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ABSTRACT
Visual environments for the modelling and simulation of complex,
software-intensive systems are increasingly popular. While visual
languages have many advantages, they may not be appropriate to
render all details of a Discrete EVent system Specification (DEVS)
model. Textual may be more appropriate, both to completely de-
scribe all details of a DEVS model (i.e., the content of transition
and output functions), and to make the specification independent of
the implementation platform (i.e., simulation implementation lan-
guage).

In this paper, we propose two textual notations that are used as
part of an integrated modelling and simulation environment for the
Parallel DEVS formalism. Both notations allow the specification of
DEVS functions by means of neutral action code. DEVSPro uses
Python-like textual syntax and supports the full power of Paral-
lel DEVS. From this neutral specification, simulator-specific code
is synthesized. DEVSLang supports blended textual/visual mod-
elling. It is more restricted in expressiveness to match the lim-
ited expressiveness of visual notations. For example, the sequential
states in an Atomic model must be explicitly enumerated.

Visual DEVSLang models are transformed to their textual form
in order to carry out syntactic and semantic checks. Possible de-
tected errors are fed back to the visual modelling environment al-
lowing the modeller to make changes directly in the source model.
DEVSLang models are further translated automatically to DEVSPro
models to allow for possible combination with DEVSPro models
and subsequent analysis and simulation.
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1. INTRODUCTION
As modern systems become more complex, they also become

more and more difficult to describe and analyze. This is partly due
to the high diversity in existing modelling and simulation (M&S)
languages and environments. Examples of this diversity range from
models (of systems and their environment), over (textual and/or vi-
sual) modelling tools, to efficient simulators. The success of M&S

.

endeavours is increasingly dependent on our ability to re-use mod-
elling and simulation solutions in a modular way.

Zeigler proposed the elegant DEVS formalism [21]. Models in
different formalisms can be mapped onto it, making it a universal
simulation “assembly language” [17]. As such, it enables the mod-
ular combination of different modelling languages, as well as their
simulators. DEVS models are typically encoded in a programming
language or at least using an API that embodies the essential as-
pects of DEVS models and their simulation semantics. Examples
include ADEVS [9] which uses C++ and Python Parallel DEVS
(PyPDEVS) [16].

Various solutions to standardize and support DEVS modelling
and simulation interoperability have been proposed [8, 13, 3]. We
postulate that modern M&S frameworks should be based on a us-
able and appropriate DEVS formalism with neutral (i.e., implemen-
tation platform/language-independent) action code. But what does
this neutrality property really mean? Does it mean that its design
should be in close relation with existing programming languages,
so that it would be easier to reverse-engineer existing code and port
it across platforms? Or should it instead be in close relation with
Zeigler’s DEVS formalism?

In this paper, we address these questions by building an Inte-
grated M&S Environment (IM&SE) that integrates two distinct tex-
tual notations for the DEVS formalism, DEVSLang and DEVSPro,
as presented in Figure 1. Each notation is designed for a different
purpose, hence, each notation linguistically conforms to a different
linguistic type model [1], simply referred metamodel throughout
this paper.

While DEVSLang has restricted expressiveness in order to be
generally fully renderable in a visual modelling environment, DE-
VSPro provides the full expressiveness of DEVS. On the one hand,
modellers can then reuse their Statechart-like models (e.g., UML
StateCharts or even timed automata) by easily porting them to DE-
VSLang, and then visually editing/debugging them in AToMPM.
On the other hand, modellers can reuse existing libraries of DEVS
models (e.g., ADEVS models) by also easily porting them to DE-
VSPro. By automatically translating DEVSLang models into DE-
VSPro models, our IM&SE enables the composition and integra-
tion of all the ported models in the development of new ones.

Similar to other solutions [19, 10], these languages use a neutral
action code in order to express functions that we know by construc-
tion are indeed DEVS transition or output functions. Users can
define several types of DEVS functions in order to not only reuse
functionality but also to guarantee correctness. For instance, it is
guaranteed that all of the defined output functions are only reading
atomic component states, and cannot be composed with (i.e., in-
ternally call) other modifying functions, such as internal transition
functions.
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In order to study the integration of DEVSPro with DEVSLang
and in order to develop a DEVS-IM&S environment, we built two
meta-models, one for each formalism. The relationship between
both languages is implemented by means of automated model trans-
formation.

We demonstrate our approach by building a DEVS IM&SE: not
only by (conceptually) integrating/merging our two formalisms, but
also (in practice) combining an existing visual DEVS modelling en-
vironment built in our AToMPM (A Tool for Multi-Paradigm Mod-
elling [12]), with an existing Parallel DEVS Simulator: PyPDEVS.
In this IM&SE, modellers are able to visually define DEVS mod-
els while using embedded textual action code in order to specify
each of the DEVS transition/output functions. The consistency and
conformance of the defined DEVS models can then be analyzed
using our DEVS syntax and static-semantics analyzer. The DEVS
models can then also be debugged and simulated within the same
environment [15].

The rest of this paper is structured as follows: Section 2 gives
a brief theoretical background on Parallel DEVS. Section 3 intro-
duces both formalisms while describing the pertinence and prag-
matics of their textual notations (DEVSLang and DEVSPro). Sec-
tion 4 discusses the static-semantics and contextual analysis that
is required in order to produce models that are semantically con-
forming to the DEVS theory. Tool support for the analysis of the
action code is described in Section 5. Finally, Section 6 presents
a comparison with other related work, and Section 7 concludes by
highlighting our contributions and discussing future work.

2. BACKGROUND
The DEVS formalism was introduced by Zeigler [21, 22], as a

rigorous basis for the compositional modelling and simulation of
discrete event systems. This section briefly presents the Parallel
DEVS formalism, a variant of the original Classic DEVS.

DEVS allows modelling at two distinct levels of abstraction:
atomic and coupled components. An atomic component model de-
scribes the discrete-event autonomous and reactive timed behaviour
of system.

An atomic model is formally defined as,

aDEV S =< X,Y, S, δint, δext, δconf , λ, ta >

where input set X denotes the set of admissible input events of the
model such that X = ×m

i=1Xi with Xi denoting each of the m
admissible inputs on port i; output set Y denotes the set of admis-
sible output events of the model such that Y = ×l

i=1Yi with Yi

denoting each of the l admissible outputs on port i; state set S is the
set of sequential states; internal transition function δint defines the
next sequential state depending on the current state, δint : S → S;
output function λ maps the sequential state set onto a bag of out-
put events, λ : S → Y b; external transition function δext gets
called whenever an external input event (∈ Xb) is received by
the model, δext : Q × Xb → S with Q = {(s, e)|s ∈ S, 0 ≤
e < ta(s)} where e is the elapsed time; time advance function ta
defines the simulation time the system remains in the current state
before triggering its internal transition function such that ta : S →
R+

0,+∞; and finally, the confluent transition function is called if
both an internal and external transition occur at the same simula-
tion time, replacing both functions such that δconf : S×Xb → S.

A coupled component model describes the composition of sev-
eral concurrent submodels which can be either atomic or coupled.
Submodels have ports, which are connected by channels defining a
transfer function to translate output to input events. Ports and chan-
nels allow a component model to receive/send events from/to other
models. A coupled DEVS model is closed under coupling, which

means its meaning can be given by “flattening” to a behaviourally
equivalent atomic DEVS model.

An abstract simulator for Parallel DEVS computes the next state
of the system (a “step”) until its end condition is satisfied. Each
step consists of the following phases:

1. Compute the set of atomic DEVS models whose internal
transitions are scheduled to fire (imminent components).

2. Execute the output function for each imminent component,
causing events to be generated on the output ports.

3. Route events from output ports to input ports, translating
them in the process by executing the transfer functions.

4. Determine the type of transition to execute for the atomic
DEVS model, depending on it being imminent and/or receiv-
ing input.

5. Execute, in parallel, all enabled internal, external, and con-
fluent transition functions.

6. Compute, for each atomic DEVS model, the time of its next
internal transition (specified by its time advance function).

3. DEVS IM&S ENVIRONMENT
Our integrated DEVS modelling environment uses the Model-

verse [14] as its model repository and model management facil-
ity. The Modelverse is an infrastructure for scalable and efficient
model-management. It includes a built-in meta-modelled action
language to give basic execution support to various model oper-
ations, such as conformance checks performed on models w.r.t.
metamodels. Based on such analysis, it produces model instances.
It also supports rule-based model transformations. The notion of
time is not present in the currently supported action code. There-
fore, the integration of time-aware formalisms such as DEVS in the
Modelverse is desirable.

In our work, we make use of a visual modelling, simulation, and
debugging environment for Parallel DEVS that is already avail-
able in AToMPM [12] (A Tool for Multi-Paradigm Modelling), a
generic visual front-end for the Modelverse.

Our initial task is to allow models, visually edited in AToMPM
and stored in the Modelverse, to be retrieved, edited textually in a
textual shell (and possibly imported back into the AToMPM visual
view). For this purpose, we propose a language, DEVSLang, with
an expressiveness equal to that of DEVS models that can be visu-
ally represented. Note that not all DEVS models can be explicitly
modelled visually as we can only draw a finite number of sequential
states or external transition functions.

The second task is to be able to reuse the parsing and analysis
features of the textual shell for the checking of the transition-, time
advance- and output functions of a DEVS model.

The third task is to translate all DEVS models automatically for
use in existing simulators. As an example, we compile DEVS mod-
els into PyPDEVS [16], which is a DEVS-based language grafted
onto the Python language, with a matching simulator. It supports
various features (such as tracing, checkpointing, and real-time sim-
ulation) and formalisms (classic DEVS, parallel DEVS, etc.). As
PyPDEVS combines the full expressiveness of the Parallel DEVS
formalism with that of the programming language Python, a lan-
guage is needed at this expressiveness level too. For this purpose,
we propose the language DEVSPro, from which PythonPDEVS
code will be synthesized. We must ensure that DEVSPro (i) has
an action code part that is as expressive as Python but yet (ii) en-
ables a strictly verifiable conformance with DEVS.

Our complete workflow is described in Figure 2 in the form of
a FTG+PM model (Formalism Transformation Graph and its com-
plement, the Process Model) [7]. Figure 2 charts various activities
in the MDE lifecycle, from requirements development to code syn-
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Figure 1: Overview of the approach.

thesis, that are part of our DEVS IM&SE. The FTG describes in
an explicit and precise way, formalisms, and their relationships as
transformations between formalisms. The PM defines an actual
Model-Based Systems Engineering process using these formalisms
and transformations. As depicted in the FTG+PM, DEVSPro mod-
els are transformed to PyPDEVS for simulation purposes. All DE-
VSLang models need to be transformed to DEVSPro in order to
allow for the synthesis of the PyPDEVS code. This transforma-
tion to DEVSPro also allows models to be ported to different target
platforms, and makes it possible for advanced users to adapt exist-
ing DEVS models in an unrestricted manner: for instance, with-
out imposing the definition of a state enumeration on each Atomic
component.

3.1 DEVSPro
DEVSPro is based on DEVS theory and is at an abstraction level

closer to programming languages to allow expert users to exploit
the full power of DEVS while maintaining a close conformance
with the DEVS theory. The formalism is conceptually identical to
PyPDEVS with a specific abstract syntax and semantics.

With regards to the tool integration aspect, the semantics of DE-
VSPro is given by mapping it to PyPDEVS. The formalism is com-
posed of two kinds of syntactic structures: syntactic structures ex-
pressing action code in DEVS functions and syntactic structures
expressing the structure of DEVS models (i.e., the atomic and cou-
pled components).

DEVSPro is rooted in the Modelverse by means of an action
language. The textual shell allows modellers to read a file module
and load it. The ‘import’ feature allow modellers to refer to and
load new class definitions. In the example below, ‘statedef’ is a
class being imported as a means to define the ‘ProcessorState’, that
is then instantiated in the atomic component ‘Processor’ as ‘idle’.

1 top:
2 import statedef
3 ...
4 statedef ProcessorState:
5 constructor(name, job=None):
6 self.name = name
7 self.job = job
8 ...
9 atomic Processor:
10 constructor():
11 self.state = ProcessorState(’idle’)
12 self.outports = {’p_out’}
13 self.inports = {’p_in’}
14 ...

Listing 1: Snippet of the Producer-
Consumer Example in DEVSPro

In the context of the example above, the notion of constructor
(with a Python-style syntax) enables a given atomic component (in
this case ‘Processor’) to bind, at instantiation phase, with a given
state definition (in this case ‘ProcessorState’). The reserved word
‘state’ is used in order to refer to the concept state S, but its type

is, by default, left underspecified. In the example, it is bound to
an instance of ProcessorState of type statedef. The reserved words
‘inports’ and ‘outports’ are used to define the names of the input
and output ports, respectively. Each port allows interface connec-
tions and logical dependencies with other components. The chosen
names for the ports typically reflect the communication usage from
the point of view of the component (i.e., from an OO perspective).
In our example, if it was a producer of proteins, the processor’s
input port would be simply named ‘protein’ which, when assigned
becomes a reserved word in the atomic component known as a type
of input port.

However, in the case of complex atomic component initializa-
tions, the map of typed (input/output) port names could be changed
during simulation. Given that these port names can be changed in
the arrival/departure of an event, we could have a conflict between
out-dated instances with the subsequent modification of the ports.
For now, we avoid discussions about the correct scheduling in order
to avoid or mitigate these conflicts that could only happen in more
complex conditions.

Notice that although we present a deployment to PyPDEVS as
an example of DEVSPro semantics, we only show it in that partic-
ular platform, not with its full semantics, which is to be by defini-
tion platform-neutral. Following Zeigler’s formalism, the full se-
mantics remains largely underspecified in what matters to concrete
semantics and representations, although complete in what matters
to internal consistency rules. This is enforced by construction on
any DEVSPro type system, conforming with the DEVSPro’s type
model.

The textual shell allows the user to define functions in many dif-
ferent ways. Functions are considered to be type definitions. In this
case, a function call is just an instance of a Function type. How-
ever, DEVSPro Atomic components (in the example above atomic
Processor) are forced to redefine a set of Function types, each of
them conforming to a particular DEVSPro Function Meta-Type.
From the time advance function ta to the output function λ, each
of them are semantically typed according to Zeigler’s formalism.
The correct analysis of each of these function types is, of course,
limited by our analysis algorithms, but if we impose semantic type-
restrictions in the way the modeller composes DEVSPro models, it
may be possible to assure and verify the preservation of these se-
mantic types—i.e., the consistency rules inherent from each of the
functions’ requirements, such as, for instance, the return type of
the internal function δint versus the return type of the time advance
function ta.

Notice in the example, that ‘outputFunc’ (i.e., λ) outputs a value
from the current state variable (namely ‘job’) into output port p_out.
This is possible, because in an output function, the state variable S
can be read (although not modified). In this DEVSPro model, the
output port is implicitly typed with the type of variable ‘job’ (which
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in the example can be just an Integer).
This means that this component, when connected, since the atomic

component Processor will have port p_out with event values of
type Integer, the other DEVS component must be reading events
from the corresponding input port of the same type Integer. How-

ever, there can be several outcomes programmed in a given output
function λ, all of them must be a map of port names with their
respective typed variables or values. The composition of all of
the possible types for a given port type (e.g., p_out) is given by
an ordered union of constraints that have priority over others: be-



1
2 atomic Processor:
3 constructor():
4 self.state = ProcessorState(’idle’)
5 self.outports = {’p_out’}
6 self.inports = {’p_in’}
7
8 timeAdvance():
9 if self.state.name == ’idle’:

10 return INFINITY
11 else:
12 if self.state.name == ’processing’:
13 return self.state.job.jobSize
14
15 outputFnc():
16 if self.state.name == ’idle’:
17 return {}
18 else:
19 if self.state.name == ’processing’:
20 return {self.outports[’p_out’]: [self.state.job]}
21
22 intTransition():
23 if self.state.name == ’processing’:
24 return ProcessorState(’idle’)
25
26 extTransition(inputs):
27 if self.state.name == ’idle’:
28 return ProcessorState(’processing’, /
29 job=inputs[self.inports[’p_in’]][0])
30
31 confTransition(inputs):
32 pass
33 ...

Listing 2: Snippet of the Producer-Consumer Example
in DEVSPro

cause action code is a sequence of statements. This means that in
a sequence of statements, each ‘if’ or ‘while’ imposes a constraint
that has more priority than the constraint on the next statement.
The constraints are added to the return types on each branch of the
dataflow diagram imposed on any give action code execution. It is
possible, however, to override this implicit constraint-priorization
by using logical connectors such as ‘and’, in order to assign the
same priority, However in the case of ‘or’, we must assure that
both operands are logically disjoint, otherwise we would have more
type-check ambiguity (and in particular non-determinism) in the
port assignments while evaluating coupled components.

1 ...
2 coupled ProducerConsumer:
3 constructor():
4 self.outports = {}
5 self.inports = {}
6 self.submodels = {’g’:Generator(), ’p’:Processor(), /
7 ’cp’:CoupledProcessor(), ’collector’:Collector()}
8 self.connectPorts(self.submodels[’g’].outports[’p_out’], /
9 self.submodels[’p’].inports[’p_in’])

10 self.connectPorts(self.submodels[’p’].outports[’p_out’], /
11 self.submodels[’cp’].inports[’p_in’])
12 self.connectPorts(self.submodels[’cp’].outports[’p_out’], /
13 self.submodels[’collector’].inports[’p_in’])
14 ...

Listing 3: Snippet of the Producer-Consumer Example
in DEVSPro

In the listing above, we show a coupled DEVS model named
‘ProducerConsumer’ that instantiates its internal DEVS compo-
nents during its construction, and places them in the reserved vari-
able ‘submodels’. Notice that all of the instances are typed by con-
struction using the user-defined DEVS component types ‘Genera-
tor’, ‘Processor’, etc. Instantiating the connectPorts function en-
ables the binding of input with output ports from all of the instan-
tiated internal DEVS components: i.e., the channels. Not shown
but, it is also possible to pass a user-defined transfer function as a
parameter of the connectPorts built-in. A suitable transfer function
will have exactly one parameter—i.e., a value from some source
port in a connection—, and will return a value, which at simulation-
time is passed to the target port on that connection. In either case,
the type checker has to ensure that the type of the events on the
input port, of a given component, is consistent with the type of the
events on the output port, of the other component.

Finally, we present the ‘bottom’ function. Notice that parame-

1 ...
2 bottom:
3 sim = ProducerConsumer()
4 ...
5 sim.setVerbose(None)
6 sim.setTerminationTime(100)
7 sim.simulate()

Listing 4: Snippet of the Producer-
Consumer Example in DEVSPro

terless functions (as mere action code labels) are always executed
and cannot be used as types. At the end of the DEVSPro module
file, we instantiate one of the coupled models (namely the ‘Produc-
erConsumer’) and set some attributes by instantiating pre-defined
simulation Function types (verbose and termination time). These
must be defined for a given platform (in this case PyPDEVS). No-
tice that, since the textual shell supports dynamic type operations
on instances, it is possible at any moment in time to extend a given
ProducerConsumer instance with a new platform-dependent func-
tionality. Finally, we run the simulate function in order to produce
simulation traces (not shown here).

3.2 DEVSLang
DEVSLang is a language whose expressiveness is identical to

that of the DEVS formalism encoded for the visual modelling in
AToMPM—i.e., the AToMPM Design DEVS in Figure 2. This
means that the abstract syntax of textual DEVSLang is the same
as that of the visual DEVSLang language in AToMPM. In our envi-
ronment, the formalism has been associated with two different con-
crete syntaxes: (i) a 100% textual concrete syntax and (ii) a blended
visual and textual concrete syntax for modelling in AToMPM. The
textual concrete syntax here refers to DEVSLang’s neutral action
language.

The DEVSLang textual syntax primarily allows the specifica-
tion of composite structures defined with coupled DEVS, and the
specification of each atomic DEVS component along with its asso-
ciated time advances, output function, transition functions, transfer
functions, confluent functions, and port definitions. The events and
state definitions are by default included as syntactic constructs in
the textual model.

We now detail the concrete syntax for DEVSLang by partially
showing (due to space constraints) the corresponding DEVSLang
model (Listing 5) for the Producer-Consumer example presented in
Section 3.1. An exporter in AToMPM is able to generate the DE-
VSLang textual models from the visual DEVS models (Figure 8a).

In comparison with the DEVSPro model of the ProducerCon-
sumer shown before, this example reveals that its representation
in DEVSLang becomes much more compact. This is mostly be-
cause it builds on an enumeration of states that is implicitly de-
fined in each atomic component. For instance, in the ‘Processor’
component, the used ‘ProcessorState’ will be a tuple containing an
enumeration, with only two possible values (idle and processing),
and a variable job. Notice that in DEVSLang, each state definition
‘statedef’ only defines regular state variables: for instance, ‘Pro-
cessorState’ defines job as a state variable.

In the case of DEVSLang, the types of parameters are restricted
to basic datatypes (String, Boolean, Integer, Float, etc.). DEVS-
Lang includes pre-defined constructs for state definition (as in line
3), events (as in line 6), atomic components (as from lines 8 to line
24), and coupled components (as from line 27 to line 36).

As we can see inside each atomic component definition, DEVS-
Lang mimics the notion of enumerated states as used in AToMPM’s
visual syntax, with the notion of states. States are connected by



1 # State definitions
2 ...
3 statedef ProcessorState(job)
4 ...
5 # Event definitions
6 event Job(jobSize)
7 ...
8 atomic Processor() with ProcessorState:
9 inports p_in

10 outports p_out
11
12 initial idle
13 state idle:
14 time advance:
15 return infinity
16 external -> processing:
17 action:
18 return {job: p_in[0]}
19 state processing:
20 time advance:
21 return job.jobSize
22 internal -> idle
23 output:
24 return {p_out: [job]}
25 ...
26 ## component Root needs to be defined
27 coupled ProducerConsumer():
28 instances:
29 g = Generator(a,b)
30 cp = CoupledProcessor()
31 p = Processor()
32 c = Collector()
33 connections:
34 from g.p_out to cp.p_in
35 from cp.p_out to p.p_in
36 from p.p_out to c.p_in
37 ...

Listing 5: Snippet of the Producer-
Consumer Example in DEVSLang

means of either ‘external’ transitions or ‘internal’ transitions. Each
transition function points to a given state name (which will be the
name of the state as defined in type ‘statedef’), and returns a map of
parameters which must always conform to a user-defined ‘statedef’
type instance. The conforming implication of a given atomic com-
ponent with a given ‘statedef’ type instance is set explicitly with
the keyword ‘with’ (see line 8).

3.3 Mapping and Merging
In order to illustrate the commonalities between both languages,

and also to compare their expressiveness, Table 1 provides a map-
ping from DEVSLang to DEVSPro constructs. The OO transla-
tion function is applied to all action statements in order to make
the expressions consistent with object-orientation navigation fea-
tures. Similarly, the Cond translation function is applied to an ac-
tion statement block converting it into a DEVSPro condition func-
tion type with return type Boolean, which is then directly instanti-
ated in a given if statement’s condition.

Although not mentioned in Table 1, the rule that is applied to the
time advance function is also applied to the output function. The
same is true for external transitions and both internal transitions
and confluent transitions. Also not shown is the trivial mapping
between the coupled component’s graph: the connections between
DEVSLang’s instances (these ones mapped into the respective DE-
VSPro component’s submodels) are mapped onto calls to the DE-
VSPro reserved method connectPorts.

Figure 3 presents the core of the DEVSLang metamodel. If we
compare this metamodel with the DEVSPro metamodel, we see
that in DEVSPro there is no fixed state definition structure, and
therefore DEVS functions are directly defined under the atomic
component definition (instead of being under a given state decla-
ration). Also, we see that unlike DEVSLang, DEVSPro allows
user-defined functions, and in particular parameterless functions.
Finally, it is not shown, but following DEVS theory, the elapsed
keyword is defined in both formalisms as an attribute that can be
accessed inside a given atomic component.

The action code metamodel used in DEVSLang is shown in Fig-
ure 4. The action code metamodel of DEVSPro is a superset of

DEVSLang Concepts DEVSPro Concepts
statedef SDName:

statedef SDName(pars..) constructor(pars..):
self.par1 = xpto

.. ..
atomic CName() with SDName: atomic CName:

.. constructor():
initial ISName self.state = SDName(ISName)
.. ..

atomic CName(args..) .. atomic CName:
constructor(args..):

.. ..
atomic CName() ..: atomic CName:

.. constructor():
inports p, q,.. self.inports = {’p’, ’q’, ..}
outports r, s,.. self.outports = {’r’, ’s’, ..}
.. ..

atomic CName()..: atomic CName:
.. ..
state SName: timeAdvance():

timeAdvance: if self.state == ’SName’:
Statements.. OO(Statements..)

.. ..
atomic CName() with SDN: atomic CName:

.. ..
state SN: extTransition(inputs):

external − > SON: if self.state == ’SN’
condition: and Cond(Stms..):

Stms.. OO(Stms’)..
action: return SDN(’SON’, args)

Stms’.. ..
.. ..

Table 1: Reference mapping between DEVSLang Concepts and
DEVSPro Concepts.
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Figure 4: Neutral Action Code Metamodel used in both DEVS-
Lang and DEVSPro. The DEVSPro’s Method Definition con-
struct is not shown since it only represents an instantiation possi-
bility in DEVSPro models.
the DEVSLang one including object-orientated constructs. Bear in
mind that these figures only show the linguistic part of the DEVS-
Lang and partially DEVSPro metamodels. The typing rules that
constrain all sentences to a conformity to DEVS theory (presented
in Section 2) are also represented in the Modelverse and accessible
using the textual shell.
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Figure 3: The DEVSLang Metamodel.
4. ANALYSIS

The grammar specifications for the languages DEVSLang and
DEVSPro drives the automated generation of their respective parsers
that as shown before are able to recognize their sentences and assert
their syntactic correctness. In particular, they issue syntactic errors
when some grammar rule is violated.

However, the syntactic rules are not expressive enough to ensure
consistency of the specified DEVS models, and more importantly
their conformance to the original Parallel DEVS theory. For in-
stance, it is possible to write an output function that modifies exist-
ing state variables, which is incorrect under DEVS theory.

We will now observe how we can exploit the usage of textual
notations to model DEVS and, most importantly, the usage of ac-
tion code, in order to provide powerful mechanisms for consistency
analysis.

4.1 Static Semantics
Since the information contained in context-free grammars is not

sufficient to enable sophisticated evaluations of the parsed DEVS-
Lang model, we need to provide additional information in order
to capture all the semantic rules required for both our DEVS lan-
guages. In particular, the following rules have to be specified, and
dealt separately in an evaluation procedure distinct from parsing.
• Each reference marked on the ‘with’ on each atomic compo-

nent definition, must point to a valid declared state definition.
• Each atomic block must have exactly one initial definition.
• Each external, internal or confluent function, must have at

most one condition block and one action block.
• The target pointed to by either an external, internal or con-

fluent functions must be a valid defined state defined on the
same atomic component.
• Function calls referenced in any expression in the action code

must point to a valid Event declaration, and therefore must
comply with its required parameters.
• On every two connected instances, the mapped written and

read values on the respective connected inports and outports
names must have compatible types.
• On the expressions, any specified operation must be consis-

tent w.r.t. declared types of their operands (which can again
be operations).

4.2 Checking Conformance with DEVS
The contextual analysis can go deep by analyzing conditional

branches, in order to check the return and parameter types of the
time-advance, internal/external/confluent transition and output func-
tions. It can, for instance, check the only allowed read/write vari-
able access within the above functions (e.g., the elapsed variable in
the condition of an external function).

The action code defined in the condition part of each transition
definition can be analyzed in order to check that the component’s
variables are just being read: meaning that the evaluation of a con-
dition cannot change the variables of a given component, or of any
other defined component.

The complete set of access rules for conformance checking is
presented in Table 2. It details for each function, the expected
types for the condition and action blocks. Warnings are issued if
the analysis is inconclusive, and errors are issued if an inconsis-
tency is detected.

For the sake of brevity we omit the rules for the transfer functions
on the coupled DEVS.

The DEVSPro syntax for DEVS functions does not offer any
explicit distinction between the condition and action parts. There-
fore, the resulting conformance checking will have to be necessar-
ily weaker. However, we can reuse the analysis made for DEVS-
Lang (as detailed in Table 2) for DEVSPro, with the exceptions
that here we apply both the rules for conditions and actions. In the
outputFunc, the checker allows read access for all the variables
except the self .inport and self .elapsed variables.

5. ACTION CODE ANALYSIS
As outlined in the previous section, we have implemented a parser

and analyzer to carry out syntactic and structural semantic checks
of our DEVS models. In this section, we demonstrate these auto-
mated analyses implemented in our DEVS modelling environment
by means of the Producer-Consumer example.

Action Code in DEVSPro. New or existing models can be ana-
lyzed by the parser/checker to identify syntactic and contextual er-
rors. The Producer-Consumer example DEVSPro model presented
in Section 3.1 (including errors this time) was analyzed for syntac-
tic errors. Fig. 5 shows the results of the analysis (the first error
detected).

Action Code in DEVSLang.The DEVSLang models including



Time Advance Internal Function External Function Confluent Function Output
Function Condition Action Code Condition Action Code Condition Action Code Function

Return Type Float Boolean Map Boolean Map Boolean Map Map(*)
State variables Read Only Read Only Read/Write Read Only Read/Write Read Only Read/Write Read Only

Inport variables N/A N/A N/A Read Only N/A Read Only N/A N/A
Outport variables N/A N/A N/A N/A N/A N/A N/A Write Only
Elapsed variable N/A N/A N/A Read Only N/A Read Only N/A N/A

Table 2: Contextual Analysis Rules for DEVSLang models. (*) where all labels belong to defined Outports in given Atomic Compo-
nent

Figure 5: Producer-Consumer DEVSPro Model Snippet: Ex-
ample Error (incomplete return statement)

Figure 6: Producer-Consumer DEVSLang Model Snippet: Ex-
ample Error (incorrect state name specified)

Figure 7: Contextual Check Example Error

the action code in the defined functions can be checked for syntactic
errors, conformance errors, and for contextual errors. The action
code in the Producer-Consumer DEVSLang model in Listing 5 was
analyzed for syntactic and semantics errors. Fig. 6 shows the initial
error returned.

In Figure 7, we show the result of a contextual check. In this
case, a statement in an output function is trying to change the value
of a state variable. A DEVS output function should however not
change a component’s state.

While this section only demonstrates validation of action code,
our tool checks the entire model for syntactic errors.

Action Code in AToMPM. The DEVSLang models constructed
in our visual front-end, AToMPM, includes transition functions spec-
ified as DEVSLang action code. As in many current tools, these
functions were originally defined using a programming language
(Python in our case), which was not validated for syntax or se-
mantics. The exported Python code needed to be parsed and any

changes made in the Python code were not updated in the original
model (or it was updated manually which could lead to even more
errors). Furthermore, the Python models were platform-dependent
which restricted portability to different simulators. Using neutral
action code alows the models to be validated in the front-end and
also keeps the model consistent with the generated DEVSLang and
DEVSPro models.

We have implemented a feedback loop such that the errors de-
tected in the generated textual DEVSLang model can be fed back
to the AToMPM visual modelling environment. This is based on
traceability information. The user only needs to press one button
(outlined in red in Fig. 8a) to validate the action code in the model.
The model is then exported to textual DEVSLang and parsed, and
the results are returned to AToMPM (shown in Fig. 8b). The erro-
neous functions are highlighted on screen with a message next to
them elaborating on the kind and location of the error. Fig. 9 shows
screen shots of two such syntactic errors detected and highlighted
in the visual model.

Users also have the option of exporting to textual DEVSLang
with the press of a button (shown within red-outlined box in Fig. 8a)
once the model is corrected.

6. RELATED WORK
Over the years, several extensions and variants of the DEVS for-

malism have been proposed [5]. One of our primary concerns in
this paper was to address the specification of the DEVS functions.
In the DEVS language extensions described in the literature, func-
tions are typically expressed using a textual syntax strongly influ-
enced by (or identical to) the existing underlying programming lan-
guage onto which the simulation environments are grafted (e.g., as
seen in [2]). The need to provide a platform independent specifica-
tion, with the capability to specify platform-neutral code statements
(i.e., action code) that can then be translated to any given program-
ming language has remained unaddressed in most related work.

Yet another concern was the interoperability of DEVS environ-
ments along with the need for making available an integrated en-
vironment for DEVS. A commonly adopted solution for this prob-
lem (e.g. in [8, 13, 3]), is the usage of meta-modelling, model
transformations, and their combination with textual formats such
as XML, in order to rapidly interchange models between simula-
tion systems. However, little reference is made to the difficulty of
expressing models in XML by regular users: the common argument
is that this is a problem to be solved by suitable visual modelling
environments, although little support is then provided for action
code editing.

In Table 3, we present a comparison of existing environments
and approaches for DEVS modelling and analysis based on sev-
eral criteria (listed in the first column of the table). A summary of
such textual DEVS languages proposed for standardization is given
in [18]. While various graphical front-ends for modelling DEVS
are available (such as [11]), in our survey we have focused on ap-
proaches that allow formal specifications (in some form of textual
concrete syntax) of DEVS models. It is to be noted that static anal-



(a) Producer-Consumer Example DEVSLang Model (b) Producer-Consumer Example: Syntax checking of Action Code
Figure 8: AToMPM DEVS Modelling Environment

Figure 9: DEVSLang Syntax Check Example Errors

ysis in Table 3 refers to syntax checking and type checking includ-
ing static semantics analysis, and symbolic analysis refers to model
checking or behavioural analysis.

Based on the related work we have examined, we conclude that
the main challenge is to tackle the need for an integrated mod-
elling environment, which integrates tools for modelling, analysis,
simulation, optimization and execution. In our work, we have at-
tempted to integrate different tools and associated meta-modelled
languages, along with a textual platform-neutral action code that
serves as the most appropriate format for model interchange be-
tween these tools, as well as across different modelling environ-
ments.

In such environments with multiple languages at different lev-
els of abstraction, static analysis tools should be able to validate
the consistency of the defined DEVS during the editing phase, by
sending correctness feedback to the editing tool, before allowing
any further advanced analysis (e.g., by translating it to timed au-
tomata). This feature has also been addressed in our work.

Finally, to provide such advanced analysis, we must first include
a way to express a property language based on a branching time
temporal logics such as Timed CTL, which is an extension of reg-
ular branching time temporal logics with clock constraints. The in-
tegration of both kinds of analysis—either by scenario/case simula-
tion, or by model checking’s exhaustive search—in the system’s de-
sign/modelling process is probably the biggest challenge to achieve
in a DEVS integrated modelling environment.

7. CONCLUSION
We first introduced two neutral textual languages, DEVSPro and

DEVSLang, made for different purposes. Unlike other existing no-
tations for DEVS, these also use a neutral action code to represent
transition functions, time advances, and output functions in our vi-
sual DEVS modelling environment.

We then described a reference semantic metamodel (i.e., a set
of mapping and type rules) in order to enable the semantic confor-

mance of DEVS models (expressed on those two DEVS notations)
with Zeigler’s DEVS theory. This semantic metamodel was embed-
ded in the internals of a DEVS Integrated Modelling & Simulation
Environment (IM&SE), by means of: consistent automated map-
pings (model transformations, translators, and exporters); and con-
sistent automated (linguistic) syntax and (semantic) conformance/-
contextual checkers.

The advantages of the such kind of integration are twofold. On
the one hand, modellers now have the option to easily switch be-
tween a completely textual (in the textual shell) or a textual/visual
(in AToMPM) model representation. On the other hand, the se-
mantic conformance to DEVS can now be ensured on all of these
representations, by means of automated syntax and conformance
checking. This is crucial in order to be able to automatically guar-
antee (or check) that the deployed models (for instance into Python-
PDEVS) are indeed valid DEVS models.

As future work, we intend to continue the integration of different
kinds of engines in our IM&SE in order to explore existing inter-
esting type systems (founded on DEVS), that may challenge the
analyzability of its internal consistency.
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