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Abstract 

Consumer sleep tracking devices are known to be inaccurate, but there is a lack of understanding of how user 
characteristics may affect the accuracy of these devices. This study aims to examine the effect of age, gender, subjective 
sleep quality, sleep hygiene and sleep structure on the accuracy of two consumer sleep trackers, i.e. Fitbit Charge 2 and 
Neuroon. Sleep data were collected from 27 healthy participants using consumer devices and a medical device 
concurrently. Analysis found that age, sleep hygiene and sleep structure were significantly associated to the accuracy of 
consumer sleep trackers, whereas no association was found on gender and subjective sleep quality. Both consumer devices 
had improved accuracy on total sleep time and sleep efficiency for participants who had longer, deeper and less interrupted 
sleep. Our findings suggest that consumer devices may not be suited for young adults and for people with short and 
fragmented sleep. 
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1. Introduction

The proliferation of consumer sleep tracking technologies 
has significantly raised people’s awareness of sleep health 
[1-3]. Compared to polysomnography (PSG), consumer 
wearable devices provide low-cost and unobtrusive 
alternatives for individuals to monitor sleep on daily basis 
without the need for constant technical support. These 
devices also offer great opportunities for researchers to 
conduct large-scale longitudinal studies at reasonable cost.  

Despite of the multi-fold advantages of consumer sleep 
trackers, the quality of data measured by these devices has 
been a major concern for end users, researchers, and 
clinicians [2, 4, 5]. Low quality data may mislead end 
users to make wrong decisions. In addition, data quality is of 

top priority for researchers who intend to use these devices 
in scientific studies. Therefore, it is important to understand 
whether, when and with whom these devices could produce 
accurate measurements. In response to this need, researchers 
have studied the validity and reliability of popular wearable 
sleep trackers both in sleep laboratories [6-10] and under 
free living conditions [11, 25]. The most recent studies 
revealed that the latest models of consumer sleep trackers 
could accurately measure total sleep duration and sleep 
efficiency in health people, whereas detecting sleep stages 
remained to be the main challenge [6, 11, 25]. 

Previous studies on clinical actigraphy revealed that user 
characteristics may affect device accuracy [12, 13]. 
However, little work has yet looked at whether and how user 
characteristics associate to the accuracy of consumer sleep 
tracking devices. This study aims to fill in the knowledge 
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gap by investigating the influence of a set of user-specific 
factors on the measurement errors by the latest consumer 
sleep trackers. Our hypothesis was that the accuracy of 
consumer sleep-tracking devices may be associated to users’ 
age, gender, sleep hygiene, and sleep structure. We therefore 
selected a set of independent variables including 
demographic characteristics (age and gender), subjective 
sleep quality (PSQI) [14], sleep hygiene (bed time and rise 
time) and objective sleep structure measured by a medical 
device. The dependent variables were the absolute percent 
errors on total sleep time (TST), wake after sleep onset 
(WASO), and sleep efficiency (SE) measured by two of the 
most recent consumer sleep trackers, i.e. Fitbit Charge 2 and 
Neuroon. Binary logistic regression was used to determine 
whether the odds of measurement error increased or 
declined as the value of the user-specific factors changed, 
and Pearson correlation coefficients were computed to 
quantify the linear relationships between measurement 
errors and the user-specific factors. The findings of this 
study served as a reference for individual users and 
researchers to select the most appropriate devices and 
provided implications for designing more accurate sleep 
staging algorithms for consumer sleep trackers. 

2. Related Work

Consumer wearable sleep-tracking devices offer a cost-
effective and unobtrusive alternative to traditional clinical 
sleep monitors. The basic mechanism of these consumer 
devices is similar to that of medical actigraphy. These 
devices rely on the measurement of limb movements, which 
is then used to infer sleep stages [12, 15, 16]. Most of the 
sleep staging algorithms are proprietary and are not made 
available to the public. These devices are also increasingly 
used in scientific studies to measure sleep outcomes [17-22].  

Regardless of the popularity of these consumer devices, 
their validity is a main concern for users who plan to use 
them for sleep tracking. A number of validation studies have 
investigated the agreement of the consumer devices to 
clinical sleep monitors [6, 8, 11, 23-26]. It was found that 
the previous models of sleep-tracking wristbands have the 
common problem of overestimating time asleep and 
underestimating time awake, mostly due to the 
misclassification of motionless awake as sleep. Most of 
these validation studies were conducted in laboratory 
settings and a few was conducted in free living conditions. 
Very recently, a few studies also attempted to enhance the 
accuracy of Fitbit sleep data through machine learning based 
approaches [27, 28].   

A very interesting phenomenon of clinical actigraphy is 
that measurement accuracy may vary on different 
populations. A few studies revealed that the 
misclassification of actigraphy is associated to participant 
characteristics. For example, actigraphy in proportional 
integration mode (PIM) was found to be reasonably accurate 
for people who sleep more than 7 hours [13]. However, it 
overestimated TST for people with more fragmented sleep 
(WASO > 90 min or SE < 70%) and underestimated TST for 

those with sleep disordered breathing. Those with higher 
BMI showed better agreement of TST, and those with the 
lower waist circumference showed overestimation. No 
significant association was found between device accuracy 
and other participant characteristics such as age, race, 
medical conditions, sleep onset latency and cognition. 
Another study found negative correlation between the 
accuracy of a clinical actigraphy and the fragmentation level 
of sleep [12].  This study also suggested that the clinical 
actigraphy was less accurate for older users.  

Since consumer sleep tracking devices rely on the same 
mechanism as clinical actigraphy, it is very likely that the 
accuracy of these devices is associated to user characteristics 
as well. This study contributes an understanding of the user-
specific factors that affect the accuracy of popular consumer 
sleep tracking devices (i.e. Fitbit Charge 2 and Neuroon). 
The findings of this study provide useful hint that help end 
users select the most suited consumer devices.  

3. Methods

3.1. Participants 

We recruited participants by distributing posters around the 
campus of The University of Tokyo. In total 38 people 
applied, of whom 27 (71%) were eligible to participate in 
the study. The sample size is comparable with other studies 
in the field [29-33]. The inclusion criteria required that the 
participants were healthy adults (age > 18) and were free of 
chronic conditions, severe sleep problems or mental 
diseases. Neither gender nor nationality was a prerequisite 
for participation in this study.  

Table 1. Denotations and definitions of sleep metrics 

Sleep metrics Denotation Definition 
Total sleep 
time (min) 

TST Total amount of time 
asleep after sleep onset. 

Wake after 
sleep onset 
(min) 

WASO Total amount of time 
awake after sleep 
onset. 

Sleep 
efficiency 

SE 
a

a SOL: sleep onset latency 

Participants filled in a PSQI (Pittsburgh Sleep Quality 
Index) [14] questionnaire to establish a baseline of their 
sleep quality. The PSQI is a widely used instrument for 
assessing subjective sleep quality averaged over the past one 
month, and a PSQI≥5 is indicative of poor sleep. This 
research was approved by the ethical committee of the 
University of Tokyo (Ethics ID: KE16-83). All participants 
provided informed consent. 
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3.2. Sleep Metrics 

Human sleep can be characterized in multiple dimensions 
[15, 34-36]. In this study, we focused on the measurement 
errors overall three sleep metrics, i.e. total sleep time (TST), 
wake after sleep onset (WASO), and sleep efficiency (SE). 
These parameters are closely related to people’s physical 
and mental health [37], and many people use them 
parameters as indicators of their sleep quality [20]. Table 1 
summarizes the denotations and definitions of the sleep 
metrics following the literatures in sleep science [38-41]. 

Table 2. Denotations and data collection methods of 
user-specific factors 

Sleep metrics Denotation Data collection 
methods 

Age (year) Age Self-reported 
Gender Sex Self-reported 
PSQI PSQI PSQI questionnaire 
Total sleep time 
(min) 

TST 
Sleep Scope (medical 
device) 

Wake after sleep 
onset (min) 

WASO Sleep Scope 

Sleep onset 
latency (min) 

SOL Sleep Scope 

Sleep efficiency 
(%) 

SE Sleep Scope 

Ratio of Sleep 
stage N1 (%) 

N1R Sleep Scope 

Ratio of Sleep 
stage N2 (%) 

N2R Sleep Scope 

Ratio of Deep 
sleep (%) 

DSR Sleep Scope 

Ratio of REM 
sleep (%) 

RSR Sleep Scope 

Average sleep 
cycle (min) 

Sleep Scope 

Bedtime Sleep Scope 
Rise time Sleep Scope 

3.3. Data Collection 

Devices 
In this study we focused on two consumer devices, i.e., 
Fitbit Charge 2 and Neuroon. Both devices were the most 
recent models in the market at the time the study was 
conducted, and they were readily available for individual 
consumers to purchase. Fitbit Charge 2 (Fitbit Inc., San 
Francisco, CA, USA) is a wearable activity wristband with 
an embedded tri-axial accelerometer. It estimates sleep 

stages for each 30s period by integrating a user’s movement 
and heart rate data. With advances in software and 
hardware, Fitbit Charge 2 has overcome some problems of 
previous models and is able to measure total sleep time and 
sleep efficiency with good accuracy [11]. Neuroon 
(Inteliclinic Co., San Francisco, CA, USA) is a wearable 
EEG eye mask with an embedded single channel EEG 
sensor. Similar to polysomnography test, Neuroon can 
measure a number of sleep-concurrent physiological 
parameters including brainwave, heart rate, eyeball 
movements, body temperature and body movement. These 
data were used to estimate overall sleep metrics and sleep 
stages using the company’s proprietary algorithms. These 
two devices were selected in this study due to their 
popularity, affordability and the potential for accurate sleep 
tracking compared to other consumer devices [11].  

A portable medical sleep monitor named Sleep Scope 
(Sleep Well Co., Osaka, Japan) was used to obtain accurate 
measurements on sleep metrics. Sleep Scope is a clinical-
grade single-channel EEG (Japanese Medical Device 
Certification 225ADBZX00020000), which was validated 
against PSG (agreement = 86.9%, average Cohen’s Kappa 
value = 0.753) [42, 43]. Sleep Scope was chosen over PSG 
because it enabled data collection in participants’ homes 
rather than in a sleep laboratory, thus minimalizing the 
possible disruption of sleep by unfamiliar environment. 

Measurement Protocol 
We held a briefing with each participant individually before 
the start of the experiment. In this meeting, we installed the 
Fitbit and Neuroon applications on participants’ 
smartphones and gave them the following items for the self-
tracking experiment: a Fitbit Charge 2, a Neuroon eye mask, 
a medical device Sleep Scope, and necessary accessories. 
The participants then tracked their sleep for three 
consecutive nights in their homes. All three devices were 
used concurrently to ensure that measurement differences 
were derived under the same conditions. Participants 
received a $54 shopping card as appreciation when they 
complete the experiment. 

3.4. Data Analysis 

Data Pre-Processing 
We retrieved and analysed the sleep data of one night for 
each participant and obtained a dataset with 27 observations. 
Following the common practice in sleep science, we 
analysed the second night for each participant to remove 
“the first night effect” [44-46]. If the data of the second 
night was not valid, then the data of the third night was 
analysed. The data of the first night was only selected when 
neither the second night nor the third night was valid. 

Fitbit sleep data was retrieved through Fitbit public API 
using a web application that we developed in our previous 
study [20]. Neuroon sleep data was manually retrieved from 
the dashboard as no public API was available. The data of 
the medical device was analysed by the Sleep Well 
Company using proprietary automatic scoring algorithms, 
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followed by visual inspection epoch-by-epoch by specialists 
according to established standards [47] and corrections were 
added if needed. 

User-specific Factors and Error Measures 
In this study we investigated the influence of 14 user-
specific factors, including age, gender, subjective sleep 
quality, sleep hygiene and sleep patterns. Table 2 
summarizes the denotations of the user-specific factors and 
how they were collected during the study. 

Taking the data derived by the medical device as the 
ground truth, we calculated absolute percent error 

 as indicators of 
measurement errors by the consumer devices using Equation 
(1) [48, 49], where epresents the sleep data of 
participant i measured by a consumer device, and 
represents the corresponding ground truth derived by the 
medical device.  

(1) 

Statistical Analysis 
In line with previous studies [50, 51], we defined the 
acceptable error range as | |≤5% since this approximates 
a widely acceptable standard for statistical significance in 
health science research [52]. Based on this criterion, we 
divided the dataset into two subsets according to the 
magnitude of the measurement errors as is shown in 
Equation (2) ~ (5). Each of the observations in the dataset 
was classified as either good agreement or poor agreement.  

Good agreement: 

, 
(2) 

Poor agreement: 

, 
(3) 

(4) 

, (5) 

where  represents the i-th observation in each subset, 
 is the absolute percent error of either TST, WASO, or 

SE in observation ,  and  represent the number 

of observations in the two subsets, and is the number 
of observations in the whole dataset (  = 27). 

Logistic regression [53] was used to examine the 
contribution of user-specific factors to measurement errors 
because of the binary nature of the dependent variable. A 
value 1 of the dependent variable denotes the occurrence of 
measurement error, while a value 0 denotes the absence of 
measurement error (accurate measurement). Therefore, all 
observations in the subset were correspondent to an 
output of 0 while those in the subset were 
correspondent to an output of 1. Pearson product-moment 
correlation was used to investigate the overall linear 
relationships between user-specific factors (except gender 
which is binary) and absolute percent errors. The analysis 
results are described in detail in the next section. 

4. Results

4.1. User Statistics 

The demographic information and sleep baseline (measured 
by a medical EEG device) of the participants are 
summarized in Table 3. All participants were in their 20s or 
30s. Ten out of the 27 participants had a PSQI higher than 5, 
which was indicative of poor sleep quality. Male 
participants on average had longer wake time, more 
awakenings, higher ratio of sleep stage N1, lower ratio of 
deep sleep and lower ratio of REM sleep. Taking | |≤5% 
as the acceptable error range, the dataset was divided into 
two subsets according to the magnitude of the measurement 
errors. Table 4 presented the number of observations in each 
subset for the concerned sleep metrics. Wake after sleep 
onset (WASO) was excluded from the subsequent logistic 
regression analysis due to the small number of observations 
in  for both consumer sleep tracking devices.  

4.2. Results of Logistic Regression 

Table 5 and Table 6 contain the results of logistic regression 
for Fitbit and Neuroon respectively. Notably, gender and 
subjective sleep quality (PSQI) were not associated to the 
measurement errors on any sleep metric. Age was strongly 
associated to the measurement accuracy of TST by both 
consumer devices. The probability of obtaining 
measurement errors by Fitbit significantly decreased for 
participants aged over 25-year-old on TST (OR = 0.05, 95% 
CI = 0.01-0.39, P = 0.004) and SE (OR = 0.17, 95% CI = 
0.03-0.93, P = 0.041) compared to younger people.  
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Table 3. Descriptive statistics of the sleep dataset. 

All (n = 27) Men (n = 16) Women (n = 11) 
age (years) 25.2 3.4 25.5 3.7 25.4 3.5 
PSQI 4.4 2.3 4.7 2.7 3.8 1.3 
TST (min) 359.9 96.6 361.5 97.9 367.0 100.1 
WASO (min) 17.9 12.7 21.4 13.9 12.7 8.0 
NAWK (count) 17.9 8.5 19.7 8.5 15.3 7.8 
SOL (min) 14.4 17.4 12.7 15.7 16.3  19.8 
SE (%) 90.1 8.5 90.3 4.8 89.8 12.3 
N1R (%) 12.0  8.4 14.3  9.0 7.9  5.6 
N2R (%) 54.6  8.5 54.7  8.5 54.8  8.3 
DSR (%) 5.7  7.2 4.6  6.2 7.7  8.1 
RSR (%) 22.9  5.8 20.9  5.3 26.3  4.9 

Table 4. The number of observations in subset  and  for TST, WASO and SE. 

TST WASO SE 

Fitbit 10 17 2 25 13 14 
Neuroon 7 20 0 27 7 20 

Similarly, the probability of obtaining measurement errors 
by Neuroon significantly decreased for participants aged 
over 26-year-old in comparison to younger participants (OR 
= 0.07, 95% CI = 0.01-0.55, P = 0.011). In addition, a 
higher ratio of sleep stage N1 (>10%) was associated to 
higher probability of obtaining accurate measurements on 
SE by Neuroon (OR = 0.09, 95% CI = 0.01-0.90, P = 0.041). 

4.3. Results of Correlation Analysis 

Pearson correlation coefficients were calculated to 
examine the linear relationships between user-specific 
factors and absolute percent errors by consumer sleep 
trackers. Gender was excluded from the analysis due to its 
binary nature. Table 7 presents the results of correlation 
analysis for Fitbit and Neuroon. No correlation was found 
from measurement errors to PSQI, average sleep cycle, rise 
time, the ratio of sleep stage N2, and the ratio of REM sleep. 

Interestingly, absolute percent errors tend to negatively 
correlate to the underlying sleep metrics being measured. 
This phenomenon was observed for Fitbit on TST (r = -.46, 
P = 0.016), WASO (r = -.65, P < 0.001), SE (r = -.93, P < 
0.001), and was observed for Neuroon on WASO (r = -.45, P 
= 0.020). For Fitbit, SE was found to be strongly and 
negatively associated to both | | and | |, and Age was 

found to be moderately and negatively associated to | | 
and | |. In addition, SOL was moderately and positively 
associated to | | and | |. Bedtime and deep sleep ratio 
were moderately and positively associated to | |. In 
contrast, only two factors were found to be significantly 
associated to the measurement errors by Neuroon. Both 
WASO and the ratio of sleep stage N1 (N1R) were 
moderately and negatively associated to | |. 

5. Discussions

5.1. Principal Findings 

Fitbit has been one of the main wearable vendors in the 
global market. Fitbit devices and smartphone apps enable 
users to monitor sleep in an unobtrusive way. On the other 
hand, Neuroon relies on embedded EEG sensors to enhance 
the accuracy of home sleep tracking and is increasingly 
gaining popularity. Previous validation studies have 
revealed the strength of Fitbit and Neuroon in measurement 
sleep duration and sleep efficiency as well as their weakness 
in measurement sleep stages [6, 11]. This study expanded 
our understanding on how device accuracy may be 
influenced by user-specific factors. 
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The analysis results found no influence from gender and 
subjective sleep quality measured by PSQI, whereas age and 
sleep structures were found to be significantly associated to 
device accuracy. Logistic regression analysis found that 
young adults above 26-year-old were more likely to obtain 
accurate data on total sleep time and sleep efficiency by both 

consumer devices. Correlation analysis also found 
significant and moderate negative relationship between age 
and absolute percent errors on TST by Fitbit. We therefore 
do not recommend the consumer devices to young people 
below 25-year-old when accurate estimates of TST and SE 
are important. 

Table 5. Associations between user-specific factors and risk of measurement errors (Fitbit). 

Factors Risk of errors on TST Risk of errors on SE 
ORa 95% CIb P OR 95% CI P 

Age 26-year-old Ref Ref 
>26-year-old 0.05 [0.01, 0.39] 0.004 0.17 [0.03, 0.93] 0.04 

Sex Female Ref Ref 
Male 1.22 [0.24,6.11] 0.81 0.59 [0.12, 2.89] 0.52 

PSQI <5 Ref Ref 
5 1.56 [0.28, 8.53] 0.61 1.71 [0.34, 8.68] 0.52 

SOL 10 min Ref Ref 
>10 min 2.07 [0.40;10.84] 0.39 4.4 [0.84;23.58] 0.08 

TST <7 hours Ref Ref 
7-9 hours 0.63 [0.12, 3.22] 0.57 2.50 [0.47, 13.27] 0.28 

WASO 25 min Ref Ref 
>25 min 1.23 [0.18;8.33] 0.83 0.38 [[0.06;2.52] 0.31 

90 min Ref Ref 

>90 min 0.61 [0.12, 3.23] 0.56 0.59 [0.12, 2.89] 0.52 
SE 90% Ref Ref 

>90% 0.46 [0.07;2.89] 0.41 0.54 [0.10;2.93] 0.47 
Before 0:00 
am 

Ref Ref 

After 0:00 am 3.6 [0.70, 18.56] 0.12 1.54 [0.33, 7.23] 0.58 
Before 7:00 
am 

Ref Ref 

After 7:00 am 1.43 [0.30;6.88] 0.66 2.10 [0.45;9.84] 0.35 
N1R 10% Ref Ref 

>10% 1.23 [0.18;8.33] 0.83 0.91 [0.15;5.58] 0.92 
N2R 60% Ref Ref 

>60% 2.18 [0.35;1376] 0.41 1.85 [0.34;10.05] 0.47 
DSR 5% Ref Ref 

>5% 2.33 [0.44;12.40] 0.32 2.00 [0.41;9.84] 0.39 
RSR 25% Ref Ref 

>25% 0.31 [0.06;1.64] 0.17 0.32 [0.06;1.71] 0.18 
aOR: odds ratio. 

bCI: confidence interval. 
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Table 6. Associations between factors and risks of measurement errors (Neuroon) 

Factors Risk of errors on TST Risk of errors on SE 
ORa 95% CIb P OR 95% CI P 

Age 26-year-old Ref Ref 
>26-year-old 0.07 [0.01;0.55] 0.01 0.44 [0.07;2.71] 0.38 

Sex Female Ref Ref 
Male 0.60 [0.09;3.89] 0.59 0.00 [0.00;Inf] 0.99 

PSQI <5 Ref Ref 
5 3.27 [0.31;34.72] 0.32 1.45 [0.21;9.98] 0.70 

SOL 10 min Ref Ref 
>10 min 2.05 [0.32;13.16] 0.45 6.00 [0.61;59.30] 0.13 

TST <7 hours Ref Ref 
7-9 hours 0.25 [0.04;1.52] 0.13 0.57 [0.10;3.38] 0.54 

WASO 25 min Ref Ref 
>25 min 2.00 [0.19;20.90] 0.56 0.63 [0.09;4.49] 0.64 

90 min Ref Ref 

>90 min 0.60 [0.09, 3.89] 0.59 0.60 [0.09;3.89] 0.59 
SE 90% Ref Ref 

>90% 0.93 [0.14;6.23] 0.94 0.31 [0.03;3.11]  0.32 
Before 0:00 
am 

Ref Ref 

After 0:00 am 2.48 [0.43;14.34] 0.31 2.48 [0.43;14.34] 0.31 
Before 7:00 
am 

Ref Ref 

After 7:00 am 2.00 [0.35;11.44] 0.44 4.64 [0.71;30.42] 0.11 
N1R 10% Ref Ref 

>10% 0.27 [0.04;1.73] 0.16 0.09 [0.01;0.90] 0.04 
N2R 60% Ref Ref 

>60% 1.07 [0.16;7.15] 0.94 3.23 [0.32;32.48] 0.32 
DSR 5% Ref Ref 

>5% 6.67 [0.67;66.51] 0.11 2.25 [0.35;14.61] 0.40 
RSR 25% Ref Ref 

>25% 1.35 [0.21;8.82] 0.76 4.00 [0.40;39.83] 0.24 
aOR: odds ratio. 

bCI: confidence interval.  

Not All Errors Are Created Equal: Influence of User Characteristics on Measurement Errors of Consumer Wearable Devices for Sleep Tracking 

7 EAI Endorsed Transactions 
on Pervasive Health and Technology 

07 2018 | Volume 4 | Issue 15 | e4



Table 7. Pearson correlation coefficients between user-specific factors and absolute percent errors. 

Fitbit Neuroon 
| | | | | | | | | | | | 

Age -0.45a -0.54 -0.27 -0.21 -0.31 -0.15
PSQI 0.22 -0.09 0.08 0.04 -0.12 0.00
SOL 0.49 0.31 0.66 0.29 -0.08 0.28
TST -0.46 -0.16 -0.34 0.05 0.08 0.07
WASO 0.01 -0.65 -0.35 -0.15 -0.45 -0.13

-0.34 -0.26 -0.31 -0.23 -0.49 -0.23
SE -0.75 -0.15 -0.73 -0.09 0.30 -0.09

0.33 0.39 0.19 0.09 0.15 0.09
-0.06 0.15 -0.03 0.19 0.14 0.22

N1R 0.24 -0.19 0.17 -0.20 -0.42 -0.23
N2R -0.32 -0.03 -0.19 0.08 0.10 0.11
DSR 0.01 0.46 0.13 0.13 0.32 0.10
RSR -0.01 0.10 0.01 0.10 0.33 0.12

aBold indicates statistically significant correlations. 

The accuracy of consumer sleep tracking devices was 
also significantly associated to the sleep structure of users. 
In general, measurement errors on TST and SE by Fitbit 
were more pronounced in people with shorter sleep 
duration, longer sleep onset latency and lower sleep 
efficiency as estimated by the medical device. This 
finding was consistent with previous studies on clinical 
sleep monitors [13, 30, 33, 54] and older models of 
wearable trackers [24]. As for Neuroon, analysis results 
showed that people with higher ratio of sleep stage N1 
were more likely to obtain accurate measurements on total 
sleep time. 

Additionally, our study found that measurement errors 
on WASO by both devices decreased as WASO increased. 
This characteristic differentiates Fibit Charge 2 and 
Neuroon from older models of consumer sleep tracking 
devices that demonstrated the opposite behaviour [7]. A 
recent study found that Fitbit Charge 2 overestimated 
wake time compared to a medical device and attributed it 
to its tendency of misclassifying sleep epochs as awake 
[11]. Longer period of wakefulness was equivalent to 
more wake epochs and fewer sleep epochs, which were 
then translated into lower chance of misclassifying sleep 
as wake. This may explain the improved accuracy of 
Fitbit Charge 2 as the wake time increased. From the 
perspective of sensor characteristics, this counterintuitive 
phenomenon may also be attributed to the inconsistent 
sensitivity of consumer sleep tracking devices [55-57]. 

Overall, our findings have demonstrated that more 
emphasis should be placed on eliminating systematic 
measurement errors of total sleep time and sleep 
efficiency for young adults and for people with short and 
interrupted sleep patterns. Moreover, improving epoch 
wise classification accuracy between sleep and awake 

may help reduce measurement errors of wake time. The 
findings pointed out promising directions to designing 
new algorithms for accurate home sleep tracking.

5.2. Limitations 

Our study into the associations between device accuracy 
and user-specific factors has several limitations. Firstly, 
the participants mostly included young healthy adults, 
thus limiting the generalizability of the findings to a more 
heterogeneous population such as teenagers, the elderly, 
and people with chronic conditions. Second, this study 
examined the relationships between accuracy and many 
factors only at the population level without considering 
individual differences. As such, the results may not be 
generalized for intrapersonal analysis. Third, the list of 
user-specific factors considered in this study was not 
exhaustive and the pathways thereby these factors affect 
measurement errors were still not thoroughly understood. 
Future researches are needed to address these limitations.  

6. Conclusions

Wearable consumer sleep trackers are increasingly 
gaining popularity because they are unobtrusive, 
affordable, and have the potential to provide longitudinal 
monitoring. We have investigated the characteristics of 
the measurement errors of Fitbit Charge 2 and Neuroon 
under the influence of several user-specific factors. Age 
and sleep structure were significantly associated to the 
accuracy of consumer sleep trackers. Both devices had 
improved accuracy in measurement total sleep time and 
sleep efficiency for people above 26-year-old and for 
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people with longer sleep duration, less fragmented and 
deeper sleep. In addition, measurement accuracy on wake 
time was negatively correlated to the total duration of 
wake, which may due to the tendency of misclassifying 
sleep epochs as wake. Notably, we also found that gender 
and subjective sleep quality measured by PSQI were not 
associated to the measurement errors of neither device. 
Our study suggested that consumer sleep trackers may be 
less accurate for young adults and for people with poor 
sleep (especially when accurate estimates of total sleep 
time and sleep efficiency are important.). These 
characteristics should be accounted for in selecting 
devices and in designing new sleep tracking technologies. 
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