Designing User Interface for People with Dementia: A Systematic Literature Review

Minmin Zhou¹, Kamal Sabran², Zuriawati Ahmad Zahari³
{min145051@gmail.com¹, kamalsabran@gmail.com², zuriawati@gmail.com³}

Universiti Sains Malaysia, 11800 Gelugor Penang ¹, Universiti Sains Malaysia, 11800 Gelugor Penang², Universiti Sains Malaysia, 11800 Gelugor Penang³

Abstract. Dementia is a health challenge faced by people from all over the world. From the perspective of respecting the needs of people with dementia and the caregivers, user interface can improve the quality of life and the emotional needs of people with dementia besides supporting the humanized work needs of caregivers. This study selected user interfaces developed for people with dementia in the past five years. A systematic literature review explored the types of user interface that help people with dementia and looked at how these user interfaces can help improve their daily living abilities and nursing care surroundings. The main contribution of this study is in providing researchers with an understanding that the current focus on people with dementia has shifted from basic physiological needs to a meaningful and normal life. The development of a valuable user interface combined with non-pharmaceutical interventions can help people with dementia have a better quality of life.

Keywords: people with dementia, user interface, caregiver, healthcare, intervention.

1 Introduction

The rapid growth of the elderly population worldwide has caused increasingly serious social problems. Alzheimer’s disease and other forms of dementia are among the top ten causes of death in the world [1]. Dementia is a complex disease that cannot be attributed to a fixed set of cognitive, social, or emotional defects [2]. In addition to the physical health problems experienced by people diagnosed with dementia, families and society also face nursing challenges. According to statistics, nearly 60% of people with dementia (PwD) live in low- and middle-income countries [3]. This phenomenon has led to an increase in the cost of the healthcare system and social care. Most care for dementia is at home or in long-term care facilities. At least one-third of caregivers have communication problems with PwD in some daily activities [4]. For people with dementia who want to live independently, intelligent environments and devices can improve their ability to stay in their own homes by providing environmental control and monitoring of medication to ensure their health and safety [5].

There are many problems in the current health care system for dementia. In addition to the inability to provide adequate essential healthcare services for PwD, there are also continuous and quality care challenges. These challenges can only be addressed by developing sustainable interventions for the future. Interactive training of human–environment interaction can be successfully used in the cognitive training of PwD who are in the early stages of dementia [6].
Multimedia can also provide a valuable memory experience for PwD [7]. These user interfaces provide a certain level of healthcare services at low costs and specific qualities.

In this work, a systematic literature review was conducted to verify how various user interfaces are applied to PwD. Therefore, this research has defined the following research questions:

RQ1. What types of user interface can help PwD?
RQ2. How can these user interfaces help PwD?

2 Method

This research was conducted according to the guidelines of the systematic literature review. It is mainly divided into the following steps:

2.1 Search Process

The selected research must be related to user interface development for dementia between 2015 and 2021. The search was conducted in May 2021 in the databases of Scopus, ACM digital library, and IEEE Explore. Since the discussion includes a wide range of PwD, the search keyword used is "dementia". There were no separate searches for keywords such as Alzheimer’s, vascular dementia, Pick’s disease, frontal dementia, and Parkinson’s dementia. Therefore, the primary form of the search string is:

"dementia" AND "user interface" OR "application"

2.2 Inclusion and Exclusion Criteria

A study is selected for the systematic review if it meets the following inclusion criteria:
- The target audience of the article is dementia-related
- The article is written in English
- The article is full text and can be used to answer the research questions

The exclusion criteria for this study are as follows:
- The article is a literature review
- The article is related to medical theory

2.3 Quality evaluation

After the search results generated studies that fulfilled the inclusion and exclusion criteria, in order to further improve the quality and ensure the authenticity of the results, the following questions based on quality standards were asked for each selected study:

EQ1. Does the article introduce user interfaces related to dementia?
EQ2. Does the article include the use of research methods?
EQ3. Did the article produce results on the healthcare or nursing setting of dementia?

2.4 Data Extraction and synthesis
After the above steps were performed, 33 papers were finally selected from Scopus, ACM Digital Library, and IEEE Explore databases for review. All the studies have been peer-reviewed. Two papers were published at different times on the same study [8] [9]. The data extraction and synthesis of the selected studies needed to answer the detailed elements listed in Table 1. Data extraction needed to answer three questions about user interface type, research methods, and current research results. Data synthesis was obtained through detailed reading and analysis of selected studies, including user interface classifications developed for dementia (Fig. 2) and user interface improvement areas developed for dementia (Fig. 3). Fig. 1 depicts the flow chart for the selection of studies to be included in this research.

Table 1. Elements of data extraction and synthesis.

<table>
<thead>
<tr>
<th>Description</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliographic information</td>
<td>Author(s), publication year, title etc.</td>
</tr>
<tr>
<td>Data extraction</td>
<td>User interface type</td>
</tr>
<tr>
<td></td>
<td>Research method used</td>
</tr>
<tr>
<td></td>
<td>Findings of the study</td>
</tr>
<tr>
<td>Data synthesis</td>
<td>User interface classification developed for dementia (Fig. 2)</td>
</tr>
<tr>
<td></td>
<td>Areas of user interface improvement developed for dementia (Fig. 3)</td>
</tr>
</tbody>
</table>

![Flow chart for the selection of studies](image)
3 Result

3.1 RQ1: What types of user interface can help PwD?

Touchscreen Interface

Fig. 2 shows several types of user interface for PwD. The most reviewed by the studies are the touchscreen user interface. A well-designed touch screen can be used with only a little training, and it can even be used as an intervention strategy to improve the quality of life of PwD [10]. As Table 2 shows, ten studies emphasized the usability of touchscreens on mobile devices for PwD or caregivers. The touchscreen is usually operated using fingers and a stylus for easy input. The studies reviewed explained that easy-to-understand and easy-for-intuitive interactions are the advantages of touchscreen interfaces [11][12][13].

The study of McAllister proposed a "memory guardian" application based on Apple’s iPad to improve the happiness of PwD by supporting the interaction between nursing staff and PwD [14]. Another application, SMART4MD developed by Quintana et al. based on Android tablets, supports people with mild cognitive impairment to use it at home while optimizing the screen features of Android mobile phone devices and tablets [15]. Mobile applications support user-friendly use in any environment and at any time. Some studies have provided quantitative results and proven that mobile applications can benefit users by triggering their memory [16][17][18]. The intelligent environment assisted living system iCarus is a client application designed for standard mobile devices [19]. In addition to the user interfaces mentioned above based on mobile and tablet touch screens, Davison et al. developed a memory box interface for the surface computer [20]. The study found that residents, families, and employees had higher utilization rates of the memory boxes. During the intervention, the symptoms of depression and anxiety were significantly reduced. The system detects the cognitively impaired elderly and restless behavior to help family and nursing home staff improve their health.

<table>
<thead>
<tr>
<th>Authors(s)</th>
<th>Study Design</th>
<th>Participants</th>
<th>Interface Type</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>McAllister et al. [14]</td>
<td>Field notes, focus groups, and individual interviews</td>
<td>3 PwD</td>
<td>Prototype digital application: Memory Keeper</td>
<td>Memory Keeper helps caregivers improve the health of PwD by providing personalized reminders to stimulate memories</td>
</tr>
<tr>
<td>Study</td>
<td>Methodology</td>
<td>Sample Size</td>
<td>Outcome</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>-------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Lin et al. [16]</td>
<td>Semi-structured interviews, participatory design methods</td>
<td>8 caregivers of PwD</td>
<td>Social exergame: Go&Grow, focus on wellbeing, increase physical activity, reduce stress</td>
<td></td>
</tr>
<tr>
<td>Quintana et al. [15]</td>
<td>Feasibility–usability testing, user evaluation</td>
<td>19 people with cognitive impairment and their informal caregivers</td>
<td>Tablet application: SMART4MD, share among family members and informal caregivers to provide reminders, cognitive support activities, and optional status and health information</td>
<td></td>
</tr>
<tr>
<td>Cunningham et al. [17]</td>
<td>Questionnaire, semi-structured interviews</td>
<td>11 persons diagnosed with vascular dementia or Alzheimer’s</td>
<td>Musical mobile app: Memory Tracks, increase wellbeing, reduce stress</td>
<td></td>
</tr>
<tr>
<td>Yilmaz [19]</td>
<td>Questionnaire, statistically analyzed and reported</td>
<td>11 persons diagnosed with vascular dementia or Alzheimer’s</td>
<td>Intelligent ambient assisted living system: iCarus, improve quality of life</td>
<td></td>
</tr>
<tr>
<td>Hattink et al. [18]</td>
<td>Pretest–posttest</td>
<td>11 persons diagnosed with vascular dementia or Alzheimer’s</td>
<td>Multifunctional system: Rosetta, provide good care for PwD</td>
<td></td>
</tr>
<tr>
<td>Davison et al. [20]</td>
<td>Randomized, single-blinded, cross-over trial</td>
<td>11 nursing home residents with dementia</td>
<td>Personalized multimedia device: Memory Box, help workers improve their anxiety and health</td>
<td></td>
</tr>
<tr>
<td>Nayer and Coxon [11]</td>
<td>Usability testing</td>
<td>11 PwD</td>
<td>Personal digital media Adaptive user interfaces for healthcare application: IONIS, provide enhanced support</td>
<td></td>
</tr>
<tr>
<td>Awada et al. [12]</td>
<td>Adaptive evaluation in the laboratory</td>
<td>25 elderly people with cognitive and memory problems</td>
<td>Home automation system, increase the sense of social participation for PwD</td>
<td></td>
</tr>
<tr>
<td>Cecacci et al. [13]</td>
<td>User-centered design, structured interviews</td>
<td>20 PwD</td>
<td>Multifunctional system: Rosetta, extend independent living of the patient</td>
<td></td>
</tr>
</tbody>
</table>

Gesture-based Interface

The nine studies in Table 3 discussed gesture-based interfaces in their literature review. These studies provided references on the design guidelines for the interaction technology for PwD. The primary purpose is to help users with dementia use gestures effectively while reducing guidance from caregivers by, among others, simplifying gestures and prompting animation to solve the problems of gesture switching and cognitive overload [21]. The research of [22] is on a gesture-based interactive platform developed by an interdisciplinary team to increase the sense of social participation for PwD. This platform uses interactive technology to provide dementia participants with audiovisual experiences of digital art through wearable devices and provide real-time data for therapists and nursing staff to help...
PwD with their recovery. The combination of the two enabled the participants to perform physical therapy while enjoying artistic experiences.

Kinect gesture control is easy to use for dementia patients and has been proven to be feasible. This type of interface can improve cognition by stimulating the brain activity of patients. Sports rehabilitation games based on Kinect camera tracking support participants to sing and dance to the music in a virtual music room, but there is still room for improvement in understanding and operation techniques [8][9]. Another serious game study [23] used head-mounted displays to provide PwD with customized sports games that meet users’ cognitive abilities. In addition, the smart TV interface provides cognitive-related video games for PwD as a simple and inexpensive alternative [24].

Due to cognitive and physical limitations, providing exercise guidance for PwD is not an easy task. The virtual environment’s immersive experience allows PwD to use gesture interaction smoothly after a short adaptation period [25]. The studies of Rings et al. [26] and Yun et al. [27] both used virtual reality interactive interfaces to complete cognitive training. The former mainly focused on motor cognition, and the latter used a fully immersive experience to improve cognitive impairment for people with mild dementia. The hand image data captured by the hand motion tracking module helped PwD in performing gesture operations so that the PwD could complete the gesture task without being instructed.

Table 3. Gesture-based interfaces reviewed.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Study Design</th>
<th>Participants</th>
<th>Interface Type</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hackner and Lankes [21]</td>
<td>Field test, observation</td>
<td>4 PwD, 4 people without dementia</td>
<td>Android application; Mind training</td>
<td>This tablet computer game helps PwD use gestures intuitively and efficiently for cognitive training</td>
</tr>
<tr>
<td>Gardner et al. [28]</td>
<td>Proof-of-concept study</td>
<td>Approximately 20 older adults</td>
<td>Gesture-based interactive platform: ABLE</td>
<td>ABLE offers a range of physical, emotional, and social engagement benefits</td>
</tr>
<tr>
<td>Unbehaun et al. [9]</td>
<td>Semi-structured interviews</td>
<td>3 PwD, 2 caregivers, 3 relatives, a volunteer, the manager of the day-care center, and 2 physiotherapists</td>
<td>Interactive music exergame</td>
<td>Serious games offer music-based interventions to improve the physical condition of PwD</td>
</tr>
<tr>
<td>Unbehaun et al. [8]</td>
<td>Semi-structured interviews, observations</td>
<td>26 PwD and 6 informal caregivers</td>
<td>Video game system</td>
<td>The system improves the ability of PwD to face the challenges of everyday life in an outpatient and daycare setting</td>
</tr>
<tr>
<td>Eisapour et al. [23]</td>
<td>Questionnaire, observations, design feedback</td>
<td>6 PwD</td>
<td>Virtual reality games</td>
<td>Five different PwD sports games with customized physical parameters for each user, making the game easy to play</td>
</tr>
<tr>
<td>López et al. [24]</td>
<td>Questionnaire, user testing</td>
<td>18 PwD</td>
<td>Smart TV application focusing on cognitive games</td>
<td>Cognitive games improve the cognitive and social skills of PwD, and play an essential role in the early detection of and action on dementia symptoms</td>
</tr>
<tr>
<td>Bejan et al.</td>
<td>Group</td>
<td>5 persons with</td>
<td>Reminiscence-</td>
<td>PwD can explore appropriate</td>
</tr>
</tbody>
</table>
experimental
test

mid-stage
dementia

provoking a
virtual 3D
environment

gestures in memory and engage
in immersive and pleasurable
gesture interactions

virtual 3D
environment

virtual reality
sports games

virtual reality
cognitive training
regimens are
feasible for persons with mild
cognitive impairment and mild
dementia

Focus group
interviews

Groups of 4–7

Exergame: Memory
Journalist

Virtual reality
cognitive training
program

fully immersive virtual reality
cognitive training regimens are
feasible for persons with mild
cognitive impairment and mild
dementia

Yun et al. [27]

Pilot study

10 psychiatrists,
6 occupational
therapists,
and 11 persons
with cognitive
impairment and
dementia

Virtual reality
cognitive
training
program

Fully immersive virtual reality
cognitive training regimens are
feasible for persons with mild
cognitive impairment and mild
dementia

Graphical User Interface (GUI)

Among the reviewed studies, only two focused on GUI (Table 4). The nursing guidance system designed by Kim et al. [29] allows nursing staff to query and understand nursing knowledge through a GUI, text-based chats for real-time guidance, and videos for learning. Scene examples of PwD are created in the GUI to facilitate the accurate operation of the interface by nursing staff. In addition, Gullà et al. [30] also designed a smart home system based on GUI features. This GUI is designed with two different user interfaces: normal mode and wizard mode. The wizard interface minimizes the amount of information that users need to understand and manage, can change the information display mode, and provides auxiliary information to help the operator realize the control of the smart home equipment.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Study Design</th>
<th>Participants</th>
<th>Interface Type</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim et al. [29]</td>
<td>Online survey, interviews</td>
<td>4 female experts who have worked for more than 10 years in caring for PwD</td>
<td>Care guide system</td>
<td>This system provides caregivers with appropriate nursing guidance depending on the situation</td>
</tr>
<tr>
<td>Gullà et al. [30]</td>
<td>Pretest–posttest</td>
<td>8 PwD</td>
<td>New home automation system</td>
<td>New smart home systems support people with early dementia to live independently and increase the time they spend at home</td>
</tr>
</tbody>
</table>

Voice User Interface

The most direct interaction method for PwD is voice interaction, which can produce higher efficiency [31]. Some studies have detected the language ability of PwD through automatic language recognition [32]. Without voice interaction, it is challenging for PwD to use a computer smoothly. Dethlefs et al. [33] provided a spoken natural language interface for interactive operating computers with speech recognition. In addition, due to changes in the vocabulary and syntactic structure of PwD, adaptive technology in speech is another problem [34]. The reminder system developed by Tokunaga et al. [35] established an animated chat that simulates dialogues between people, using spoken dialogues to boost users’ confidence.
In order to improve the efficiency and accuracy of the user interface, speech recognition should also consider the caregiver’s accent to support users in completing complex tasks [36]. In the study of Li et al. [37], intelligent voice assistants assisted nursing staff in managing the daily diet of PwD. The user’s voice input is received first, and then the voice is converted into text through automatic voice recognition, allowing the system to recognize the user’s intention and offer suggestions and solutions.

Table 5. Voice user interface reviewed.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Study Design</th>
<th>Participants</th>
<th>Interface Type</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanno et al.</td>
<td>Experiment</td>
<td>2 Alzheimer patients, 1 caregiver, and 1 family member</td>
<td>Accessible interface based on augmented reality (AR)</td>
<td>Higher efficiency can be achieved through voice interaction on the AR interface</td>
</tr>
<tr>
<td>Shibata et al.</td>
<td>Control experiment</td>
<td>18 PwD</td>
<td>Smartphone-based dementia screening application: VocabChecker</td>
<td>VocabChecker measures language ability through automatic speech recognition</td>
</tr>
<tr>
<td>Dethlefs et al.</td>
<td>Experimental interventions, interviews</td>
<td>13 healthy elderly people and 10 PwD</td>
<td>Spoken natural language interface</td>
<td>It is possible to use spoken natural language for computer-based cognitive stimulation of PwD</td>
</tr>
<tr>
<td>Tokunaga et al.</td>
<td>Agent service experiment</td>
<td>7 PwD</td>
<td>Reminder service</td>
<td>Virtual agents are effective for PwD through voice, touch interaction, and the display of captions and pictures</td>
</tr>
<tr>
<td>Wolters et al.</td>
<td>Focus group</td>
<td>6 PwD, 2 carers, and 4 people without dementia</td>
<td>Intelligent cognitive assistants</td>
<td>The voice interface enables people with dementia to perform daily tasks</td>
</tr>
<tr>
<td>Li et al. [37]</td>
<td>System evaluation, qualitative evaluations</td>
<td>5 testers</td>
<td>Artificial intelligence-powered voice assistant</td>
<td>Natural interactive interfaces support effective food management</td>
</tr>
</tbody>
</table>

Tangible User Interface

Due to short-term or long-term memory loss, PwD may forget how to use the products that were once familiar to them. Therefore, establishing a direct relationship between the user and the external features of the product is essential in the design of a typographic interface [38]. In addition, stylish music players need to meet individuals’ ever-changing needs and preferences by, among others, providing non-technical users with various options of input components [39]. Houben [40] designed a music player called Turnaround. PwD and caregivers can interact with each other by holding the two ends of Turnaround and collaborate to create music during turning and spinning. Another music playback device [41] can provide various physical connections according to the abilities of PwD. For example, in the selection of songs and volume control functions, the shape of the ball and buttons can be used as an input interface and the fabric surface can be touched for interactive purposes.

The purpose of the other two tangible user interface studies is to provide recall activities for PwD. A tangible user interface consisting of a chest of drawers was designed [42], taking
into account the abilities of people with moderate to severe dementia and simplifying physical items and applications as much as possible. In addition, tangible multimedia books as recall triggers have been tested by people with varying degrees of dementia to explore the feasibility of books as interactive devices [43].

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Study Design</th>
<th>Participants</th>
<th>Interface Type</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seymour et al. [39]</td>
<td>Informal feedback sessions</td>
<td>10 PwD</td>
<td>Tangible music player: AMI</td>
<td>AMI provides independence and better access to music through visual and physical control of the music playback</td>
</tr>
<tr>
<td>Houben et al. [40]</td>
<td>Pilot study</td>
<td>7 PwD and 6 professional caregivers</td>
<td>Collaborative Musical Interface: Turnaround</td>
<td>Professional caregivers can work with PwD to make music and engage in social interaction</td>
</tr>
<tr>
<td>Thoolen et al. [41]</td>
<td>Engagement workshops</td>
<td>PwD</td>
<td>Music player interface: Sentic</td>
<td>Sentic can be customized according to the functional abilities of users</td>
</tr>
<tr>
<td>Ly et al. [42]</td>
<td>Observations, focus groups, interviews</td>
<td>56 PwD</td>
<td>A chest of drawers using a tangible user interface</td>
<td>The user interface allows dementia patients to perform their memory activities and live independently</td>
</tr>
<tr>
<td>Hultgren et al. [43]</td>
<td>Observation, single sessions, focus group</td>
<td>8 PwD and 4 caregivers</td>
<td>Tangible Multimedia Book</td>
<td>Interactive books have the potential to modulate memory and communication in PwD</td>
</tr>
</tbody>
</table>

Natural User Interface (NUI)

NUI is an interface designed specifically for a particular type of human interaction. PwD can overcome cognitive and physical injury obstacles and have fun by using a NUI suitable for multi-modal interaction. The study of Gündogdu et al. [44] highlighted that aquariums can spark memories and joy. Therefore, a touch table made by the surface computer provides instant feedback between virtual reality and PwD. The natural touch allows gesture-based interaction between PwD and the virtual fish to arouse personal interest and experience. In future research, the olfactory perception will be added to the NUI. This multi-modal interactive system is well adapted to improving the happiness and quality of life of PwD.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Study Design</th>
<th>Participants</th>
<th>Interface Type</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gündogdu et al. [44]</td>
<td>Observation, individual and group session tests</td>
<td>16 PwD</td>
<td>Interactive aquarium application</td>
<td>Nature user interactive multimedia system helps build and improve communication with PwD</td>
</tr>
</tbody>
</table>

3.2 **RQ2: How can these user interfaces help PwD?**
Cognition and memory

A decline in cognitive ability can affect the daily life and independent functions of PwD. The most common symptoms of dementia are cognitive deterioration and memory loss [45]. In interface research aimed at improving the cognition and memory of PwD, cognitive training and stimulation are common strategies. Immersive cognitive training brings multi-sensory stimulation to people with mild dementia [27]. Compared with participating tasks, cognitive stimulation strengthens learning and memory with the people as the center [33]. As an auxiliary tool, intelligent cognitive assistants provide a choice of modes from the perspectives of user initiative and system initiative in the face of individual differences. People with moderate to severe dementia can obtain daily guidance [36]. In addition to their solutions for dementia patients, cognitive activities can also be shared with family members and informal caregivers [15], for example by saving the memories of PwD in memory savers or interactive books in advance, such as photos, music, and videos full of life memories. These meaningful activities give PwD reliable memory support [14] [43] [20]. The activities can also improve the quality of life in long-term care settings [42]. In addition, cognitive games have a particular preventive and interventional effect on dementia [21]. These games not only provide physical exercise for people with dementia [26] [23] but also improve their cognition and social interaction [24] [9].

Healthcare and nursing setting

Long-term care of dementia patients brings a high economic burden and pressure to the family, nursing staff, and society. Its social cost exceeds the total cost of caring for stroke, heart disease, and cancer patients [46]. Current dementia screening is mostly physically invasive, and dementia screening based on automatic speech recognition technology has attracted specific attention [32]. Professional and non-professional nursing staff need to acquire appropriate nursing guidance to take better care of PwD [29]. The IONIS platform supports different environments, offers various solutions for PwD and their caregivers to cope with daily activities, and provides various information related to health monitoring [12]. The NUI supports nursing staff in managing the diet of PwD [37]. The smartphone applications developed can help caregivers pay attention to their health and reduce stress [18] [16]. Finally, ensuring the safety of PwD and extending their time alone at home is another way to reduce the pressure on healthcare and nursing staff [19].

Daily activities

The improvements to activities of PwD include both physical and mental aspects. On the physical aspects, the augmented reality interface prompts medication and recognizes
medication by executing language commands directly [31]. In addition, the virtual agency service that simulates dialogues between people also provides daily reminders for PwD [35]. The user-centered home automation system provides the possibility of effective management and control of home appliances for PwD through a touch screen and an adaptive intelligent environment [30] [13]. In spirit, the combination of art projects and multimedia systems brings a pleasant experience and the value of social participation to PwD [22] [11]. Video game systems have a certain potential to impact the lives of PwD positively [8]. The NUI based on multi-modal interaction provides an immersive experience for PwD and improves their quality of life [44] [25].

Music

The music elements introduced in social work interventions have a positive impact on the prevention and improvement of PwD [17]. In this type of study, music intervention entails two modes: active and receptive. Active music intervention requires participants to sing, research, or improvise together. Receptive music intervention involves participants listening to music in a safe, comfortable, and pleasant environment [22]. These activities are usually combined with other activities, such as using different music media. The musical user interface adds visual and structuring control and personalized customization to bring better music access to PwD [39] [41]. Another interface study on music emphasizes the social interaction of PwD through a collaborative interface. It establishes a physical connection among users in carrying out creative music activities [40].

4 Discussion

There are various types of user interfaces for dementia patients, and the common purpose of these interfaces is to provide convenient and effective assistance to PwD. Among them, the touch screen interface, which is based on mobile devices, has the most extensive applications, covering all aspects of the rehabilitation and life of PwD. The touch screen-based user interface has advantages in operability and environmental applicability, and it still has corresponding development potential in the future. However, the needs of dementia users are different from other users. The specific physical and psychological needs mean that the development of a user interface for dementia should not provide only one solution. A further comparison of the differences and connections among strategies will allow us to meet the needs and challenges of dementia users.

In the future, regardless of whether it is a community-based or a family-based retirement goal, it will require the collaboration and support of all sectors of society. Although these studies are about designing a user interface for PwD, the participants in the selected studies were not limited to PwD. Nursing staff, medical professionals, family members were included. Therefore, the research, diagnosis and care of PwD require the participation of experts and non-experts. It is not difficult to find through the literature review that artists, music therapists, rehabilitation therapists, sports experts, and medical experts have brought their own insights and support to dementia.

On the time aspect, the early user interfaces mainly focused on the rehabilitation and health issues of PwD. However, recently, user interfaces have shifted to making PwD feel the sense of social participation. PwD are no longer passive recipients but active and equal
participants in the nursing relationship [40]. Research aimed at improving the quality of life and wellbeing suggests that it is more critical for PwD to have a better medical and health experience than improve their cognition. For the family or professional nursing staff, the user interface is to bring efficient and comprehensive assistance to nursing work and relieve their nursing pressure. Such a user interface is in line with the people-oriented care concept for dementia.

5 Conclusion

This study investigated some of the user interfaces designed for PwD. After a systematic literature review, 33 studies were extracted for synthesis. The results show that user interface development has shifted from satisfying the basic physiological needs of PwD to creating a more meaningful life for them. In the different environments of families, nursing homes, nursing centers, and hospitals, the development of digital technology combined with non-pharmaceutical interventions have specific potential to relieve the social burden. Such a user interface can effectively help to improve the quality of life and increase the happiness of people with disabilities.

References

