to
perform a hostile action but instead, malicious network
packets can reach the field devices from anywhere.

In this paper, we have shown that ML techniques
can detect network attacks against SCADA systems.
We used a SCADA data set provided by the MSUs’s
in-house SCADA lab. It was generated using a gas
pipeline SCADA system hosted in their laboratory.
We used SVM, RF, and BLSTM to implement diverse
IDS classifiers. We provided a complete comparison
between these algorithms along with the random
hyper-parameter search results. Compared to the study
carried out by [28], our paper provides a better
understanding of the performances of machine learning
techniques by proposing more KPIs (accuracy, F1
score) for the binary and categorical classifications.
In addition, we have investigated four techniques to
handle the feature values in the data set that do not
have any representation or meaning. We published our
source code on GitHub [32] to help other researchers
to verify, compare, and/or extend their studies. In
contrast to the state-of-the-art studies, the use of
the test set accuracy, precision, recall and F1 score
allowed us to assess their performance correctly and
comprehensively. The RF algorithm gives the best
performance by detecting 99.90% of benign data and
98.46% of attacks, with an overall detection rate (recall)
of 99.58%.

Our approach can be applied to different SCADA
environments, because SCADA is based on a well-
defined architecture (see Section 2). The used data set
was generated in a real gas pipeline following a typical
SCADA architecture. Although, the data set contains
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only Modbus RTU traffic, other SCADA protocols (e.g.
DNP3 or IEC 60870-5-104) have similar messages
to monitor (read) and control (write) sensors and
actuators. In addition, these protocols can be the target
of the same attacks that were studied in this paper.

An interesting future investigation would be the
extraction of rules from RF algorithms to integrate them
with signature-based NIDSs such as Snort.
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