
HAEC-SIM: A Simulation Framework for
Highly Adaptive Energy-Efficient Computing Platforms

Mario Bielert†, Florina M. Ciorba†§, Kim Feldhoff†, Thomas Ilsche†, Wolfgang E. Nagel†
†Technische Universität Dresden, Germany

Center for Information Services and High Performance Computing (ZIH)
{firstname.lastname}@tu-dresden.de

§University of Basel, Switzerland
Department of Mathematics and Computer Science

florina.ciorba@unibas.ch

ABSTRACT
This work presents a new trace-based parallel discrete event
simulation framework designed for predicting the behavior
of a novel computing platform running energy-aware parallel
applications. Discrete event traces capture the runtime be-
havior of parallel applications on existing systems and form
the basis for the simulation. The simulation framework pro-
cesses the events of the input trace by applying simulation
models that modify event properties. Thus, the output are
again event traces that describe the predicted application
behavior on the simulated target platform. Both input and
simulated traces can be visualized and analyzed with estab-
lished tools. The modular design of the framework enables
the simulation of different aspects such as temporal perfor-
mance and energy efficiency by applying distinct simulation
models e.g.: (i) A performance model for communication
that allows to evaluate the target communication topology
and link properties. (ii) An energy model for computations
that is based on measurements of current hardware. We
showcase the potential of this simulation by simulating the
execution of benchmark applications to explore design al-
ternatives of highly adaptive and energy-efficient computing
applications and platforms.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous—
computing platforms, communication applications; I.6 [Simu-
lation and Modeling]: Types of Simulation—discrete event,
parallel ; D.2.8 [Software Engineering]: Metrics—perfor-
mance measures

Keywords
HAEC, parallel simulation, discrete event, trace-based mod-
eling, performance modeling, energy modeling.

1. INTRODUCTION
It is well known that computers are large consumers of elec-
tricity. Energy efficiency is one of the greatest challenges in
information and communications technology. A straightfor-
ward way for improving energy efficiency is to reduce the
energy consumption of every individual hardware compo-
nent involved. However, it is equally important to under-
stand how the software can be adapted to the hardware
on which it runs and vice versa. Today, computational
problems are written in software without real opportunities
for generating energy-aware code. Energy-unaware code is
mapped onto parallel machines with generic hardware con-
figurations. Computational problems often require complex
and problem-specific intercommunication between the par-
allel tasks. Thus, a highly adaptive hardware system, which
can optimize its configuration according to the needs of a
software system, can provide a much higher level of efficiency
than a non-adaptive hardware system. In addition, applica-
tion states and hardware states need to be monitored and
taken into account during runtime as well. Hence, new ways
of controlling energy utilization must be found to carefully
balance of needs for performance versus cost of energy.

A novel concept, namely the HAEC Box [9], utilizes inno-
vative ideas of optical and wireless chip-to-chip communi-
cation. It is explored in the Collaborative Research Cen-
ter HAEC (Highly Adaptive Energy-efficient Computing)1.
This concept will allow a new level of runtime adaptivity
for future computers, creating a platform for flexibly adapt-
ing to the needs of the computational problem. The design
of the HAEC Box as a whole relies on individual abstrac-
tion models of hardware (e.g., CPUs, links), architecture
(e.g., computing nodes, network), and software (e.g., run-
time system, code generation) as well as their joint interac-
tions. Detailed models are computationally infeasible in de-
sign space exploration environments such as the one required
by HAEC. Thus, we propose HAEC-SIM as an integrated
simulation environment. Via the use of abstraction models,
HAEC-SIM allows to predict the performance and energy
costs of the HAEC Box running energy-aware applications.

The integrated simulation workflow proposed here comprises
four steps: (1) capturing the runtime behavior of parallel
applications on a given test system in the form of discrete

1https://tu-dresden.de/sfb912

SIMUTOOLS 2015, August 24-26, Athens, Greece
Copyright © 2015 ICST
DOI 10.4108/eai.24-8-2015.2261105

https://tu-dresden.de/sfb912


event traces; (2) applying abstraction models implemented
in simulation to the input discrete event traces; (3) pro-
ducing output traces describing the predicted application
behavior on the simulated target platform; and (4) visual-
izing and analyzing the input and simulated discrete event
traces. Such an approach is known as trace-based simula-
tion (TBS). TBS is a form of discrete event simulation, since
application traces consist of a time-ordered series of discrete
events, such as send and receive operations, parallel regions,
routine transitions, etc. Each event record in the trace has a
timestamp, location information (process, thread), as well as
event specific data (e.g., message size or region identifiers).
TBS uses a specific and realistic input, which allows for pre-
cise and detailed validation of the simulation models. Traces
preserve the dynamic parallel behavior and can yield mean-
ingful results even for small changes in the model [21]. Most
importantly, traces reduce the exploration of the tremen-
dously large simulation design space to tractable solutions.

Contributions. The presented work makes the following con-
tributions. (i) Describe a new parallel discrete event sim-
ulation framework, motivated by the need for hardware-
software co-design of a new computing platform and its ap-
plications. (ii) Showcase the use of the proposed frame-
work for modeling the communication performance and en-
ergy consumption of computations for a well known parallel
benchmark.

HAEC-SIM constitutes a design space exploration environ-
ment to verify the HAEC Box design ideas and to analyze
their impact on performance and energy efficiency at large.
Systematic analysis of simulation runs allows specification
of the design requirements and optimizations for the devel-
opment of the HAEC system software and hardware.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of relevant work from the lit-
erature. The proposed simulation framework is presented
in detail in Section 3. The usefulness of HAEC-SIM is de-
scribed via two use cases in Section 4. The conclusions and
directions for future work are summarized in Section 5.

2. RELATED WORK
There is a vast amount of literature on systems simulation
in general, and on computer systems simulation in particu-
lar. A part of the literature concentrates on simulating the
computer system architecture, while in parts the focus is on
simulating the performance of applications.

BigSim [23] is a parallel trace-based simulator for predict-
ing the performance of Message Passing Interface (MPI)
applications on systems larger than those available today.
The target systems are based on the PERCS (Productive,
Easy-to-use, Reliable Computing System) two-level com-
munication network. BigSim uses direct execution (also
known as replay) to model the two-level MPI communica-
tion. COTSon [1] is a parallel simulation infrastructure for
modeling clusters of multicore CPU nodes, networking, and
I/O. It combines functional simulation for the behavior of
devices and software, and timing simulators for the timing
of all components. Besides the computing performance, it
also simulates the power consumption. Dimemas [17] is a
sequential trace-based simulator for predicting the perfor-

mance of parallel MPI or multithreaded applications. The
simulation model uses parameters such as relative processor
speeds, network bandwidth and latency within and across
nodes, the number of input and output links, and the proces-
sor scheduling policy. The network model assumes two-level
buses. HeSSE (Heterogeneous System Simulation Environ-
ment) [2] is a sequential TBS environment, wherein the sim-
ulation components model the functional or temporal be-
havior of certain system parts. HeSSE allows the predic-
tion of hybrid parallel application performance on hetero-
geneous computing systems. LogGOPSim [13] is a se-
quential trace-based simulator used for analyzing the per-
formance of MPI applications on existing computing sys-
tems. It implements several LogP-derived network models.
MARS (MPI Application Replay network Simulator) [8]
is a parallel trace-based simulator, supporting several net-
work topologies (based on OMNEST / OMNet++) oriented
towards the PERCS network. It provides flexible routing
schemes, arbitrary application task placement, and uses di-
rect execution for MPI communications to accelerate the
simulation. PSiNS (PMaC’s open Source interconnect and
Network Simulator) [22] is a trace-driven performance mod-
eling and prediction tool for MPI applications, similar to
Dimemas. PSiNS includes several built-in communication
models (namely simple, resource contention, and PMaC)
that can be used to investigate a target system. Each event
can use a different communication model. PSiNS uses di-
rect execution for MPI calls. SILAS (SImulation of LArge-
Scale parallel applications) [11] is a parallel trace-based per-
formance simulator for large scale target systems. SILAS
focuses on the effects of fine-grain alterations of application-
level behavior with respect to the performance under an
identical execution configuration. It uses direct execution for
MPI communications. xSim (Extreme-scale Simulator) [6]
is a performance investigation toolkit that uses lightweight
parallel discrete event simulation. The simulation of a paral-
lel application is done on a much smaller system in a highly
oversubscribed fashion with a virtual wall clock time. Based
on a processor and a network model with an appropriate
simulation scalability/accuracy trade-off, performance data
can be extracted. xSim supports the use of several network
topologies, direct execution (or replay) of computations and
messages, and models resource contention and failure.

The proposed simulation framework shares certain similar-
ities with the above approaches: using traces as the basis
for simulation, allowing for the simulation to be conducted
in parallel, focusing on modeling the performance of exist-
ing applications on non-existing platforms, and considering
heterogeneous communication links. HAEC-SIM, however,
significantly differs from the above approaches as follows:
(1) communication is simulated with abstraction models as
opposed to direct execution (a form of execution based sim-
ulation), hence increasing the simulation accuracy at the
expense of increased modeling complexity; (2) the commu-
nication models contain multiple levels (on-chip links be-
tween cores in one CPU, optical links between CPUs on a
single board, and wireless connections between CPUs on ad-
jacent boards) and are characterized by dynamic parameters
(e.g., in/active links, bandwidth), as opposed to being two-
level and modeled with static parameters; (3) the simulation
considers the recorded energy consumption of certain system
components contained in the input trace; and (4) the simula-



tion goal is to predict the temporal performance and energy
consumption of the hybrid parallel application running on
the target computing platform.

3. THE HAEC-SIM FRAMEWORK
3.1 Motivating Platform Characteristics
The HAEC Box [9][7] refers to a new high performance-low
energy parallel computing platform. The HAEC Box is the
motivating target platform for the design and development
of the HAEC-SIM framework. In this architecture, the com-
puting nodes are assumed to consist of 3D stacked processor
chips with thousands of ‘thin’ cores and local memory [19]
offering massive intra-node parallelism. The computing node
topology is assumed to be 3D with n = 64 nodes organized as
4×4×4. Several computing nodes (4×4) are placed on a sin-
gle board and connected using optical waveguides. Four such
boards are connected using inter-board high-speed wireless
links. Adjacent computing nodes on a single board are con-
nected via optical links with a transmission bandwidth of
250 Gbit/s, link latency of 10 ns, and bit error rate of less
than 10−12. A 2D torus is assumed for the optical links topol-
ogy of a single board. The total number of physical optical
links is lo = 4 · n/2 = 128. Computing nodes of neighbor-
ing boards can all communicate with each other via wireless
links with transmission bandwidth of 100 Gbit/s, latency of
100 ns, and bit error rate of 10−8. The wireless link topology
is fully connected between adjacent boards. The total num-
ber of physical wireless links is lw = (4−1) ·n2 = 768. These
are the current design characteristics, but the numbers may
still change depending on the requirements of the software
and further developments in hardware. When it comes to
trade-offs, the simulation can provide viable input on how
a change in the hardware characteristics affect the software
execution performance and energy consumption.

3.2 Design Goals
An integrated simulation environment needs to satisfy a
number of requirements. The design goals of HAEC-SIM
are described in the following. Flexibility in terms of fine-
grain accuracy (to derive the final optimized application and
system design) versus coarse-grain accuracy (to move more
quickly within the application and system design space).
The accuracy granularity is strictly dependent on the tempo-
ral granularity and the number of events in the input trace.
Modularity/extensibility to allow coupling with different and
novel models to guide the simulation. Scalability in terms
of the number of captured events in the input trace and the
degree of parallelism within the application. Correctness be-
tween the theoretical models and their implementation into
corresponding simulation modules. User friendliness via
intuitive input/output visualization and simulation launch-
ing process. Portability across different platforms (Linux,
Mac OS and in the future Windows).

3.3 Design and Implementation
An overview of HAEC-SIM is illustrated in Figure 1. The
framework is written in C++11 and is organized into three
layers: the interface layer for external libraries (with the
OTF2xx and Boost.MPI components), the base layer (with
the source, sink, base modules, and resource manager com-
ponents), and the simulation layer (having simulation mod-

…!

OTF2xx!

resource 
manager!

sink!
module!

simulation module! simulation module!

Boost.MPI!

base !
module!

source!
module!

Figure 1: Overview of the HAEC-SIM framework.

ules as components). With the exception of Boost.MPI, all
components are developed in house.

The implementation of the three layers depends on other
software components: (1) The OTF2 [15] library (version 1.4),
which is also part of the Score-P [16] infrastructure (version
1.3); (2) The Boost2 C++ libraries (version 1.55); and (3)
The jsoncpp3 library, which is distributed with HAEC-SIM.

3.3.1 Input
HAEC-SIM requires three types of input: an input trace, a
configuration file, and a mapping file.

Input trace. The input trace represents the execution trace
of an instrumented parallel application of interest. The trace
contains the desired performance and energy features of the
application of interest, in the form of a time-ordered event
sequence. Each event is assigned a timestamp, denoting the
time when the event occurred. Each event is also associated
with a location which denotes where the event occurred. Lo-
cations correspond to tasks in a parallel software and in this
respect, are generic terms for ‘processes’, ‘threads’, ‘MPI
ranks’, ‘OpenSHMEM PEs’, ‘asynchronous metrics’, and
others. Figure 2 illustrates a parallel event trace as a time-
space diagram. The horizontal direction represents time and
later times are to the right of earlier ones. The vertical di-
rection represents the space of locations in which different
events denoted as circles (with timestamps) occur. The hori-
zontal lines denote locations (application processes/threads,
metrics), and the wavy line denotes an application message
between processes from different locations.

Metrics capture information about the various components
of the system during the execution of the application of in-
terest. The Score-P measurement infrastructure [16] sup-
ports two types of metrics: synchronous and asynchronous.
Examples of synchronous metrics include PAPI counters4,
while asynchronous metrics include energy measurements.
The synchronous metric events have the same timestamp as
their associated application events (e.g., function enter and
function leave) and are written in the trace of the respective
location before the application events, as shown in Figure 2.
This results in a monotonically increasing (non-strict) or-

2http://www.boost.org
3https://github.com/open-source-parsers/jsoncpp
4http://icl.cs.utk.edu/papi/

http://www.boost.org
https://github.com/open-source-parsers/jsoncpp
http://icl.cs.utk.edu/papi/


1 2 21 4 11 11 13 13

1 7 71 9 11 11 13 13

synchronous 
metric event 
(e.g., core ID)

non-metric 
event (e.g., 
enter or leave)

42 8 10 12

asynchronous 
metric event
(e.g., energy)

location 0

location 1

location 2

efoo esend smsg lsend lfoo

efoo erecv rmsg lrecv lfoo

message

Figure 2: Time-space diagram of events ordered in
different locations and their associated timestamps.
Function enter or leave events are denoted as efunc

and lfunc, respectively. Send and receive message
events are denoted as smsg and rmsg, respectively.

dering of the events [18]. The asynchronous metrics are by
design stored in individual locations due to the fact that the
data they represent may not be directly accessible during
the execution of the application. Thus, this data is often
added postmortem to the trace.

The desired performance and energy features are collected
as events using the Score-P measurement infrastructure dur-
ing the instrumented execution of the application. The
events recorded during the running time of the application
are stored in the OTF2 format, which is a highly scalable,
memory efficient, and binary event trace data format. In
OTF2, events are stored as records, which denote the small-
est units of trace data. There are two types of records:
definition records and event records. The definition records
describe global properties for the entire trace or define IDs
to be referenced in event records. Each event record repre-
sents a single event. For example, subroutine names (long
text strings) are mapped to subroutine IDs (short numbers)
in a definition record, and event records reference the sub-
routine IDs to reduce storage requirements. OTF2 has a
fixed record model with a given set of definition/event record
types; the data fields of each record type are predefined. In
addition, individual records can carry an arbitrary collection
of generic attributes via a list of key-value pairs. This al-
lows recording any type of additional data in a most flexible
way. An OTF2 trace can be visualized and analyzed using
the performance analysis tool Vampir [14]. OTF2 traces are
organized as collections of several files: (a) the anchor file
(default traces.otf2), (b) the global definitions file (default
traces.def), and (c) a subdirectory (default traces) that
contains the actual trace data. The subdirectory contains
two types of files for each location: (c.1) a local definitions
file (i.e., <locationID>.def) and (c.2) an event file (i.e.,
<locationID>.evt).

In OTF2, event timestamps are represented as unsigned 64-
bit integers with a starting point and a rate (ticks per sec-
ond) that is defined by definition records. The simulation
infrastructure converts the timestamps to 64-bit signed in-
teger picoseconds since the beginning of the trace. Thus,
HAEC-SIM can process traces with timestamps up to 263 ps,
corresponding to trace lengths of 106 days.

Configuration file. The configuration file (e.g., Figure 3,
haec sim.conf) contains parameters related to the simu-
lated system. This includes the topology, as well as pa-
rameters required by the selected simulation modules, such
as communication link characteristics, or computational re-
sources speed, and others. The configuration file is shared
by all simulation modules. Each module’s initial configura-
tion is customized into separate sections using the JSON5

format. The semantic is left to the responsible module, thus
allowing for a highly generic and flexible module configura-
tion approach. An example configuration file is listed below.

{ "topology": {
"size" : [4,4,4] },

"modules": {
"static_network_model": {
"communication_model": "PNC",
"bandwidth": 12500000000,
"latency": 100, },

"power_estimator": {
"energy_model": "bircher" },

} }

Mapping file. The mapping file (e.g., positions.map in
Figure 3) contains a map of the process identifiers (e.g., MPI
ranks or OpenMP threads) of the parallel application to the
computing nodes of the simulated platform topology. The
format of the mapping file is exemplified in the listing below
for a 4× 4× 4 node topology.

<mapping name>
x_coord y_coord z_coord number_of_processes process_id(s)
0 0 0 2 38 72
1 0 0 2 3 73
[...]
3 3 3 4 35 51 75 77

The first row indicates the name of the mapping strategy
used. The strategies available in HAEC-SIM are: xyz (de-
fault), block xyz, and random mapping [7]. The third row
denotes the fact that the computing node with coordinates
(0,0,0) is allocated two locations, and that these locations
have IDs 38 and 72 (in this case denoting the MPI ranks of
the application processes).

3.3.2 Simulation Core and Modules
Software control flow. The control flow between the
HAEC-SIM software components is illustrated in Figure 3.
The flow of software control is identical for all simulation
processes. The control starts in haec sim::main, which hands
over the control (step 1) to the otf2xx::reader for reading
the definitions and events from the input trace. This hand-
ing over is called inversion of control and is a widely used
pattern in software design for increasing modularity and ex-
tensibility. The software control flow for reading definitions
is slightly different from the one for reading and processing
events. For reading and processing the global definitions
(i.e., traces.def) of the events in the input trace, the con-
trol flow steps once through steps 2-10 with the exception of
steps 4 and 5, as reading the definitions does not require the
state of the simulated resources. For reading and processing

5JavaScript Object Notation, http://www.json.org

http://www.json.org


the events (i.e., traces/<locationID>.evt), the control
repeatedly flows through all steps between 2-10.

input 
trace

haec_sim.conf positions.map

haec_sim::
module::
source

modules::
<simulation>

haec_sim::
module::

sink

output 
trace

haec_sim::
resource_ 
manager

input/output forward control flow backward control flow

haec_sim::
main

simulation
log

otf2xx::
reader

otf2xx::
writer

1

2

3

8

4
5

6

7

9

12
11

10

Figure 3: Software control flow in HAEC-SIM.

In step 2, the otf2xx::reader triggers a callback function spe-
cific to the definition or event that was read. The callback
function, in turn, triggers various methods implemented in
the simulation components (e.g., source, <simulation>, and
sink) that processing this definition or event (steps 2, 3, [4,
5,] 6, and 7). Events can broadly be classified into com-
putation and communication operations. Depending on the
simulation model, in case of a computation event, the state
of the simulated computation nodes is probed/updated via
control flow steps 4 and 5. Similarly, if the event read is a
communication event, the state of the simulated communica-
tion links is probed/updated in steps 4 and 5. A simulation
module can also delete events by skipping the call to sink
or create new events by calling sink multiple times. Once
the definition or event has been processed, the control flow
returns to otf2xx::reader (steps 8, 9, 10, and 11). When
all definitions and events have been read and processed,
otf2xx::reader returns the control back to haec sim::main,
which terminates the simulation.

Simulation processes. The simulation runs in parallel
and uses p + n + 2b− 1 MPI processes, where p is the num-
ber of event locations (i.e., the sum of parallel application
processes, threads, and asynchronous metrics) in the input
trace, n is the number of computing nodes in the simulated
platform, and b is the number of boards in the simulated
platform (§ 3.1). Each process type has a dedicated MPI
communicator, constructed from the default global commu-
nicator MPI COMM WORLD, as illustrated in Figure 4.
Processes in the processes communicator operate on the
events contained by their assigned locations (e.g., applica-
tion processes) from the input trace. Processes in the nodes
communicator maintain the operation state (e.g., active or
inactive, power states) and other attributes of the comput-
ing nodes (e.g., nominal computing power, available com-
puting power, number of simulated application processes
running on it). Processes in the links communicator are

nodes

links

optical

wireless

MPI_COMM_WORLD

processes

Figure 4: Communicators
for the parallel simulation
ranks of HAEC-SIM.

trace-driven 
simulation

loop

read
event

event++

write 
event

modify
event

timestamp

Figure 5: Next-event
incrementing time ad-
vance method.

further split into two communicators corresponding to the
optical links and wireless links characteristics, respectively.
The links processes maintain the state of the communication
links (e.g., active or inactive, power states, characteristics of
the messages traveling over the links).

The number of event locations, p, depends on the input
trace. The codomain of the MPI ranks in the processes
communicator is given by {0, 1, . . . , p − 1}. The number
of computing nodes, n, is declared in the configuration file
(§ 3.3.1), and represents the product of the 3D node topol-
ogy description (default 4 × 4 × 4, § 3.1). The codomain
of the MPI ranks in the nodes communicator is given by
{p, p+1, . . . , p+n−1}. These MPI ranks denote the resource
managers of the HAEC Box computing nodes. The number
of boards, b, is given by the third dimension of the 3D node
topology declared in the configuration file (default 4). The
codomain of the MPI ranks for the optical links communi-
cator is given by {p + n, p + n + 1, . . . , p + n + b− 1}, while
the codomain for the wireless links communicator is given
by {p + n + b, p + n + b + 1, . . . , p + n + b + (b − 1) − 1}.
Each rank from the optical links communicator denotes the
resource manager of the links on a single board and man-
ages 32 on-board optical links. Each rank from the wire-
less links communicator denotes the resource manager of
the links between adjacent boards and manages 256 board-
to-board wireless links.

If p ≤ n, then p distinct computing nodes will be allocated
p locations, while n− p nodes will remain unallocated. If
p > n, certain nodes will be allocated more than one loca-
tion, while other nodes will be assigned each only one loca-
tion.

Simulation modules. A simulation module exports call-
back handler functions for the trace record types that it is
designed to process. In addition, there are module initial-
ization and destruction functions. Every class implementing
a simulation module inherits from haec sim::module::base.
This class provides a default handler for each trace record
type. The base class also provides the functionality to au-
tomatically modify the timestamps of all events, if the sim-
ulation leads to changed timestamps for events of interest.

Multiple instances are created for every simulation module,
one for each parallel simulation process p. During the execu-
tion of the simulator, each instance processes all definitions
and the events contained in one location of the input trace.
After processing of each trace record by the simulation mod-



ule, the record is passed onward to the sink module, whereby
it is written in the output trace. Each simulation module
instance can also pass onward newly created trace records
to the sink module. Conversely, a simulation module can
discard records from the input trace, and thus they will be
absent from the output trace. During processing of event
records from the input trace or creation of new records by
the simulation module, care must be taken to satisfy the
time and causality constraints (e.g., the happens before re-
lation) described in the following Time management para-
graph. Thus, the output trace can contain more or fewer
trace records than the input trace.

System state. The state of the target platform during the
simulation is maintained via resource managers and data
stored within the simulation module instances. As resource
managers are executed by different simulation processes (the
processes in the ‘nodes’ and ‘links’ communicators in Fig-
ure 4), the simulation module instances and the resource
managers must exchange system state information. This
communication exchange is explicit and realized using block-
ing point-to-point MPI messages and collective MPI op-
erations. The system state may refer to event locations
mapped to computing nodes, details about application mes-
sages traveling over optical or wireless links, and sharing
of computing and communication resources. The nodes re-
source managers are responsible for the sharing policy gov-
erning the use of the computing node, while the links re-
source managers are responsible for the control of the net-
work flows and the shared use of the optical and wireless
links. The implementation of resource contention protocols
is ongoing.

Parallel simulation. HAEC-SIM is a framework for par-
allel trace-driven simulation. As shown in Figure 3, for each
location there is a main loop (initiated in otf2xx::reader)
that calls a general purpose method to read definitions or
events from the input trace. Via inversion of control, this
method triggers a callback function specific to the definition
or event that is currently being read. The simulation time
is driven by events. The simulation clock follows the next-
event incrementing time advance method [12]. Next-event
incrementing differs from fixed-time incrementing in that the
simulation clock is incremented by a variable amount rather
than by a fixed amount each time. This variable amount
is the time from the event that has just occurred (was last
read) until the time when a subsequent event of any kind
occurs (is read); i.e., the clock jumps from event to event.
Events are read by advancing the simulation time to the
next event of any kind in the input trace (Figure 5). The
callback function may (a) modify the timestamp of the last
read event, (b) update the state of the simulated system by
determining the changes resulting from the modification of
this event, and/or (c) call the appropriate methods for writ-
ing the (modified) event into the simulated output trace.
The framework itself does not imply any synchronization of
the time at different parallel simulation processes.

Time management. Synchronization is required to cor-
rectly simulate parallel interactions between parallel event
locations of the input trace that are processed by different
instances of a simulation module [10]. Due to the fact that
in parallel simulation there is no shared state among the

1 2 4 11 13

1 7 9 11 13

event simulation time of simulation process 0
simulation time of simulation process 1

location 0

location 1

time synchronization between simulation processes

efoo esend smsg lsend lfoo

efoo erecv rmsg lrecv lfoo

7
2

0 1 7 9 11

0 1 2 4 11

message

Figure 6: Time synchronization between simulation
processes. Function enter or leave events are de-
noted as efunc and lfunc, respectively. Send and re-
ceive message events are denoted as smsg and rmsg,
respectively.

parallel simulation instances, the interactions between the
parallel instances occur via explicit messages. Regardless
of the parallelization paradigm used during the recording of
the input traces, the simulator uses MPI to provide the nec-
essary synchronization between module instances. MPI was
selected due to its standardization and its potential to scale
to a large number of processes (exceeding 100,000 ranks).
Synchronization between simulation processes is conducted
via blocking point-to-point (e.g., time synchronization in
Figure 6) or collective communication operations (e.g., ini-
tialization of the resource manager processes with mapping
information).

The simulator satisfies causality in the simulated parallel
program execution by processing the events in their times-
tamp order across the entire simulation. This means that
earlier events may influence later events, while the reverse is
not true. Computation events (e.g., efoo, lfoo in Figure 6)
processed by a single simulation process directly influence
only subsequent events from the same location (local causal-
ity). This can be extended by a resource manager to model
shared computation resources. Communication events (e.g.,
esend, smsg, lsend, erecv, rmsg, or lrecv in Figure 6) may influ-
ence events processed by other simulation processes (global
causality). It follows that computation events can be simu-
lated within the local simulation instance, whereas commu-
nication events may require synchronization between two or
more simulation instances.

HAEC-SIM employs a conservative synchronization (time
management) algorithm by avoiding violation of the local
and global causality constraints. Specifically, we employ a
synchronous algorithm that waits until the timestamps of
the next relevant events are known. Synchronization be-
tween processes simulation instances (see Figure 4) occurs
only upon encountering communication events in the in-
put trace. Deadlocks between these processes simulation
instances are avoided provided that the input trace is valid
in terms of communication operations. Synchronization be-
tween nodes, links, and processes is required for any simula-
tion that accounts for the state of the simulated system, as
the shared access and use of computing nodes and commu-
nication links affects the system state. These dependencies
must never be circular to avoid deadlocks. This is ensured
by depending only on events or system states with a smaller
timestamp. Events corresponding to parallel communica-



tion operations in the input trace are not replayed between
the parallel simulation instances. Depending on the simu-
lation model, these communication events can be modified
while preserving their event causality (as shown in §4.1) or
remain unchanged (as exemplified in §4.2).

3.3.3 Output
The output of HAEC-SIM consists of the simulated output
trace and a simulation log.

Output trace. The simulated output trace describes the
predicted behavior of the initial application as if it were ex-
ecuted on the HAEC Box. It has the same file and directory
structure as the input trace. Similar to the input trace,
the output trace can also be visualized and analyzed with
Vampir. The length (time) and size (bytes) of the output
trace may differ from those in the input trace, depending
on the modifications performed by the simulation modules.
The number of locations corresponding of the output trace
may differ depending if metrics are added or removed from
the input trace. In the current design, the degree of paral-
lelism (expressed by the number of application processes or
treads) remains unchanged throughout the simulation.

Simulation log. The simulation log is the collection of all
activities performed by each simulation rank during the par-
allel execution of HAEC-SIM. Activities comprise different
pieces of information, for example a textual representation,
the MPI rank of a simulation rank, or the time when the
activity was performed. In addition, each activity is also as-
signed a verbosity level: trace, debug (default), info, warn,
and fatal. Based on any of these pieces of information, the
logging system can filter the activities before writing them
to the standard output. The logging system can apply the
activity filter based on the verbosity level at compile time.
This means that the code for logging the activities which are
filtered out is removed from the binary code and thus the
simulation runs faster. It is recommended that the simula-
tion log is written to a separate file in view of further offline
simulation analysis.

3.3.4 Build System, Documentation, and Licensing
HAEC-SIM is built with the cross-platform, open-source
build-system CMake6. The documentation tool doxygen7

isn incorporated into the build process to automatically gen-
erate the user documentation of the framework. The HAEC-
SIM software package and documentation is available as free
software at https://tu-dresden.de/zih/haec_sim.

3.3.5 Testing and Verification
In order to verify the software framework, a wide range of
test cases were defined. These tests are located in the direc-
tory tests distributed with the source code. Such test cases
include unit tests that verify subcomponents (e.g., conver-
sion of timestamps from nanoseconds to picoseconds, com-
pile time filtering of activities) of the simulation framework.
There are also integration tests that verify the framework,
as a whole, and the various simulation modules. All inte-
gration tests specify a given input and output trace. The

6http://www.cmake.org
7http://www.doxygen.org

pre-simulation input traces contain a variety of communi-
cation patterns (point to point and collective). The (post-
simulation) reference output trace is create once by the sim-
ulator and manually verified with Vampir. Larger traces are
currently only verified in parts, by randomly selecting single
events of interest (e.g., communication or computation). We
are in the process of writing a tool for automatically veri-
fying all events of interest in reference output traces. The
integration tests allow to catch bugs that are introduced by
changes to the simulation infrastructure or modules without
having to manually verify the simulation result with each
change to the software. If the theoretical simulation model
is changed, the reference output trace has to be generated
and verified again.

4. HAEC-SIM USE CASES
The framework is designed to be flexible and can be used in
multiple ways. In this section, two use cases are described.
For both cases, we use the LU application from the well-
established NAS Parallel Benchmarks Suite (NPB) 3.3 [3] as
a benchmark. The LU parallel benchmark solves a problem
from computational fluid dynamics using the lower-upper
Gauss-Seidel solver. For LU we choose the problem class
C in both use cases for the following reasons: Firstly, the
problem size of at least class C is needed in order to run the
simulations with the desired number of MPI processes and
OpenMP threads. In our case 64 in total which is suitable
for the underlying topologies described below. Secondly, the
total execution time and resulting input trace size is still
reasonable.

4.1 Modeling Communication Performance
In the following, we demonstrate the modeling of the tem-
poral communication performance of the LU.C benchmark
on the HAEC Box. To understand the impact of the com-
puting nodes topology on the communication performance
of LU.C.64.18, we vary their topology. Specifically, we con-
sider the following computing node topologies: 4 × 4 × 4,
16 × 4 × 1, and 64 × 1 × 1. It should be noted that for
these computing node topologies we assume 3D grid link
topologies. In particular, the 4 × 4 × 4 grid link topology
represents a subset of the topology described in Section 3.1
that contains additional optical and wireless links.

We choose a low latency of 100 ns and a high bandwidth
of 100 Gbit/s to simulate computing nodes connected by
fast communication links. Currently the optical and wire-
less network links use the same characteristics. Changes to
those parameters can easily be made in the configuration
file. In addition, the state of the computing and commu-
nication resources is not modeled. This yields optimistic
simulations with contention-free resources. As mentioned in
Section 3.3.2 modeling the system state is ongoing. We use
practical network coding (PNC) [20][7] as communication
model. The PNC model is implemented into HAEC-SIM as
the static network model simulation module; the implemen-
tation has been successfully verified via the usage of different
test cases for which the exact solution is known. For every
point-to-point (unicast) communication event read from the

8LU.C.p.t denotes the LU benchmark of size class C running
with p MPI processes and t OpenMP threads per process.

https://tu-dresden.de/zih/haec_sim
http://www.cmake.org
http://www.doxygen.org


Table 1: Simulation results for three topologies

Computing Total Exclusive Exclusive
node running time accum. time accum. time
topology (s) for appl. (s) for MPI (s)

4× 4× 4 23.096 961.729 484.939
16× 4× 1 23.548 961.729 513.862
64× 1× 1 23.509 961.729 511.344

input trace, the simulation module employs the PNC model
to determine the travel time of the message (Figure 7).

The MPI processes are mapped to the computing nodes us-
ing the “xyz mapping”. The communication path selection
is made based on the “xyz” strategy. We obtained the in-
put trace for the simulation by executing the instrumented
benchmark LU.C.64.1 on a high performance computing sys-
tem based on Intel Sandy Bridge multi-core chips with 16
cores per shared-memory node and a total of 4320 cores. The
benchmark was executed on four nodes resulting in minimal
node-to-node-communication. We want to answer the ques-
tion: “Which topology results in the best performance for the
application under investigation?”. The simulation results
are given in Table 1 and discussed below.

Total running time. The differences in the total running
times are small. They stem mainly from (i) the number of
hops between sending and receiving nodes, (ii) the fact that
the system resources are contention-free, i.e., multiple mes-
sages can simultaneously be sent over the same link at the
nominal bandwidth, and (iii) the choice of fast link param-
eters. For the 4 × 4 × 4 topology, the maximum number of
hops is 9, for the 16× 4× 1 it is 18, and for the 64× 1× 1 it
is 63. Nevertheless, there is a noticeable difference between
the fastest and the second fastest simulation run. At a first
glance, it is surprising that the 64 × 1 × 1 topology results
in a faster execution than the 16× 4× 1 topology. This can
be explained by the choice of mapping the application pro-
cesses to the computing nodes. In the case of the 16× 4× 1
topology, the processes are mapped in such a way that the
average number of hops needed for the communication is
larger than in the case of the 64× 1× 1 topology.

Exclusive accumulated time for application. The ac-
cumulated exclusive time remains constant for all three sim-
ulations as the change of topology has an impact only on
the communication events, and not on the application com-
putation functions.

Exclusive accumulated time for MPI and distribu-
tion of messages sizes. There are small differences in
the time spent in MPI functions and the distribution of the
message sizes, as shown in Figure 7. The different maximum
number of hops between the computing nodes in the three
topologies and the chosen mapping of the processes to the
computing nodes are the main reasons for this behavior.

In summary, the LU.C.64.1 shows the best performance for
the 4 × 4 × 4 topology as the maximum number of hops is
the smallest among all three topologies.

Figure 7: Message summaries (top: average mes-
sage transfer time per message size, bottom: aver-
age message bandwidth per message size) for the
topologies under investigation (left: 4×4×4, center:
16× 4× 1, right: 64× 1× 1).

4.2 Computation Power Modeling
As a second use case of HAEC-SIM, we present an approach
for modeling the power consumption of the HAEC Box run-
ning the LU.C.1.32 benchmark. While the HAEC develop-
ment focuses on networking components, we use models of
state-of-the-art CPUs to complement towards a holistic pic-
ture of the system energy consumption. The energy model
for compute components is based on the work by Bircher
and John [5]. As proposed in [4], the energy model is ex-
tended to account for the newer developments and prevalent
techniques of compute hardware, such as multi-core, and ad-
ditional processor power states. We use a dual socket Intel
Sandy Bridge EP system with Xeon E5-2690 8-core / 16-
thread processors. This system, called artemis, is equipped
with high resolution power measurement that provides input
and verification for the energy model. The power prediction
uses the PAPI library to access the performance counters
UOPS DISPATCHED and OFFCORE RESPONSE. They
are recorded during execution of the LU.C.1.32 benchmark
on artemis. These performance counters are recorded as
synchronous metric events (i.e., illustrated as gray filled cir-
cles in Figure 2). To make sensible predictions, the energy
model requires application threads to be pinned to hardware
threads. This will facilitate the correlation between the core
power consumption and operations within the benchmark
during simulation.

For this use case, each HAEC Box computing node is con-
sidered to have the same characteristics as a single artemis
processor. Therefore, threads with IDs from {0, 1, . . . , 7}
and {16, 17, . . . , 23} of LU.C.1.32 are mapped to HAEC Box
computing node (0,0,0) while threads with IDs {8, 9, . . . , 15}
and {24, 25, . . . , 31} are mapped to node (1,0,0). Based on
this mapping, the simulation module power estimator in-
stantiates two nodes resource managers, one for each of the
two computing nodes. During the simulation, each process
location sends all synchronous metric events (i.e., the values
of the two PAPI counters for the respective core) to the re-
source manager responsible for the corresponding computing
node. To satisfy the global causality constraint, the resource
manager must process the synchronous metric events in their
timestamp order, and keep track of the simultaneous metric
events that originate in different locations.



no estimates

~150 measurements

~75 measurements

~2000 estimates

Figure 8: Results of the power estimation for
LU.C.1.32 using HAEC-SIM. The top part repre-
sents the simulated event timelime of the threads
mapped to the (0,0,0) computing node. The middle
part represents the estimated power consumption of
this node. The bottom part shows the power mea-
surements for running the 16 threads on socket 0 of
artemis. These measurements are part of the input
trace.

Each synchronous metric event represents a certain system
specific value that did not change since the occurrence of
the previous synchronous metric event. Thus, the system
state in general, and in our case its power consumption, is
represented as average value for the interval between two
synchronous metric events. The energy model estimates the
power consumption of each computing node over the interval
between two subsequent synchronous metric events. The
estimation of the computing node power is done with the
energy model proposed in [4].

During the processing of the synchronous metric events, the
node resource manager takes all simultaneous metric events
into account that correspond to the time interval of the
current processed metric event. With the data of all the
considered events, the resource manager can estimate the
power consumption using the energy model. Each obtained
power estimate and the timestamp of the corresponding syn-
chronous metric event are stored in the node resource man-
ager until the simulation module notifies the node resource
manager that it finished processing all events. The node
resource manager then sends all power estimates and their
associated timestamps to the simulation module. The simu-
lation module creates two asynchronous metrics, i.e. “power
estimate node (0,0,0)”, and “power estimate node (1,0,0)”.
The power estimates are then written by the simulation
module to the corresponding new metric location as asyn-
chronous metric events.

A snippet of the output trace for the LU.C.1.32 benchmark
is shown in Figure 8. In contrast to the power measurements
(bottom part in Figure 8), the resolution of the power esti-
mation (middle part in Figure 8) is variable. While the mea-
surements are taken at fixed intervals, the amount of time
between two estimates depends by design on the time inter-

val between the two synchronous metric events correspond-
ing to the performance counters. Thus, even though the
estimates are written as asynchronous metric events, their
data points are aligned to the synchronous metric events.
This fact can be seen as an advantage, e.g., the resolution of
the estimation until the first barrier at +10 ms is higher than
the resolution of the measurement. It can also be a disad-
vantage, e.g., the estimation between +40 ms and +60 ms
gives only a few data points. In this case the variability
shown by the measurement is not revealed by the estimates.
Further this makes it more easy to attribute energy val-
ues to specific function intervals, which can be challenging
with measurements that are not aligned to function calls.
It is also possible to read the performance counters asyn-
chronously with PAPI by using an metric plugin extension
of Score-P. By doing so the performance counter values are
available at regular time intervals also resulting in power
estimates at regular time intervals similar to measurements.

The proposed power estimation approach of application com-
putations represents a proof of concept that can be used for
more advanced energy modeling. The model scales with the
number of nodes in the simulated system, provided that the
input trace contains a sufficient number of threads to satu-
rate the nodes of the simulated system. The power estima-
tion depends on the temporal granularity of the synchronous
metrics in the input trace. The current approach can be ex-
tended to include other types of application activities (e.g.,
computation, communication, and combinations thereof).

5. CONCLUSIONS AND FUTURE WORK
In this paper we motivate the need for exploring the design
alternatives of a highly adaptive energy efficient computing
platform and its applications. This requires an end to end
simulation framework supporting the integration of abstract
models describing the platform under design and its appli-
cations. The framework takes as input execution traces of
applications on an existing system, applies the simulation
models to the input trace, and generates an output trace
representing the simulated behavior of applications on a fu-
ture target platform. We demonstrate the proposed frame-
work two simulation scenarios that are applied to a parallel
application. In particular communication models allow to
evaluate the impact design decisions such as the topology
on application execution. Energy models that are based on
measurements of state of the art hardware, enhance the sim-
ulation to put a focus on energy optimiztion rather than only
considering performance.

There are several ongoing and future work directions. Ongo-
ing efforts include: The development of mapping strategies
that consider the communication patterns of the application
is an important ongoing work. Further we already imple-
mented a model for unicast communication in the presence
of errors/attacks that we aim to verify. The energy energy
models are going to be extended for communication opera-
tions. A central aspect is also the modeling of shared system
resources to address contention. Future work directions in-
clude: modeling of multicast communication; development
of support for migration of tasks across computing nodes to
increase performance or decrease energy costs; development
of a hybrid communication model that supports dynamic
latency, bandwidth, and path selection.



6. ACKNOWLEDGMENTS
This work is supported by the German Research Foundation
(DFG) in the Collaborative Research Center 912 “Highly
Adaptive Energy-Efficient Computing”. The authors would
like to thank Andreas Knüpfer and Joseph Schuchart of
Technische Universität Dresden for their earlier contribu-
tions leading to the present simulation framework. Acknowl-
edgements also go to Elke Franz and Stefan Pfennig of Tech-
nische Universität Dresden for their work on the implemen-
tation of the network models in the simulation framework.

7. REFERENCES
[1] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero,

and D. Ortega. COTSon: Infrastructure for full system
simulation. SIGOPS Op. Sys. Review, 43(1), 2009.

[2] R. Aversa, B. Di Martino, M. Rak, S. Venticinque,
and U. Villano. Performance Prediction Through
Simulation of a Hybrid MPI/OpenMP Application.
Parallel Computing, 31(10-12):1013–1033, Oct. 2005.

[3] D. Bailey, E. Barszcz, J. Barton, D. Browning,
R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga. The NAS
parallel benchmarks. RNR Technical Report
RNR-94-007, NASA, March 1994.

[4] M. Bielert. Evaluating power estimation techniques: A
methodological approach. Master’s thesis, Technische
Universität Dresden, 2015.

[5] W. Bircher and L. John. Complete System Power
Estimation Using Processor Performance Events.
Computers, IEEE Transactions on, 61(4):563–577,
April 2012.

[6] S. Böhm and C. Engelmann. xSim: The extreme-scale
simulator. In Proc. of the Intl. Conf. on High Perf.
Comp. and Sim. (HPCS), pages 280–286, Istanbul,
Turkey, July 4-8, 2011. IEEE Computer Society, Los
Alamitos, CA, USA. Acceptance rate 28.1% (48/171).

[7] F. M. Ciorba, T. Ilsche, E. Franz, S. Pfennig,
C. Scheunert, U. Markwardt, J. Schuchart,
D. Hackenberg, R. Schöne, A. Knüpfer, W. E. Nagel,
E. A. Jorswieck, and M. S. Müller. Analysis of parallel
applications on a high performance–low energy
computer. In Proc. of the Euro-Par 2014 Workshops:
7th Workshop on UnConventional High Performance
Computing (UCHPC), volume 8806 of Lecture Notes
in Computer Science, pages 474–485. Springer, Dec
2014.

[8] W. E. Denzel, J. Li, P. Walker, and Y. Jin. A
Framework for End-to-End Simulation of
High-performance Computing Systems.
SIMULATION, 86(5-6):331–350, May 2010.

[9] G. Fettweis, W. Nagel, and W. Lehner. Pathways to
servers of the future. In Proc. of the Design,
Automation Test in Europe Conference Exhibition
(DATE), pages 1161–1166, Mar 2012.

[10] R. M. Fujimoto. Parallel and Distributed Simulation.
In Proc. of the Winter Conf. on Sim., pages 122–131.
IEEE, 1999.

[11] M.-A. Hermanns, M. Geimer, F. Wolf, and B. J. N.
Wylie. Verifying Causality between Distant
Performance Phenomena in Large-Scale MPI
Applications. In Proc. of the Euromicro Intl. Conf. on

Par., Dist. and Network-based Proc., pages 78–84,
Feb. 2009.

[12] F. Hillier and G. Lieberman. Introduction to
Operations Research. McGraw-Hill Higher Education,
9th edition, 2010.

[13] T. Hoefler, T. Schneider, and A. Lumsdaine.
LogGOPSim: Simulating Large-scale Applications in
the LogGOPS Model. In Proc. of the 19th ACM Intl.
Symp. on High Perf. Dist. Comp. ACM, June 2010.

[14] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz,
M. Lieber, H. Mickler, M. S. Müller, and W. E. Nagel.
The Vampir performance analysis tool-set. In
M. Resch, R. Keller, V. Himmler, B. Krammer, and
A. Schulz, editors, Tools for High Performance
Computing, pages 139–155. Springer, Jul 2008.

[15] A. Knüpfer, R. Dietrich, J. Doleschal, M. Geimer,
M.-A. Hermanns, C. Rössel, R. Tschüter, B. Wesarg,
and F. Wolf. Generic support for remote memory
access operations in Score-P and OTF2. In
A. Cheptsov, S. Brinkmann, J. Gracia, M. M. Resch,
and W. E. Nagel, editors, Tools for High Performance
Computing 2012, pages 57–74. Springer Berlin
Heidelberg, 2013.

[16] A. Knüpfer, C. Rössel, D. Mey, S. Biersdorff,
K. Diethelm, D. Eschweiler, M. Geimer, M. Gerndt,
D. Lorenz, A. Malony, W. E. Nagel, Y. Oleynik,
P. Philippen, P. Saviankou, D. Schmidl, S. Shende,
R. Tschüter, M. Wagner, B. Wesarg, and F. Wolf.
Score-P: A joint performance measurement run-time
infrastructure for Periscope, Scalasca, TAU, and
Vampir. In H. Brunst, M. S. Müller, W. E. Nagel, and
M. M. Resch, editors, Tools for High Performance
Computing 2011, pages 79–91. Springer Berlin
Heidelberg, 2012.

[17] J. Labarta, S. Girona, and T. Cortes. Analyzing
scheduling policies using Dimemas. Par. Co.,
23(1-2):23–34, Apr. 1997.

[18] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM,
21(7):558–565, July 1978.

[19] A. Marowka. Back to thin-core massively parallel
processors. Computer, 44(12):49–54, 2011.

[20] S. Pfennig, E. Franz, F. M. Ciorba, T. Ilsche, and
W. E. Nagel. Modeling communication delays for
network coding and routing for error-prone
transmission. In Proc. of the 3rd Intl. Conf. on Future
Gen. Comm. Techn., pages 19–24. IEEE, Aug 2014.

[21] S. W. Sherman and J. C. Browne. Trace driven
modeling: Review and overview. In Proc. of the 1st
Symp. on Simul. of Computer Sys., pages 200–207.
IEEE Press, 1973.

[22] M. Tikir, M. Laurenzano, L. Carrington, and
A. Snavely. PSiNS: An Open Source Event Tracer and
Execution Simulator for MPI Applications. In Proc. of
the 15th Intl. Euro-Par Conf. on Par. Proc., page 148,
2009.

[23] E. Totoni, A. Bhatele, E. J. Bohm, N. Jain, C. L.
Mendes, R. M. Mokos, G. Zheng, and L. V. Kale.
Simulation-based performance analysis and tuning for
a two-level directly connected system. In Proc. of the
17th IEEE Intl. Conf. on Par. and Dist. Sys., pages
340–347, 2011.

http://www.computer.org
http://www.computer.org

	Introduction
	Related work
	The HAEC-SIM Framework
	Motivating Platform Characteristics
	Design Goals
	Design and Implementation
	Input
	Simulation Core and Modules
	Output
	Build System, Documentation, and Licensing
	Testing and Verification


	HAEC-SIM Use Cases
	Modeling Communication Performance
	Computation Power Modeling

	Conclusions and Future Work
	Acknowledgments
	References

