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ABSTRACT
Security managers face the challenge of designing security poli-
cies that deliver the objectives required by their organizations. We
explain how a rigorous modelling framework and methodology—
grounded in semantically justified mathematical systems modelling,
the economics of decision-making, and simulation—can be used to
explore the operational consequences of their design choices and
help security managers to make better decisions. The methodol-
ogy is based on constructing executable system models that illus-
trate the effects of different policy choices. Models are compo-
sitional, allowing complex systems to be expressed as combina-
tions of smaller, complete models. They capture the logical and
physical structure of systems, the choices and behaviour of agents
within the system, and the security managers’ preferences about
outcomes. Utility theory is used to describe the extent to which se-
curity managers’ policies deliver their security objectives. Models
are parametrized based on data obtained from observations of real-
world systems that correspond closely to the examples described.

Categories and Subject Descriptors
I.6 [Simulation and modelling]: General; F.3 [Logics and mean-
ings of programs]: Miscellaneous; H.1 [Models and principles]:
Systems and information theory; K.6 [Security and Protection];
K.6.0 [General]: Economics; K.6.1 [Project and People Man-
agement]: Systems analysis and design

General Terms
design, economics, experimentation, languages, management, mod-
elling, security, theory

Keywords
composition, decision, location, logic, modelling, policy, process,
resource, security, semantics, simulation

1. INTRODUCTION
A system’s security policies—and, indeed, a system’s management
policies more generally—must be formulated so as to deliver the

declarative objectives of the system’s managers in the context of
the system’s architecture and operational objectives.

When formulating, implementing, and monitoring security poli-
cies, managers are often faced with deciding between achieving
varying degrees of security and achieving varying degrees of oper-
ational effectiveness. That is, more effective security controls will
often more severely impede operations. A key challenge for system
managers is to engineer trade-offs between concerns such as these
that is acceptable to their organizations.

It is an increasingly commonplace observation that mathematical
modelling—of the system, of its operational and security policies,
and of the behaviour of its users—can provide useful decision-
support tools [2, 3, 4, 5]. But the systems about which these de-
cisions must be made are usually complex socio-technical systems
of systems for which analytic solutions to policy-system co-design
problems are rarely available. Instead, simulation-based models
[18] supporting experimental mathematical modelling methods of-
fer a useful approach [2, 4, 8, 5].

In this paper, we argue for and demonstrate the value of develop-
ing a systems and policy modelling framework with key structural,
economic, and experimental features:

• Explicit structural models of the structure of systems. That
is, following the classical approach to understanding distrib-
uted systems [11], we consider models based on concepts
of location, resource, process, and environment. Locations
are the places within a system at which its resources reside.
Resources are the components of a system that are manip-
ulated (e.g., consumed, created, moved, read, etc.) by the
processes; we assume that resource elements of the same
type can be combined and compared. Processes are the con-
cept that describes the dynamics of the system, manipulating
located resources in order to deliver services. Environment
is the context within which the system exists, to and from
which services may be delivered and received by the system;

• Simulation-based techniques for experimental mathematical
investigations of the consequences of different system–policy
co-design decisions for their benefit-cost analysis;

• Use of economic models of agents’ decision-making and man-
agers’ valuations of policies [13, 14]. Production functions
[15] are used to characterize the values of the different choices
available to agents during the execution of a mode. Utility
functions [25, 20] characterize the overall value of a (secu-
rity) policy to a system’s manager. We use multi-attribute
utility functions to capture the trade-offs between different

SIMUTOOLS 2015, August 24-26, Athens, Greece
Copyright © 2015 ICST
DOI 10.4108/eai.24-8-2015.2260765



attributes, such as productivity and security, that a system’s
managers make when designing and implementing policies;

• Compositionality at all levels. Structure and experiments:
the underlying mathematical treatments of process, resource,
and location are naturally compositional—models can very
simply be joined together using a simple concept of inter-
face, and experiments can then run through composed mod-
els. Agents’ decisions: the expected value of an agent’s deci-
sion at any point in a model is expressed in such way that the
expected value of composite decisions, as maybe derived in
composed models, is calculated additively. Managers’ util-
ity: the form of the objective function describing the system’s
managers’ expected utility is such that the expected utility of
a composed model is, essentially, the sum of the expected
utilities of the component models.

Thus our approach represents a compositional synthesis of semant-
ically-justified systems modelling, information security (and pol-
icy) economics, and simulation.

Although our approach is unusual in its use of tools from logic and
semantics, the modelling methodology is simply that of classical
applied mathematics and simulation, as illustrated in Figure 1. Note

observations models

consequencesreal-world
consequences

think about
parameters &
data collection

Figure 1: The Classical Modelling Cycle

that we emphasize the importance of integrating the exploration of
the parameter space with the construction of models.

In Section 2, we explain the semantic structures that provide the ba-
sis for our approach to systems modelling. It is organized according
to the distributed systems-inspired view described above. Then, in
Section 3, we described the (simplified) class of models that we
implement, and explain how this implementation is achieved in the
julia language [19]. Then, in Section 3.4.1, we explain how agents
and their decision-making are captured in our implemented mod-
els, and also consider how system managers’ utility functions can
be used to assess the value of policies in both stand-alone and com-
posite models.

To illustrate our methods, we base our examples on three models.
First, we look at access control to a building and consider the prob-
lem of tailgating at the entrance barrier. Second, we consider how
employees within an organization decide how to share confidential
documents. Third, we consider loss of devices containing confi-
dential information by an organization’s employees. Having estab-
lished these three models, we then illustrate a key feature of our
approach; that is, composition. We show how these models, and
their experimental simulations, can be composed to yield a model
of information loss from an organization that has access control to
its building and a document-sharing policy. In Section 5, we ex-
plore experimentally some key properties of these three models.

We provide, in Section 6, a summary of the key features of our work
and give a brief discussion of some research directions, primarily
concerned with model checking via a modal logic that is naturally

associated with our modelling approach.

Throughout this short paper we seek to maintain an informal, con-
ceptual style of presentation. Much of the required underlying
mathematics, when presented in full detail, is both quite abstract
and quite complex to articulate. Here our primary concern is to
articulate a methodology—incorporating structural, economic, and
computational aspects—and its use as a tool to support policy decision-
making. Accordingly, we aim to give just enough of the mathemat-
ical and, indeed, implementation detail to support an explanation of
the story. Many readers will have sufficient familiarity with logic,
process algebra, and stochastic and experimental methods to ap-
preciate what would be required for full detail to be provided. The
underlying mathematical set-up as sketched in Section 2.

2. A SEMANTIC BASIS
We give a brief summary of the process-theoretic and logical the-
ory that underpins the semantics-based approach to modelling and
simulating systems security policy that we have described above.
This work is developed in detail in [7, 8, 9].

2.1 Processes and Resources
Milner’s synchronous calculus of communicating systems, SCCS
[21], perhaps the most basic of process calculi, provides our first
point of departure. This, together with the theory of resources pro-
vided by the semantics of bunched logic [22, 9], provides the basis
for a calculus of resources and processes. The key components for
our purposes are the following:

• A monoid of actions, Act, with a composition ab of elements
a and b and unit 1;

• The following grammar of process terms, E, where a 2 Act
and X denotes a process variable:

E ::= a : E |
X

i2I

E
i

| E ⇥ E | X | fix
i

X.E | (⌫R)E

Most of the cases here, such as action prefix, sum, concurrent prod-
uct, and recursion (in the fix

i

case, X and E are tuples, and we take
the ith component of the tuple), will be quite familiar to theorists.
The term (⌫R)E, in which R denotes a resource, is called hiding,
and is available because we integrate the notions of resource and
process; it generalizes restriction.

Our notion of resource—which encompasses natural examples such
as space, memory, and money—is based mathematically on or-
dered, partial, commutative monoids (e.g., the non-negative inte-
gers with the monoid of addition with unit zero and order less-than-
or-equals), and captures the basic properties of resources discussed
briefly in Section 1: each type of resource is based on a basic set of
resource elements, which can be combined (and the combination
has a unit) and compared. Formally, we take preordered, partial
commutative monoids of resources, (R, �, e,v), where R is the
carrier set of resource elements, � is a partial monoid composition,
with unit e, and v is a preorder on R.

The basic idea is that resources, R, and processes, E, co-evolve,
R,E

a�! R0, E0, according to the specification of a partial ‘modi-
fication function’, µ : (a,R) 7! R0, that determines how an action
a evolves E to E0 and R to R0.
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Figure 2: A depiction of the three example models, showing their locations and processes, and how the models are composed together

The base case of the operational semantics is given by action prefix:

R, a : E
a

�! R0, E
µ(a,R) = R0.

Concurrent composition, ⇥, exploits the monoid composition, �,
on resources,

R,E
a

�! R0, E0 S, F
b

�! S0, F 0

R � S,E ⇥ F
ab

�! R0 � S0, E0 ⇥ F 0
.

Modification functions are required to satisfy some basic coher-
ence conditions: µ(1, R) = R, where 1 is the unit action, and,
if µ(a,R) � µ(b, S) and R � S are defined, then µ(ab,R � S) '
µ(a,R)�µ(b, S), where ' is Kleene equality, for all actions a and
b and all resources R and S. In certain circumstances, additional
equalities may be required [7, 9].

Sums and recursion are formulated in familiar ways:

R,E
i

a

�! R0, E0

R,
P

i2I

E
i

a

�! R0, E0
and

R,E
i

[E/X]

a

�! R0, E0

R, fix
i

X.E
a

�! R0, E0
,

where I is an indexing set and E
i

is the ith component of the tuple
E of processes. Other combinators are handled similarly.

2.2 Location
Just as our treatment of resources begins with some basic obser-
vations about some natural and basic properties of resources, so
we begin our treatment with the following basic requirements of
a useful notion of location [9], including a collection of atomic
locations—the basic places—which generate a structure of loca-
tions, and a notion of (directed) connection between locations—
describing the topology of the system.

We can also consider a notion of sublocation (which respects con-
nections) and a notion of substitution (of a location for a subloca-
tion) that respects connections—substitution provides a basis for
abstraction and refinement in our system models. The notions of
sublocation and substitution are intimately related, the former be-
ing a prerequisite for the latter. We do not develop or support sub-
stitution in the current version of our implemented models.

We remark briefly that treating location as a first-class citizen in this
way does not lead to a process calculus with operational behaviour
that is more expressive in absolute terms. It does, however, lead to
greater pragmatic expressiveness and simplifies the construction of
models of a wide range of systems.

The resulting calculus has a transition system given by a judge-
ment of the form L,R,E

a�! L0, R0, E0, where a is an action (in
the usual process sense), L, L0 are location environments, R, R0

are resource environments and E, E0 are processes used to con-
trol the evolution. As sketched above, we define a modification
function, µ, which, for each action a, location L, and resource
R, determines the evolved location L0 and resource R0: that is,
µ : (a, L,R) 7! (L0, R0

), with corresponding versions of the co-
herence conditions. In a state L,R,E, the component L carries the
relevant information about the topology of the model and R car-
ries the relevant information about the distribution of the resources
around the model’s topology.

The operational semantics extends to locations very naturally. The
following is the rule for action prefix:

L,R,E
a

�! L0, R0, E0
(L0, R0

) = µ(a, L,R)

The details of the operational semantics with location and its im-
plementation may be found in [9].

2.3 Environment
The systems that we model do not exist in isolation, but rather in-
teract with an environment that we choose not to model in detail.
Rather, we represent an environment by capturing the incidence on
the model of events from the environment stochastically. For ex-
ample, the arrival rate of agents at entrance that marks the outer
boundary of a model may be captured using a negative exponential
distribution [24, 18]. Similarly, a model may capture outputs from
the system that is modelled to the surrounding environment.

Within a complex model there may be components that we do not
need to model in detail, and we can capture the interaction between
such components and the rest of the model probabilistically.



2.4 Gnosis: A Proof-of-concept Tool
The semantic basis for system modelling described above has been
implemented in a proof-of-concept modelling tool called Gnosis
[8, 9] that closely captures the semantic structure of processes, re-
sources, and locations. In [8, 9], a formal semantics of Gnosis is
given in the semantic structures described above. Since the stochas-
tic aspects of models are not captured directly in these structures,
Gnosis’s scheduler is given a denotational definition within them.

In the implementation described in this paper, we employ not Gno-
sis, but rather a new framework written in julia [19]. julia is well-
adapted to describing the simplified implemented models that we
explain in detail in the next section and is supported by well-engin-
eered programming and graphics environments. Our use of julia is
explained in Section 3.4.

The relationship between the abstract semantic structures for pro-
cesses, resources, and locations, the implemented models, Gnosis
models, and julia models can summarized by the following dia-
gram: Each of the arrows can be given a precise mathematical def-

Mathema'cal*
Structure*

Implemented*
Models*

Gnosis*Models* Julia*Models*

Seman'c*
Interpreta'on*

Seman'c*
Interpreta'on*

Specializa'on*

Specializa'on*

inition; for example, the interpretation of Gnosis models in the se-
mantic structures is spelled out in [8, 9], and the interpretation of
julia models in our implemented models is similar.

3. IMPLEMENTED MODELS
The mathematical structure of models as described above provides
the basis for the class of models that we implement. We employ
well-motivated simplifcations of the general semantic set-up.

Figure 3: The basic structure of implemented models

Models in this methodology are designed to be composed with
other models (Figures 3 and 4). Composition allows us to join two
or more models together and see what effects their interaction has.
When models are composed there are interactions at the location,
process, and resource levels, and the role of their intended envi-
ronments is critical. Processes transition and resources are moved
between models at locations shared between the models.

Interface)

Figure 4: The basic structure of composed models

To enable composition, models contain interfaces, which define the
locations where models fit together and which actions, defined at
appropriate locations within the interface, are party to the compo-
sition. Actions in the interface will nevertheless be able to execute
only if the resources they require are available.

3.1 Definitions of Implemented Models
The locations and resources of a model are represented using a lo-
cation graph, G(V[R], E), with a set of vertices, V , representing
the locations of the model, and a set of directed edges, E , giving
the connections between the locations. Vertices are labelled with
resources R.

As explained above, actions evolve the processes and resources of
a model. However, rather than thinking of actions evolving pro-
cesses, it is convenient to think of a process as a trace of actions—
the history of actions that have evolved a process during the execu-
tion of the model. All of the actions in a model are contained in a
set, A, and process traces are comprised of these.

The environment a model sits inside causes actions within the model
to be executed, at a particular location. A model contains a set of lo-
cated actions, L, and a located action, l 2 L, is given by an ordered
pair l = (a 2 A, v 2 V). The environment associates these located
actions with probability distributions: Env : L ! ProbDist.
During the execution of the model, the located actions are brought
into existence by sampling from these distributions.

Models also need to have interfaces in order to support composi-
tion. An interface I 2 I on a model is a tuple (In,Out, L) of sets
of input and output vertices, where In ✓ V and Out ✓ V , and a
set of located actions L ✓ L.

The sets of input vertices and output vertices in interfaces must be
disjoint; that is

\

i2I

In
i

2 In = ; and

\

i2I

Out
i

2 Out = ;.

DEFINITION 1. A model M = (G(V[R], E),A,P,L, I) is a
tuple that consists of a location graph G, a set of actions A, a set of
processes P , a set of located actions L, and a set of interfaces I.

3.2 Composition of Implemented Models
Two models, M1 and M2 are composed with specific interfaces
I1,1, . . . , I1,j , . . . , I1,n 2 I1 and I2,1, . . . , I2,k, . . . , I2,m 2 I2

using the composition operator, M1I1,j |I2,kM2, which is defined
using an operation, �, on each of the elements of a model.

First, we define the � operator for vertices and edges,

V1 � V2 = V1 [ V2

and, for each v 2 V1 � V2,

v[R1 �R2] =

8
<

:

v[R1] if v 2 V1 ^ v /2 V2

v[R2] if v 2 V2 ^ v /2 V1

v[R1 [R2] otherwise.
.

Composition of edges, actions, and proceeses are straightforward:
E1�E2 = E1[E2, A1�A2 = A1[A2, and P1�P2 = P1[P2.

To define the � operator for locations and interfaces, we first need
to introduce some notation. The interfaces on a model are a set of



tuples; for example, the interfaces of M1: I1={(In1, Out1, L1)i}.
A particular interface from I1 is referred to as I1,i, and the input
locations from that interface are referred to as In1,i, the outputs as
Out1,i, and the located actions as L1,i.

When models are composed, the located actions in the interface
that were executed by the environment in the uncomposed model
are now executed as a consequence of the other model instead. As
such, the composition of located actions is the union of both sets
of located actions, minus those that are in interfaces used in the
composition: L1 � L2 = L1 [ L2 \ {L1,j , L2,k}.

Interfaces can be used in just one composition, and the input and
output locations of the interfaces from the two models must corre-
spond, so their composition is I1 � I2 = (I1 [ I2) \ {I1,j , I2,k},
where we require

S
n

j=1 InI1,j =

S
m

k=1 Out
I2,k and

S
n

j=1 Out
I1,j

=

S
m

k=1 InI2,k . Models must be composed completely: any loca-
tion that is in both of the models must belong to the interfaces used
in the composition.

DEFINITION 2. With the data as established above, the compo-
sition of models M1 and M2 is given by

M1I1,j |I2,kM2 = (G((V1 � V2)[R1 �R2], E1 � E2),

A1 �A2,P1 � P2,L1 � L2, (I1 � I2)),

with the constraint that V1 \ V2 = In1,j [ In2,k.

PROPOSITION 1. M1I1,j |I2,kM2 is a model.

PROOF. The composition of each of the components of the mod-
els is well-defined:

• G1 � G2((V1 � V2)[R1 � R2], E1 � E2) is immediately a
location graph with vertices V1 [ V2, resources R1 � R2,
and edges E1 [ E2;

• A1 �A2 and P1 �P2 are trivially the unions of the actions
and processes, respectively;

• L1 � L2 is trivially a set of located actions.

The sets of input vertices and output vertices in the composed model
must both be disjoint. With the constraints that V1 \ V2 = In1,j [
In2,k and that

S
n

j=1 InI1,j =

S
m

k=1 Out
I2,k and

S
n

j=1 Out
I1,j =S

m

k=1 InI2,k then any locations in both of the models are present
in the interfaces used for composition and (I1 [ I2) \ {I1,j , I2,k}
is a well-defined set of interfaces.

PROPOSITION 2. Composition of models is commutative:

M1I1,j |I2,kM2 = M2I2,k |I1,jM1

PROOF. Each component of the model is commutative.

Trivially, A1�A2 = A2�A1, L1�L2 = L2�L1, and P1�P2 =

P2 � P1.

Next, location graphs: G1 �G2((V1 �V2)[R1 �R2], E1 � E2) =

G2 � G1((V2 � V1)[R2 �R1], E2 � E1). The edges are straight-
forward: E1 � E2 = E2 � E1. Vertices are trivial—V1 � V2 =

V2�V1—but resources require more care: (V1�V2)[R1�R2] =

(V2 � V1)[R2 �R1].

For resources, we must show that any v 2 V1 � V2 gets the same
assignment of resources from R1 �R2 as R2 �R1.

Let v 2 V1 � V2.

v[R1 �R2] =

8
<

:

v[R1] if v 2 V1 ^ v /2 V2

v[R2] if v 2 V2 ^ v /2 V1

v[R1 [R2] otherwise.

v[R2 �R1] =

8
<

:

v[R2] if v 2 V2 ^ v /2 V1

v[R1] if v 2 V1 ^ v /2 V2

v[R2 [R1] otherwise.

For the remaining case, v[R1 [ R2] = v[R2 [ R1]. In the other
cases, then v is either in V1 or V2 so, regardless of order, v[R1 �
R2] = v[R2 �R1] = v[R1] if v 2 V1 and v[R2] if v 2 V2.

Finally, interfaces: I1[I2 = I2[I1 and {I1,j , I2,k} = {I2,k, I1,j},
so I1 � I2 = I2 � I1. We know from Proposition 1 that the com-
position of interfaces is well-defined.

For any pair of models M1 and M2, let I1!2 be the subset of in-
terfaces in I1 that compose with M2.

PROPOSITION 3. Composition of models is associative:

(M1I1!2 |I2!1M2)I1!3[I2!3 |I3!1[I3!2M3

=

M1I1!2[I1!3 |I2!1[I3!1(M2I2!3 |I3!2M3)

PROOF. The proof unpacks the definition of composition in a
style similar to the proof of Proposition 2. The details are straight-
forward.

3.3 Environment
As we have previously explained, in Section 2.3, the environment
represents things outside the scope of the model: events and de-
tails that have an effect on the model, but are too complicated or
of not enough interest to model directly. The modeller chooses a
distribution to represent the likelihood of these events occurring,
and these distributions are sampled to determine when to execute
located actions within the model.

When models are composed, some of these located actions are re-
moved, meaning that the distributions previously chosen for them
are not sampled and the actions are no longer a consequence of the
environment. Instead, the located actions are initiated by a process
in the other model, but they are still, at some level, dependent on
the environment because the other model still samples from it.

Consider Figure 5, which shows two processes, A and B, from two
different models, which are represented as a sequences of actions:
A = input ! a1, a2, a3, a4 ! output and B = input !
b1, b2, b3, b4.

a1

a2 a3
a4

b1
b2 b3

b4

A

Figure 5: Models with processes started by the environment

In separate models, the initial actions of both processes are started
by the environment, meaning that both a1 and b1 are located ac-
tions. If the models are composed, then the sequence of actions



might look like Figure 6. The sequence of actions is now input !
a1, a2, a3, a4, b1, b2, b3, b4

a1

a2 a3
a4

b1
b2 b3

b4

Figure 6: The two models have been composed. The second
process is started by the first instead of the environment

Now, only one process is started by the environment. What was
once the second process, B, is now started at the end of A.

A more complicated example occurs when the composition does
not occur at the end of a process. In this case, the initial processes
are shown in Figure 7. The sequence of actions for process A is
A = input ! a1, a2, delay, a3, a4 ! output and the sequence
for process B is B = input ! b1, b2, b3, b4 ! output.

a1

a2

a3a4

b1
b2

b3

b4

A
delay

B

Figure 7: Two models with processes started by the environ-
ment. Process A has a special action, delay

In A, there is a special action, delay which is where composition
would occur. In an uncomposed executing model, this stops the
process for a period of time before continuing. When composed,
the process looks like Figure 8. The sequence of actions is now
input ! a1, a2, b1, b2, b3, b4, a3, a4 ! output.

a1

a2

a3a4

b1
b2

b3

b4

A B
b1

b2

b3

b4

Figure 8: The two models have been composed. Process B has
now been substituted for the delay action in process A

The delay in process A simulates the time that would have elapsed
if the model were more detailed. This detail is present in the com-
posed model and so the delay is no longer needed.

3.4 Implementation in julia
The modelling framework is implemented in the julia language, a
new language designed for scientific computation. The models are
then also written in julia, on top of this framework. The features
of the language make it relatively straightforward to implement the
concepts required for modelling.

Processes, for example, are represented naturally with julia’s Tasks—
commonly known as coroutines. In combination with a scheduler,
this allows processes to run, wait for a period of time, and resume
execution. In the example below, the very simple process starts,
suspends for 5 hours of simulation time, and then terminates.

f u n c t i o n e x a m p l e _ p r o c e s s ( p roc : : P r o c e s s )
ho ld ( proc , 5 h o u r s )

end

Resources are simply types in julia that are subtypes of the ab-
stract Resource type. For example, Agent is an abstract sub-
type of Resource and Employee is a subtype of Agent. The
Employee type has a field, data, which is used for storing infor-
mation about this agent: preferences, what it is carrying, etc.

a b s t r a c t Agent <: Resource
t y p e Employee <: Agent

d a t a : : AgentData
end

Locations are created and then linked together.

l o c a l l o c _ a t r i u m = L o c a t i o n ( " Atr ium " )
l o c a l l o c _ o f f i c e = L o c a t i o n ( " O f f i c e " )
l i n k ( l o c _ a t r i u m , l o c _ o f f i c e )

In addition to these basic elements, the framework also comprises a
library of useful components, such as doors, access control mecha-
nisms, and function libraries useful for building new models.

3.4.1 Agents
Each agent in the system is modelled using bundle of a process,
a resource, and one or more locations. The resource marks the
agent’s physical location in the model. The agent’s process moves
this resource between the locations in the model, and also inter-
acts with other resources as needed. The locations bundled with
the agent are used to model concepts like holding or remembering.
To model an agent picking up another resource, the agent’s pro-
cess would move that resource into the location that represents the
things the agent is carrying; dropping the resource would move it
back to a physical location in the model.

3.4.2 Agent Decision Making
In addition to moving around and interacting with resources, agents
must also make decisions. These decisions occur at specific points
in the agent’s process and the agent decides between a number of
alternative choices. In theory, any method may be used to decide
between the choices, but in practice the decision is based on the
current state of the model and the agent’s preferences.

In these models, we use a straightforward approach to decision-
making: for each choice C, the agent calculates

val(C) = p
sec

f
sec

(C) + p
prod

f
prod

(C)

where p
sec

and p
prod

are the agents preferences towards security
and productivity, respectively. The functions f

sec

(C) and f
prod

(C)

determine the current value to the agent, based on the state of the
model, of the choice C in terms of security and productivity. The
agent then selects the highest valued choice.

The agent’s preferences for security and productivity are drawn
stochastically from distributions at the start of the execution of the
model. The distributions should be chosen to reflect the population
of agents in the system being modelled.

3.4.3 Composition
In the julia code for models, composition is implemented in a way
that matches the mathematical definitions closely. For example,
Figure 9 shows the code used to create the interfaces for the tail-
gating model. As can be seen in Figure 2, the tailgating model
composes on two interfaces.



The first interface is for the Outside location, where the model com-
poses with the device loss model. This is an input location—a
process is started from the other model rather than the environ-
ment, when composed. The code creates the interface, then the
input location, sets an environment processes responsible for start-
ing the agents in the model when it is not composed, and defines
which function should be executed from another model when com-
posed with this model. The agent_process function corre-
sponds to a located action in the mathematical definition of an in-
terface above. The environment process, start_agents corre-
sponds to the mapping of a probability to a located action; in fact,
the function just calls agent_process for each agent at random
times drawn from a distribution.

i f a c e _ o u t s i d e = I n t e r f a c e ( )
i l = I n p u t L o c a t i o n ( )
push ! ( i l . e n v _ p r o c e s s e s ,

P r o c e s s ( " s t a r t _ e m p l o y e e s " , s t a r t _ a g e n t s ) )
i l . f u n c t i o n s [ Agent ] = a g e n t _ p r o c e s s
i f a c e _ o u t s i d e . i n p u t _ l o c a t i o n s [ " O u t s i d e " ] = i l
model . i n t e r f a c e s [ " O u t s i d e " ] = i f a c e _ o u t s i d e

i f a c e _ a t r i u m = I n t e r f a c e ( )
o l = O u t p u t L o c a t i o n ( )
o l . f u n c t i o n s [ Agent ] = i n _ a t r i u m
i f a c e _ a t r i u m . o u t p u t _ l o c a t i o n s [ " Atr ium " ] = o l
model . i n t e r f a c e s [ " Atr ium " ] = i f a c e _ a t r i u m

push ! ( model . e n v _ p r o c e s s e s ,
P r o c e s s ( " s t a r t _ a t t a c k e r s " , s t a r t _ a t t a c k e r s ) )

Figure 9: Code for creating interfaces in the tailgating model

The second interface is for the Atrium location, where the tailgating
model composes with the document-sharing model. It is an output
location: the agent and attacker processes from this model continue
into the document-sharing model when it is composed. When not
composed, the processes execute the in_atrium function as set
in the code. This function just pauses the processes for a set amount
of time—it is the delay action from above. When composed, the
actions in the other model are executed instead of this.

Finally, composition itself is similar to the mathematical definition.
The compose function takes two models and specified interfaces
and returns the composed model. Figure 10 shows the code for
composing all three of the models together. First the device loss
and tailgating models are composed together, and then the resulting
model is composed with the document-sharing model.

4. SYSTEM MANAGERS’ UTILITY
This modelling methodology is designed to allow system managers
to explore the effects and consequences of various policy decisions
on a a system. A necessary component of this is the ability to ex-

m1 = c r e a t e _ d e v i c e _ l o s s _ m o d e l ( )
m2 = c r e a t e _ t a i l g a t i n g _ m o d e l ( )
m3 = c r e a t e _ d o c u m e n t _ s h a r i n g _ m o d e l ( )
temp_m = compose (m1 , " O u t s i d e " , m2 , " O u t s i d e " )
m = compose (m3 , " Atr ium " , temp_m , " Atr ium " )

Figure 10: Code for composing the three models together

press how good the performance of a system is given certain par-
ticular policy choices and the system manager’s preferences.

We can express this value—the utility of a policy choice—in terms
of a set of attributes that the system manager cares about [17, 20]:

Utility =

X

a2A

w
a

f
a

(v
a

� v̄
a

)

Each attribute, a, has a function f
a

that determines the system man-
ager’s response to the deviation of the value of the attribute, v

a

from
its target value, v̄

a

. For example, for one attribute the system man-
ager might not care about missing the target by a small amount, but
for another attribute a small deviation from the target could be crit-
ical. Each attribute also has a weighting, w

a

, describing its relative
importance compared to others. When models are composed, the
overall utility simply adds together the component utilities.

The target values, weightings, and deviation functions for the at-
tributes are obtained from the system manager. To evaluate the
performance of current policy, the values for each of the attributes
can be obtained from the real world. To evaluate changes to policy,
the values of the attributes can be obtained from models.

The values of the attributes can depend on the decisions that agents
make during an execution of the model. A decision, D, made by
an agent can be written in Cobb-Douglas form [15] as

D = C�1
1 C�2

2 . . . C�n
n

where C1, C2, . . . , Cn

are the values to the system manager of the
choices available for that decision. The exponents �1,�2, . . . ,�n

take the value 0 for the choices not selected, and the value 1 for the
choice that was selected.

Each agent makes a series of decisions as the model executes, and
the set of the decisions made by all of the agents during the exe-
cution of a model can be used when calculating the values of the
attributes in the system manager’s utility function. Once those val-
ues have been obtained, the utility for that execution of the model
can be determined.

4.1 Expected Utility
Knowing the utility of a single execution of a model is not that
useful if the model contains stochastic elements—it is just one of
many possible outcomes. Instead, we must find the expected utility

E[Utility] = E

"
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a2A

w
a

f
a

(v
a
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a

)� v̄
a

)

#

where the expected value for each attribute a depends on the stochas-
tic process �

a

. Again, expected utilities for composed models sim-
ply add those of the components.

The values of these processes also depend on the decisions indi-
vidual agents make. However, we need to consider the expected
value of these decisions to account for all possible outcomes. This
means that the � values are no longer 0 or 1, indicating the choice
made during a single execution of a model, but rather probabili-
ties giving the likelihood of each choice being made. A standard
transformation of the Cobb-Douglas form [25] gives

E[D] = �1ln(C1) + �2ln(C2) + · · ·+ �
n

ln(C
n

)

where �1,�2, . . . ,�n

are now the probabilities of the agent select-
ing each choice, and sum to 1.



These probabilities, along with each �

a

, depend on the state of the
model, which in turn depends on stochastic elements of the model
and its environment. In theory, these values can be calculated start-
ing with the known probability distributions and using queueing
theory to work out the subsequent states of the model. In prac-
tice, this is extremely difficult and an approximation of these values
must be used. This is done by executing the model a large number
of times, to get an approximate distribution of values. The accuracy
of this estimation increases with the number of executions.

5. MODELS AND EXAMPLES
5.1 Models
We will use three different models that examine different areas of
security policy as examples. The first of these models is a tailgat-
ing model, which looks at the behaviour of employees and attack-
ers at the entrance to an office building. The second model looks at
the behaviour of employees inside the office, when they are mak-
ing decisions about how to share confidential documents with other
employees. The final model is extremely simple, and looks at the
loss of devices, possibly containing confidential data, outside of the
office. These three models are depicted in Figure 2.

5.1.1 Tailgating
The tailgating model looks at how different security policy choices
at the entrance to the building affect the behaviour of employees
and attackers. This model is shown in the centre of Figure 2. In
the model, employees need an ID card in order to get through the
security door. When employees forget their cards, they must make
a decision: to queue at the reception desk to get a temporary ID card
for the day, or to tailgate through the door. Employees that have
passed through the security door observe if others tailgate behind
them; if so, the employee has another choice: to ignore the tailgater
and continue straight to the office, or to stop the tailgater and send
them back to reception. There are also attackers in this model, who
always try to tailgate and do not have any decisions. They can be
stopped by security guards and by employees’ challenges.

5.1.2 Document Sharing
The document-sharing model looks at the behaviour of employees
inside the office when they must decide how to share confidential
documents with each other. This model is shown on the right side
of Figure 2. Normally, employees share documents using a shared
drive that restricts access to each document to employees with the
appropriate authorization. However, the system is often unavail-
able and employees must use an alternative means to share the doc-
uments. In the model, there are three choices. First, is to use a
global share, which is accessible by all employees. Second, is to
email the documents to the recipients. Finally, employees can use
portable media, such as a CD or USB stick to share the data. Each
of the three options has a drawback: documents on the global share
can be accessed by any employee, documents sent to email end up
on the devices which employees carry to and from work, and the
portable media used to share documents gets left lying around the
office. In this model, attackers walk around the office and pick up
any portable media they find lying around.

5.1.3 Device Loss
The device-loss model is very simple: employees that return home
from work have a random chance to lose devices they are carrying,
which possibly contain confidential data. By itself, this model does
not do very much. When composed, however, it becomes more

useful: the number of confidential documents on the devices is de-
termined by the behaviour of employees in the document-sharing
model. This model is shown on the left side of Figure 2.

5.1.4 Composed Model
The three models are designed to compose together at specific in-
terfaces. The Outside locations in the device-loss model and the
tailgating model are part of the interfaces for those models. When
composed, the models are joined at that location. The same is true
for the tailgating model and the document-sharing model: they are
composed at the Atrium location in each of the models.

Some of the processes in each model are also part of the compo-
sition. When the tailgating model is not composed, the Employee
processes are started by the environment, and agents that make it
through to the Atrium simply wait there for the duration of the work
day before leaving. When the model is composed to the device loss
model, the Employee processes start in that model, and then con-
tinue to this one. When the tailgating model is composed with the
document-sharing model, the employee and attacker processes in
the document-sharing model are executed as consequences of the
tailgating model, rather than started by the environment.

5.1.5 Validation
The parameters used in our experiments have been chosen to illus-
trate our methodology simply and clearly. However, the formula-
tion of each of the example models is based directly upon extensive
empirical studies of organizational behaviours (e.g., both employ-
ees and managers) in a large critical infrastructure company. More-
over, the experimental results of the simulations closely match ob-
served behaviours in the parts of the company upon which the ex-
ample scenarios are based.

5.2 Examples
We will use two fictional companies with different attitudes to-
wards security for our examples. The first company places a high
value on security and the confidentiality of its information; this
could be a corporate research lab in a competitive field, or a na-
tional infrastructure company. The second company values secu-
rity much less, and is more concerned with allowing people to get
work done than keeping information secret.

The different attitude towards security in these companies is present
in both the preferences of the employees and those of the organi-
zations’ security managers. In these examples, the distributions
of employee preferences are chosen to reflect what is likely to be
found in the respective companies. In reality, these distributions
would be determined by sampling the preferences of actual em-
ployees at the organizations. The distributions we are using are
shown in Figure 11. The highly-secure company contains employ-
ees who for the most part value security very highly over productiv-
ity. In the lower-security company, the employees are more likely
to have a higher preference for productivity than for security.

In this example, the security manager of the high-security com-
pany is concerned about the number of confidential documents be-
ing shared on the globally-accessible shared drive, which can be
accessed by all employees instead of being restricted to those who
should have access. The manager is considering telling employ-
ees that, for security, they should share the documents with the in-
tended recipients either by email or by using portable media. Both
options are less efficient (and so less productive) for the employees
than using the global share; portable media is the least productive.



Figure 11: PDFs of employee preference distributions

Table 2 shows the results for the document-sharing model. In the
high-security company, employees have high preferences for secu-
rity; most follow the instructions to use either email or portable me-
dia. In contrast, employees in the low-security company are much
more concerned with productivity; the instructions have little ef-
fect. This shows how the security culture of a company and its em-
ployees can have an effect on the performance of policy. A more
complete presentation of simulation results would include confi-
dence intervals for the values.

Company a w
a

v̄
a

f
a

(x)

High Sec Share 0.25 20 �(e0.01x + 0.01x� 1)

Found 1 0 �ex + 1

Lost 1.1 0 �ex + 1

Rcpt Time 0.01 3000 -.002x
Tgate 1.5 0 �ex + 1

Low Sec Share 0.1 200 .003x
Found 0.3 0 �ex + 1

Lost 0.4 0 �ex + 1

Rcpt Time 0.4 2000 -.005x
Tgate 0.2 0 �ex + 1

Table 1: Utility parameters

The weights, targets, and deviation functions for each attribute used
in the utility calculations are shown in Table 1. For the document-
sharing model, only the first two attributes (the number of docu-
ments on the globally accessible share and the number of docu-
ments on portable media found by attackers in the office) are used.
The security managers of the high and low security companies have
different weightings, targets, and deviation functions. The high se-
curity manager is trying to reduce the number of documents shared
globally and so has a low target value. A Linex function [26] is
used for the deviation function for this attribute: beating the tar-
get results in a linear increase in utility; missing it results in an
exponential loss. The low security manager actually prefers that
employees use the global share as it is more efficient and confiden-
tiality is not an issue. Both managers have an exponential response
to attackers finding documents on portable media inside the office,
but have different weightings.

In this case, the high-security manager would prefer the email pol-
icy, as it produces the lowest number of documents on the global
share, and does not leave media devices lying around the office to
be found by attackers. The low-security manager prefers no change
of policy: employees should keep using the global share.

Company Policy Email Share Media Found E[U ]

High Sec Email 151.73 7.75 0.00 0.00 0.059
None 0.00 167.32 0.00 0.00 -1.209
Media 0.00 54.42 105.33 2.43 -10.543

Low Sec None 0.00 167.29 0.00 0.00 -0.010
Email 54.87 107.96 0.00 0.00 -0.028
Media 0.00 154.15 12.24 0.07 -0.035

Table 2: Results from the document-sharing model

The managers would like to know that these policies are still opti-
mal when considered as part of the larger system. Composing the
document-sharing model with the tailgating and device loss models
allows the managers to see the interactions between policy choices
in each model. In the tailgating model, the managers must choose
the number of security guards and receptionists, which can affect
how many attackers gain access to the office. The managers also
care about more attributes from the other two models: the number
of documents on lost devices, the number of times attackers suc-
cessfully tailgate, and the amount of time employees spend at re-
ception. The weightings, targets, and functions for these attributes
are shown in Table 1. The high security manager cares less about
the time taken at reception and more about the number of tailgates
and devices lost. In contrast, the low security manager cares more
about reducing the time employees spend at reception.

Table 3 shows the results from the composed model for some pa-
rameter combinations. For the high-security manager, the email
policy is still the best option as long as there is at least one guard.
The difference in expected utility between the email and media
policies is much smaller than in just the document-sharing model
as the guards and challenges by employees prevent attackers from
accessing the office. For the low-security manager, having two re-
ceptionists is the most important factor: it greatly reduces the time
employees spend at reception. Using two guards instead of one ac-
tually results in less expected utility, as the guards catch more em-
ployees tailgating, who must then spend the time at reception. The
influence of employee preference can be seen again in this com-
posed model: for the same number of guards in the low- and high-
security companies, there are more tailgates in the low-security
company because the employees do not challenge tailgaters.

6. CONCLUSIONS AND FURTHER WORK
We have presented a rigorously grounded, compositional modelling
framework and methodology capable of capturing the consequences
and values of systems security policy design decisions. We have
demonstrated this framework in some simple, but empirically sup-
ported, examples of concern to practising security managers that
illustrate all aspects of the methodology and its value in supporting
their decision-making.

Much further work is possible. Our framework would be enriched
by employing better models of agents’ decision-making, taking
account of the relevant literature in psychology [12]. Similarly
enriching would be to introduce the ability of agents to adapt to
changing circumstances during the execution of a model [6].



Company Policy #Grd #Rcpt Email Share Media Found Lost Rcpt Time Tgate E[Utility]

High Sec Email 2 2 174.20 8.28 0.00 0.00 0.14 2756.80 0.09 -0.241
Email 2 1 174.60 8.12 0.00 0.00 0.14 4469.21 0.09 -0.278
Email 1 2 173.92 8.35 0.00 0.00 0.16 2754.11 0.23 -0.513
Email 1 1 173.67 8.35 0.00 0.00 0.14 4532.56 0.23 -0.523
Media 2 2 0.00 65.62 129.38 0.23 0.00 2782.38 0.09 -0.661

Low Sec None 1 2 0.00 203.79 0.00 0.00 0.00 1754.50 0.74 0.273
Media 1 2 0.00 187.34 14.99 0.05 0.00 1745.54 0.74 0.270
Email 1 2 67.21 130.53 0.00 0.00 0.06 1734.02 0.74 0.267
None 2 2 0.00 203.48 0.00 0.00 0.00 1837.37 0.29 0.258
Media 1 1 0.00 187.55 15.25 0.04 0.00 2403.60 0.74 -1.043

Table 3: Results from the composed model

Concerning experimental methodology, we need to develop a more
systematic approach to analyzing the sensitivity of model execu-
tions and utility to parametrization choices [18]. More generally, a
systematic methodology for exploring how managers’ elicited pref-
erences [1, 4] can be represented in model structure and parametriza-
tion should be explored.

Associated with the process-algebraic tools described in Section 2
is a modal logic, in the tradition of Hennessy–Milner logic [16,
9], in which propositions assert properties of system states. The
logic is given semantically by a satisfaction relation, L,R,E |= �,
inductively defined over the logic’s connectives, and read as ‘the
process E, executing at location L with available resources R has
property �’. The logic’s connectives include additives and multi-
plicatives of the bunched logic BI [22] and both additive and multi-
plicative modalities [9], so rendering it capable of expressing both
structural and dynamic properties of models. Model checking—
with some initial work described in [9], but much more work requir-
ed—would provide a framework within which stateful properties of
systems, as well as utility-theoretic properties of policies, such as
optimality, can be verified. A further step would be to incorporate
the stochastic aspects of implemented models into model-checking
tools, perhaps building on ideas in, for example, PRISM [23].
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