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Abstract. In this paper, we present a novel enhancement to the RiskMetrics methodology 
initially introduced by J.P. Morgan in 1994. Our approach incorporates a copula-GARCH 
model combined with an Asymmetric Exponential Power Distribution (AEPD), tailored to 
better address the nuances of Sovereign Credit Default Swaps (CDSs). The core aim of our 
model is to provide a more accurate analysis of the dependence structure among these 
financial instruments and to refine the estimation of Value-at-Risk (VaR). We employ 
three different VaR estimation methods: Historical Simulation, Variance-Covariance, and 
Monte Carlo simulations. The empirical findings from our study indicate a clear superiority 
of the SSAEPD-GARCH-Copula model over the traditional RiskMetrics framework, par-
ticularly in terms of fitting the model to data and forecasting VaR. Furthermore, through 
rigorous backtesting, we confirm that the introduction of SSAEPD significantly enhances 
the precision of VaR forecasts. These results substantiate the potential of our modified 
model as a robust tool in the risk management of Sovereign CDSs, offering substantial 
improvements over existing methodologies in capturing the complex risk dynamics of 
these instruments. 

Keywords: RiskMetrics; Asymmetric Exponential Power Distribution (AEPD); Value-at- 
Risk (VaR); Gaussian Copula; Credit Default Swaps (CDS). 

1 Introduction  

Risk management remains a pivotal theme in financial markets. In 1994, the asset management 
group at J.P. Morgan introduced the RiskMetrics methodology to calculate Value-at-Risk (VaR) 
[1]. This method has gained widespread popularity due to its solid theoretical foundation and 
ease of implementation, finding widespread application across various sectors including securi-
ties firms, banks, and insurance funds [2]. Traditional RiskMetrics assumes that asset return 
distributions are normal. However, this assumption does not adequately capture the 'fat tails' 
seen in financial data, which are indicative of higher probabilities of extreme losses or gains [3]. 
Furthermore, since VaR is specifically concerned with the lower tail of the distribution, relying 
solely on normal distribution assumptions can lead to underestimations of risk [4]. 

To address these limitations, alternative distribution functions that better capture the character-
istics of fat tails have been developed. Notable among these are the Student's t distribution and 
the Skewed Student's t distribution, which have been widely studied and applied to VaR 
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calculations for portfolios by numerous researchers [5-11]. Moreover, the explicit modeling of 
the left tail of the distribution, which is critical for VaR, has led to the increasing application of 
Extreme Value Theory (EVT). Models integrating Generalized Autoregressive Conditional Het-
eroskedasticity (GARCH) with EVT have been shown to produce more accurate VaR estimates 
than those based on normal distributions [12-14]. 

Diverging from previous research, we utilize the Standardized Standard Asymmetric Exponen-
tial Power Distribution (SSAEPD) to generalize error terms. Asymmetric Exponential Power 
Distribution (AEPD) was first proposed by Zhu and Zinde Walsh [15]. With parameters con-
trolling skewness and tail behavior, AEPD effectively captures the fat tails and asymmetric kur-
tosis prevalent in financial data. By adjusting these parameters, AEPD can be tailored to simu-
late a variety of common distributions such as Normal, Exponential Power Distribution (EPD), 
and Skewed Exponential Power Distribution (SEPD). The details are provided in Table 1. 

Research indicates that copulas are extensively utilized to construct multidimensional joint dis-
tributions from non-normal margins [16], as they can address not only linear correlations but 
also non-linear dependence measures such as Spearman's ρ, Kendall's τ, and Gini's γ. The cop-
ula-GARCH model has been employed in various studies to explore correlations such as those 
between crude oil prices and dollar exchange rates, and to measure VaR of stock portfolios, 
demonstrating robustness in VaR estimation [11, 17]. The details can be found in Table 2. Build-
ing upon these studies, we propose a new RiskMetrics model based on a copula-TGARCH spec-
ification and SSAEPD marginal distribution. This paper has two primary objectives: firstly, to 
test whether the new model can outperform the traditional RiskMetrics and accurately capture 
the characteristics of financial data; and secondly, to evaluate the precision of VaR forecasts 
using three popular methods—Historical Simulation, Variance-Covariance, and Monte Carlo 
simulations—supported by backtesting techniques. 

This paper is organized as follows: Section 2 defines the new model, Section 3 presents the 
simulation results, Section 4 discusses the empirical results, and Section 5 concludes the paper. 

Table 1. Extensions and Applications of the Normal Distribution [18]. 

Authors Distributions and their Appli-
cation 

De Moivre (1738) Normal distribution 

Gauss (1809) Normal applied in astronomy 

Subbotin (1923) EPD 

Aitchison and Brown (1957) Lognormal distribution 

Azzalini (1986) SEPD 

Zolotarev (1986) Stable distribution 

Bolleslev (1987) Student-t distribution 



Fernandez et.al. (1995) Modified SEPD 

Swamee (2002) Near Lognormal distribution 

Ayebo and Kozubowski (2004) SEPD in finance 

DiCiccio and Monti (2004) Properties of MLE of the 
SEPD 

Zhu and Zinde-Walsh (2009) AEPD 

Notes: EPD= Exponential Power Distribution; SEPD= Skewed Exponential Power Distribution; AEPD= 
Asymmetric Exponential Power Distribution. 

Table 2. Copula Models Used for VaR Estimations [11]. 

Model Author Sample Data Method 
Panel A: Written in English     

VaR, Copula-Normal/Empiri-
cal 

Cherubini 
(2000) FTSE100, SP100 1995.01-

2000.04 MC 

VaR, TV Copula Giacomini 
(2005) 

Exchange Rate of Britain, Ger-
man 

1979.01-
1994.04 MC 

CVaR, GARCH-E-Copula Paralo (2006) NASDAQ, S&P500 1992.01-
2003.10 MC 

VaR, ARMAX-GJR-GARCH-
Copula Lee (2011) COMEX,TOCOM 1990.01-

2009.12 VC 

VaR, MGARCH-D-vine Cop-
ula 

Hofmann 
(2010) 

Exchange Rate of Japan, Brit-
ain, 

2000.06-
2005.06 MC 

  Austrlia, Canada, Brazil   

VaR, Copula-t Rank (2002) Exchange Rate of Britain, US, 1980.03-
1998.12 MC 

  Janpa, German and France   

VaR, GJR-GARCH-Copula-t Huang (2009) NASDAQ,TAIEX 2000.07-
2007.05 HS,VC,MC

CVaR, GARCH-vine Copula-
Normal/ t Allen(2014) Stock Markets of Europe 2005.01-

2011.12 MC 

VaR, TGARCH-Copula-
Skewed t 

Fan-
tazzini(2008) SP500 NIKKEI 225 DAX 1994.01-

2000.08 MC 

VaR, GARCH-RS Copula-
Skewed t 

Chollete 
(2009) Equity Index of G5 and Latin 1995.01-

2006.06 MC 

VaR, GARCH-TV Copule-
Skewed t Huynh(2014) 11 Stocks and 3 Commodites 

of US 
2005.09-
2013.08 MC 

VaR, ARMA-GARCH-
Copula-EVT Hotta(2006) IBOVESPA, MERVAL 1997.03-

2000.11 HS 

VaR, GARCH-Copula-EVT Huang(2009) NASDAQ and TAIEX 2000.07-
2007.05 MC 

VaR, ARMA-GARCH-
Copula-EVT Avdulaj (2010) ATX,DAX,PX50,SAX,SSMI 2000.01-

2009.12 MC 

VaR, GJR-GARCH-Copula-
EVT Huang (2011) Exchange Rate of G7 2005.01-

2007.12 VC 

VAR,GARCH-Copula-EVT Aloui(2012) Exchange Rate and Crude Oil 
Price of US 

2000.01-
2011.12 MC 



VaR,GARCH-Copula-EVT Aloui(2013) Crude oil and Natural gas Mar-
kets 

1997.01-
2007.10 MC 

VaR, GARCH-vine Copula-
EVT Ayusuk(2014) 5 Asian Emerging Stock Mar-

kets 
2008.01-
2013.12 MC 

VaR,GARCH-Copula-EVT Zhou(2014) Chinese Pledge Rate 1993.01-
2011.12 MC 

Panel B: Written in Chinese     

VaR, Copula-Normal Chen (2004) Chinese Stock Market 1996.12-
2004.12 MC 

VaR,GARCH-Copula-Normal Wang(2014) Exchange rate of China and Ja-
pan 

2008.01-
2012.05 MC 

VaR, GARCH-Copula-t Wu (2006) Chinese Stock Market 2002.12-
2004.01 MC 

VaR, CCopula-GARCH-t Duan(2010) Chinese Stock Market 2000.01-
2004.12 MC 

VaR, GARCH-pair Copula-t Huang(2010) Chinese Stock Market 2000.01-
2006.12 MC 

VaR, Copula-SV-t Chen(2013) Chinese Exchange Traded 
Fund(ETF) 

2005.01-
2011.12 VC 

VaR, GARCH-Copula-EVT Guo(2006) Chinese Stock Market 1996.12-
2006.06 MC 

CVaR, GARCH-EVT Wang (2007) Chinese Futures 2010.04-
2010.06 MC 

CVaR, GARCH-EVT Zhou (2007) Chinese Futures 2000.01-
2006.12 MC 

VaR, GARCH-MCopula-EVT Tan (2010) Exchange Rate of US, Europe 2005.07-
2008.07 MC 

VaR, La-Copula-EVT Liu (2010) Chinese Stock Market 1997.01-
2007.12 MC 

VaR, FIRGARVH-Copula-
EVT Jiang(2012) Chinese Stock Market 2005.01-

2010.12 MC 

VaR, Copula-SV-EVT Zhou(2012) Chinese Stock Market 2007.10-
2009.12 MC 

CVaR,GARCH-Copula-EVT Tang(2014) Title Transfer Facility Hub 
Natural Gas 

2007.01-
2014.05 MC 

VaR, GARCH-MCopula-APD Ren (2009) Chinese Stock Market 2005.01-
2007.12 MC 

VaR, Copula-ALD Du (2012) Chinese Stock Market 2005.01-
2009.12 VC 

Notes: Empirical= Empirical Distribution; EVT=Extreme Value Theory; CVaR=Conditional VaR; RS 
Copula= Regime Switching Copula; TV Copula= Time varying Copula; GARCH-E= GARCH-Empirical; 
APD= Asymmetric Pareto Distribution; ALD= Asymmetric Laplace Distribution; MCopula=Multi cop-
ula; CCopula= Conditional Copula; MC=Monte Carlo method; VC= Variance Covariance method; 
HS=History Simulation method. 

2 Model and Methodology 

2.1 AR(p)-TGARCH (r, s) - GC_SSAEPD Model 

Based on the TGARCH-type volatility introduced by Zakoian [19] and the non-Normal error 
distribution of SSAEPD as discussed in Zhu and Zinde-Walsh [15], we propose a novel 



econometric model. This model, designated as AR(p)-TGARCH(r, s)-GC_SSAEPD, integrates 
these concepts into a cohesive framework capable of capturing the complex dynamics observed 
in financial time series data. The model is formulated as follows: 

 ൜𝑟ଵ௧ = 𝑏଴ଵ + 𝑏ଵଵ𝑟ଵ,௧ିଵ + 𝑏ଶଵ𝑟ଵ,௧ିଶ + ⋯ + 𝑏௣,ଵ𝑟ଵ,௧ି௣ + 𝑒ଵ௧𝑟ଶ௧ = 𝑏଴ଶ + 𝑏ଵଶ𝑟ଶ,௧ିଵ + 𝑏ଶଶ𝑟ଶ,௧ିଶ + ⋯ + 𝑏௣,ଶ𝑟ଶ,௧ି௣ + 𝑒ଶ௧ (1) 𝑒ଵ௧ = 𝜎ଵ௧𝑢ଵ௧, 𝑒ଶ௧ = 𝜎ଶ௧𝑢ଶ௧                                                    (2) 

 𝜎ଵ௧ଶ = 𝑐଴ + ∑  ௥௜ୀଵ 𝑐ଵ௜𝑒ଵ,௧ି௜ଶ + ∑  ௦௜ୀଵ 𝑐ଶ௜𝜎ଵ,௧ି௜ଶ + ∑  ௥௜ୀଵ 𝐷ଵ,௜𝑐ଷ௜𝑒ଵ.௧ି௜ଶ  (3) 

 𝜎ଶ௧ଶ = 𝑑଴ + ∑  ௥௥௜ୀଵ 𝑑ଵ௜𝑒ଶ,௧ି௜ଶ + ∑  ௦௦௜ୀଵ 𝑑ଶ௜𝜎ଶ,௧ି௜ଶ + ∑  ௥௥௜ୀଵ 𝐷ଶ,௜𝑑ଷ௜𝑒ଶ,௧ି௜ଶ  (4) 

 𝑐଴ > 0, ∑  ௠௔௫(௥,௦)௜ୀଵ (𝑐ଵ௜ + 𝑐ଶ௜) < 1, 𝑑଴ > 0, ∑  ௠௔௫(௥௥,௦௦)௜ୀଵ (𝑑ଵ௜ + 𝑑ଶ௜) < 1 (5) 

 (𝑢ଵ௧, 𝑢ଶ௧) ∼ GC _SSAPED (𝛼ଵ, 𝑝ଵଵ, 𝑝ଵଶ, 𝛼ଶ, 𝑝ଶଵ, 𝑝ଶଶ, 𝜌) (6) 

 𝑢௜௧ ∼ SSAEPD (𝛼௜, 𝑝௜ଵ, 𝑝௜ଶ), 𝛼௜ ∈ (0,1), 𝑝௜௝ > 0, 𝑖 = 1,2 (7) 

where GC_SSAEPD is the joint Probability Density Function (PDF) of error terms (𝑢ଵ௧, 𝑢ଶ௧) f(uଵ୲, uଶ୲) = c(s, w; ρ)f(uଵ୲)f(uଶ୲)                                                          (8) c(s, w; ρ) = ଵඥଵି஡మ exp ቄ୵మାୱమଶ + ଶ஡୵ୱି୵మିୱమଶ(ଵି஡మ) ቅ                                                   (9) s = Φିଵ൫F(uଵ୲)൯, w = Φିଵ൫F(uଶ୲)൯, u୧୲ ∈ R, i = 1,2                                          (10) 
where 𝑐(𝑠, 𝑤; 𝜌) represents the density of the Gaussian Copula. 𝑓(𝑢୧௧) denotes the density of 
the SSAEPD. 𝐹(𝑢୧௧) is the Cumulative Probability Function (CDF) of SSAEPD. Φ(.) is the 
CDF of the Standard Normal distribution (i.e., Normal(0, 1)). The coefficients in the model are 
denoted by {𝑏௜ଵ, 𝑏௜ଶ}௜ୀ଴௣ . The standard deviation of the error terms for i = 1, 2, is represented by {σ௜௧}௧ୀଵ் . ρ is the correlation coefficient in the Gaussian Copula. In equation (3), 𝐷ଵ,௜ is set to 1 
when 𝑒ଵ,௧ି௜ > 0 and to 0 otherwise. 'Good news,' where 𝑒ଵ,௧ି௜ > 0, and 'bad news,' where 𝑒ଵ,௧ି௜ < 0, influence the conditional variance differently. Good news impacts the variance by 𝑐ଵ + 𝑐ଷ௜, whereas bad news impacts it by 𝑐ଵ alone. If 𝑐ଷ≠ 0, the impact of news is asymmetric. 
If 𝑐ଷ௜ < 0, this is indicative of a leverage effect.  

When parameters are set as ρ = 0, s = r = ss = rr = 1, αi = 0.5, pi1 = pi2 = 2 for i = 1, 2, and {𝑏௜ଵ = 𝑏௜ଶ = 0}௜ୀ଴௣ , c0 = d0 = 1, D11 = D21 = 0, c11 + c21 = 1, d11 + d21 = 1, the model simplifies 
to the AR(0)-IGARCH(1,1) model, originally developed for RiskMetrics.  

2.2 Standardized Standard AEPD(SSAEPD) 

The Probability Density Function (PDF) of a random variable 𝑢୧௧ with the Standardized Stand-
ard AEPD (i.e.uit ∼ SSAEPD (𝛼௜, 𝑝௜ଵ, 𝑝௜ଶ)) is: 

 f(u୧୲) = ൞ δ୧ ൬஑౟஑౟∗൰ K(p୧ଵ)exp ൬− ଵ୮౟భ ฬன౟ାஔ౟୳౟౪ଶ஑౟∗ ฬ୮౟భ൰ , if u୧୲ ≤ − ன౟ஔ౟ ,δ୧ ൬ଵି஑౟ଵି஑౟∗൰ K(p୧ଶ)exp ൬− ଵ୮౟మ ฬன౟ାஔ౟୳౟౪ଶ൫ଵି஑౟∗൯ ฬ୮౟మ൰ , if u୧୲ > − ன౟ஔ౟ . (11) 
And the Cumulative Density Function (CDF) of the SSAEPD is: 



 F(u୧୲) = ൞ α୧ ൤1 − G ൬ ଵ୮౟భ ൬|୳౟౪ஔ౟ାன౟|ଶ஑౟∗ ൰୮౟భ ; ଵ୮౟భ൰൨ , if u୧୲ ≤ − ன౟ஔ౟ ,α୧ + (1 − α୧)G ൬ ଵ୮౟మ ൬|୳౟౪ஔ౟ାன౟|ଶ൫ଵି஑౟∗൯ ൰୮౟మ ; ଵ୮౟మ൰  if u୧୲ > − ன౟ஔ౟ . (12) 
where 

 ω୧ = ଵ୆౟ ቂ(1 − α୧)ଶ ୮౟మ୻(ଶ/୮౟మ)୻మ(ଵ/୮౟మ) − α୧ଶ ୮భ౟୻(ଶ/୮౟భ)୻మ(ଵ/୮౟భ) ቃ (13) δ୧ଶ = ଵ୆౟మ ቂ(1 − α୧)ଷ ୮మమ୻(ଷ/୮౟మ)୻య(ଵ/୮౟మ) + α୧ଷ ୮భభమ ୻(ଷ/୮౟భ)୻య(ଵ/୮౟భ) ቃ − ଵ୆౟మ ቂ(1 − α୧)ଶ ୮౟మ୻(ଶ/୮౟మ)୻మ(ଵ/୮౟మ) − α୧ଶ ୮భ౟୻(ଶ/୮౟భ)୻మ(ଵ/୮౟భ) ቃଶ (14) K(p୧ଵ) = ଵଶ୮౟భభ౦౟భ୻൬ଵା భ౦౟భ൰ , K(p୧ଶ) = ଵଶ୮౟మభ౦౟మ୻൬ଵା భ౦౟మ൰ , p୧ଵ > 0, p୧ଶ > 0, α୧ ∈ (0,1) (15) 
𝑝௜ଵ and 𝑝௜ଶ are the parameters which control the left tails and right tails respectively. 𝛼௜ is the 
skewness parameter of SSAEPD. The SSAEPD can be reduced to many distributions. If 𝛼 = 0.5 
and 𝑝ଵ = 𝑝ଶ, it becomes the EPD. If 𝑝ଵ = 𝑝ଶ, the AEPD reduces to Skewed EPD [20, 21]. If 𝛼 = 
0.5, the AEPD becomes symmetric EPD [22]. If 𝛼 = 0.5 and 𝑝ଵ = 𝑝ଶ = 2, it becomes the Normal 
distribution. If 𝛼 = 0.5 and 𝑝ଵ = 𝑝ଶ = 1, it reduces to the Laplace distribution. 

2.3 Method of Maximum Likelihood Estimation 

Following the approach of Eric Jondeau and Michael Rockinger [23], we adopt the IFM method 
introduced by Joe and Xu [24] for parameter estimation. The IFM method demonstrates effi-
ciency comparable to the Exact Maximum Likelihood (EML) method. Additionally, it offers 
significant time savings, particularly in the context of higher-dimensional copula-GARCH mod-
els. The estimation procedure using the IFM method is structured into two distinct steps: 

1. Estimate the marginal parameters 𝜃௜(i = 1, 2) by performing the estimation of the univari-
ate marginal distribution. 

 θ෠ଵ = argmaxlnଵ (θଵ) = ∑  ୘୧ୀଵ ln ൫fଵ(yଵ୲ ∣ θଵ)൯ (16)  θ෠ଶ = argmaxlnଶ (θଶ) = ∑  ୘୧ୀଵ ln ൫fଶ(yଶ୲ ∣ θଶ)൯ (17) 
2. Perform the estimation of the copula parameters 𝜃௖, given the estimated results 𝜃௜(i = 1, 
2). 

 θ෠ୡ = argmax lnୡ (θୡ) = ∑  ୘୲ୀଵ ln ൫Fଵ൫uଵ୲; θ෠ଵ൯, Fଶ൫uଶ୲; θ෠ଵ൯; θୡ൯ (18) 
 
 

3 Simulation Results 

3.1 Model Simulation 

The simulation results are listed in Table 3. We find out the estimates are close to the true values 
even if we change correlation parameter ρ from −0.3 to 0.7. Hence, we conclude that the method 
and program are valid and can be applied to analyze empirical data. 



Table 3. Simulation Results. 

Par. T E T E T E T E T E 

α1 0.5 0.5078 0.5 0.4566 0.5 0.5055 0.5 0.4560 0.5 0.5633 

p11 2 2.0529 2 1.9234 1 1.0780 1.5 1.3602 2 2.2424 

p12 1 0.9702 2 2.1920 1 1.0103 1.5 1.5832 1.5 1.4419 

b01 0.2 0.1771 0.2 0.1456 0.2 0.1692 0 0 0.3 0.2262 

b11 0.3 0.3124 0.3 0.3317 0 0.0855 0 0.0955 -0.2 -0.1560 

α2 0.4 0.3927 0.5 0.6033 0.5 0.5128 0.6 0.5481 0.5 0.4891 

p21 2 1.9446 2 2.4162 1 1.0634 1.5 1.3525 1.5 1.5417 

p22 1.5 1.4592 2 1.6567 1 1.0175 1.5 1.5705 2 2.1958 

b02 0.5 0.4815 0.5 0.5033 0.4 0.3839 0 0 -0.2 -0.1904 

b12 0.2 0.1990 0.2 0.2082 0 0.0324 0 0.0791 0.3 0.4332 

c0 1.5 1.5050 1.5 1.6237 1.3 1.1511 0.3 0.3198 1 0.9887 

c11 0.3 0.3325 0.3 0.3158 0.2 0.2562 0.3 0.3097 0.2 0.1991 

c21 0.4 0.3625 0.4 0.3383 0.2 0.1489 0.6 0.5648 0.3 0.2776 

c31 0 0.1000 0.3 0.4020 1 1.0160 0.3 0.2509 0.5 0.5225 

d0 1.5 1.6199 1.6 1.5889 1.5 1.3818 1.5 2.0691 1 0.7659 

d11 0.2 0.1677 0.2 0.2108 0.2 0.2561 0.5 0.4354 0.4 0.4899 

d21 0.4 0.3533 0.4 0.3696 0.4 0.3628 0.4 0.4972 0.5 0.2422 

d31 0 0.1001 0.7 0.7318 1 0.7619 0.3 0.3345 0.4 0.4925 

p -0.3 -0.3060 0.4 0.3741 0.6 0.5621 -0.6 -0.5488 0.8 0.7484 

Notes: T=True Values; E=Estimates; Par.=Parameters. 

3.2 Quantile Simulation 

We utilize the method proposed by Cherubini and Luciano [25] to simulate quantile values (at, 
bt)v corresponding to the CDF value v. Table 4 presents the simulation results. The estimated 
probabilities vEsti for each pair of (at, bt)v closely match the actual probabilities vTrue. This 



consistency indicates that our program can accurately generate quantile values applicable to 
empirical data. 

Table 4. Quantile Simulation Results. 

 vTrue(
%) 

(at, bt) 
vTrue 

vEsti 
(%) 

vTru
e 

(%) 
(at, bt) vEst

i (%) 

vTru
e 

(%) 
(at, bt) 

vEst
i 

(%) 

1 0.5 (1.6056, 
2.0839) 0.5 1 (-1.2442, 

1.9967) 1 5 (-0.1848, 
-1.5105) 5 

2 0.5 (-0.0416, 
2.6304) 0.5 1 (-0.6223, 

2.2688) 1 5 (-0.9637, 
-1.1777) 5 

3 0.5 (1.2127, 
2.3346) 0.5 1 (0.9433, 

2.1552) 1 5 (-0.5899, 
-1.4710) 5 

4 0.5 (0.4977, 
2.5833) 0.5 1 (0.0492, 

2.3521) 1 5 (-1.4147, 
-0.5606) 5 

5 0.5 (-0.9253, 
2.4527) 0.5 1 (1.1939, 

2.0271) 1 5 (-1.3564, 
-0.6899) 5 

6 0.5 (0.6648, 
2.5454) 0.5 1 (-0.3608, 

2.3247) 1 5 (-0.9848, 
-1.1601) 5 

7 0.5 (0.0013, 
2.6308) 0.5 1 (0.7953, 

2.2141) 1 5 (-0.4133, 
-1.4645) 5 

8 0.5 (-0.8141, 
2.5016) 0.5 1 (-1.4221, 

1.8741) 1 5 (-0.0930, 
-1.5189) 5 

9 0.5 (-0.7747, 
2.5141) 0.5 1 (-0.2220, 

2.3421) 1 5 (-0.0676, 
-1.5202) 5 

10 0.5 (-1.2441, 
2.3180) 0.5 1 (0.2405, 

2.3402) 1 5 (-0.0343, 
-1.5214) 5 

Notes: vTrue is CDF value. (at, bt)vTrue is the simulated quantile values with respective to CDF vTrue. 
vEsti is the estimated CDF value. 

4 Empirical Analysis 

4.1 Data 

The European debt crisis has significantly impacted financial institutions worldwide, with the 
market for Credit Default Swaps (CDS) garnering particular attention. CDSs are vital for re-
flecting the credit risk of borrowers, and correlations between CDSs can be crucial indicators of 



contagion in financial crises. In this study, we focus on analyzing the CDSs of Britain and 
France. The sample period spans from January 2009 to December 2010. 

Descriptive statistics are presented in Table 5. The daily log returns of Britain CDS are lepto-
kurtic and exhibit a slight leftward skew, whereas those for France CDS are platykurtic and 
show a slight rightward skew. The p-values from the Jarque-Bera test confirm that neither series 
follows a normal distribution, suggesting that a bivariate normal distribution may not be suitable 
for modeling this sample data. 

Table 5. Descriptive Statistics. 

 Mean St.Dev. Ske. Kur. P (JB) P(DF-GLS) Corr. 

Britain 0.00 0.04 -0.47 3.28 0 0 
0.59 

France 0.00 0.05 0.16 2.27 0 0 

Notes: Ske.=Skewness. Kur.=Kurtosis. Corr.=Correlation. H0 of the DF-GLS test: The data has a unit root. 
Or the data is not stationary. CV(5%) = Critical Value under 5% Significance Level. 

4.2 Estimates 

Table 6 presents the estimation results. All estimates of the correlation coefficient, denoted as 
ρ̂, are approximately 0.5. Consistent with RiskMetrics, the constant terms in both the mean 
equation (b01, b02) and the volatility equation (ĉ0, d̂0) are near zero. In the GARCH model, the 
ARCH coefficient ĉ11 (d̂11) and the GARCH coefficient ĉ21 (d̂21) are significantly different from 
zero, yet the sum ĉ11 + ĉ21 (d̂11 + d̂21) remains less than 1. In the TGARCH model, a positive 
estimate of ĉ31 (d̂31) indicates the presence of a leverage effect. Furthermore, the fat-tail phe-
nomenon is pronounced across all innovations, as evidenced by tail parameters significantly 
below 2. Additionally, the estimates of the skewness parameter α ̂ are around 0.5, indicating 
minimal skewness in the sample data. 

Table 6. Estimated Results. 

Par. 
SSAEPD Normal 

M1 M2 M3 M4 M5 M6 M7 M8 

α̂1 0.5005 0.4922 0.4925 0.4668 0.5 0.5 0.5 0.5 

p̂11 1.1147 1.0733 0.9337 0.9164 2 2 2 2 

p̂12 1.2265 1.1811 1.0219 1.1773 2 2 2 2 

b̂01 -0.0012 -0.0011 -0.0010 -0.0019 -0.0020 -0.0017 -0.0020 -0.0031 

b̂11 0.1454 0.1377 0.1658 - 0.1438 0.1342 0.1942 - 

α̂2 0.5027 0.4953 0.4554 0.4972 0.5 0.5 0.5 0.5 



p̂21 1.0335 1.2314 1.0263 1.0600 2 2 2 2 

p̂22 0.8649 1.1079 1.0695 0.9652 2 2 2 2 

b̂02 0.0022 0.0014 0.0018 0.0015 0.0004 0.0008 0.0004 0 

b̂12 0.0602 0.0778 0.1004 - 0.1216 0.1170 0.1525 0 

ĉ0 0.0010 0.0010 0.0008 0.0008 0.0010 0.0010 0.0004 0.0004 

ĉ11 0.1364 0.1865 0.8930 0.8448 0.1782 0.2271 0.6507 0.6575 

ĉ21 0.1048 0.1010 0.1069 0.1551 0.1000 0.1000 0.3492 0.3424 

ĉ31 0.1458 - - - 0.1000 - - - 

d̂0 0.0015 0.0013 0.0010 0.0011 0.0013 0.0013 0.0008 0.0008 

d̂11 0.2604 0.3077 0.8439 0.8547 0.2596 0.2985 0.7944 0.7891 

d̂21 0.1095 0.1031 0.1560 0.1452 0.1011 0.1095 0.2055 0.2108 

d̂31 0.1823 - - - 0.1000 - - - 

ρ̂ 0.5518 0.5445 0.5542 0.5814 0.5400 0.5389 0.5365 0.5746 

Notes:M1=AR(1)-TGARCH(1,1)-GC_SSAEPD; M2=AR(1)-GARCH(1,1)-GC_SSAEPD; M3=AR(1)-
IGARCH-GC_SSAEPD, b0i ≠ 0, (i = 1, 2); M4=AR(0)-IGARCH-GC_SSAEPD, b0i = 0, (i = 1, 2); 
M5=AR(1)-TGARCH(1,1)-GC_Normal; 

M6=AR(1)-GARCH(1,1)-GC_Normal; M7=AR(1)-IGARCH-GC_Normal, b0i ≠ 0, (i = 1, 2); M8=AR(0)-
IGARCH-GC_Normal,b0i = 0, (i = 1, 2). (RiskMetrics). 

4.3 Residual Check 

The Kolmogorov-Smirnov (KS) test does not reject its null hypothesis at a 5% significance level 
for all models, as shown in Table 7. This suggests that all models fit the sample data adequately. 
However, visual inspection of the graphs (using the "eye-rolling" method) indicates that the 
residuals are more likely to be distributed according to the Standardized Standard Asymmetric 
Exponential Power Distribution (SSAEPD). For instance, when comparing the probability den-
sity functions (PDFs) of the estimated residuals 𝑢୧௧ (for i=1, 2) with those of SSAEPD (𝛼௜, 𝑝௜ଵ, 𝑝௜ଶ) (for i=1, 2), we observe that these curves closely align, as depicted in Figure 1. In contrast, 
substantial differences exist between the PDFs of the residuals and the standard normal distri-
bution, Normal(0, 1), as illustrated in Figure 2. Consequently, we can conclude that the AEPD 
model outperforms the normal distribution in fitting the estimated residuals, despite both distri-
butions passing the KS tests at a 5% confidence level. 

 

 



Table 7. Kolmogorov-Smirnov Test. 

 SSAEPD Normal 

Britain 
T1 T2 T3 T4 T5 T6 T7 T8 

0.0771 0.0768 0.0589 0.0889 0.0704 0.0733 0.662 0.0932 

France 
T9 T10 T11 T12 T13 T14 T15 T16 

0.0771 0.1038 0.1160 0.0819 0.0539 0.0830 0.0568 0.0707 

Notes: T1~T4 means H0: For model 1 to 4, residuals of Britain CDS follow SSAEPD (α̂1, p̂11, p̂12). 

T9~T12 means H0: For model 1 to 4, Residuals of France CDS follow SSAEPD (α̂2, p̂21, p̂22). 

T5~T8 means H0: Residuals of Britain CDS follow Normal (0.5, 2, 2). 

T13~T16 means H0: Residuals of Britain CDS follow Normal (0.5, 2, 2). 

 
Fig. 1. PDFs of Residuals uˆit and SSAEPD (α̂i , pˆi1, pˆi2), i = 1, 2. 

 
Fig. 2. PDFs of Residuals ûitand Normal (0,1), i = 1, 2. 



4.4 In-sample Fit 

We employ Akaike's Information Criterion (AIC), Bayesian Information Criterion (BIC), and 
Hannan-Quinn (HQ) criterion to select models. Following the approach used by Burnham [26], 
we rank the models based on these criteria and choose the best one based on the average ranks. 
The results are displayed in Table 8. Our findings indicate: 1) An SSAEPD model with an 
AR(1)-GARCH specification (M1) provides a more precise in-sample fit, whereas the model 
utilized in RiskMetrics (i.e., M8) performs the poorest. 2) SSAEPD plays a significant role in 
model fitness, as evidenced by lower values in the criteria when SSAEPD marginals are used. 
3) Regardless of the marginal distribution, the GARCH model exhibits superior fitness com-
pared to other specifications. 

Table 8. Model Selection. 

Model M1 M2 M3 M4 M5 M6 M7 M8 

AIC -7.5 -7.6 -7.5 -7.5 -7.4 -7.4 -7.3 -7.3 

BIC -7.5 -7.5 -7.5 -7.5 -7.4 -7.4 -7.3 -7.3 

HQ -7.6 -7.6 -7.6 -7.5 -7.4 -7.5 -7.4 -7.3 

Rank 2 1 3 4 6 5 7 8 

Notes: M1=AR(1)-TGARCH(1,1)-GC_SSAEPD; 

M2=AR(1)-GARCH(1,1)-GC_SSAEPD; 

M3=AR(1)-IGARCH-GC_SSAEPD, b0i ≠ 0, (i = 1, 2); 

M4=AR(0)-IGARCH-GC_SSAEPD,b0i = 0, (i = 1, 2); 

M5=AR(1)-TGARCH(1,1)-GC_Nomral; 

M6=AR(1)-GARCH(1,1)-GC_Normal; 

M7=AR(1)-IGARCH-GC_Normal,b0i ≠ 0, (i = 1, 2); 

M8=AR(0)-IGARCH-GC_Normal,b0i = 0, (i = 1, 2). RiskMetrics. 

4.5 Out-of-Sample Forecast 

We assess the forecast accuracy of various models. The estimation period spans from January 
2009 to December 2009, and the forecast period extends from January 1, 2010, to December 
31, 2010, with each period covering 250 days. The forecasting results are summarized in Table 
9. The combination of SSAEPD marginals and GARCH specification appears to yield more 
precise forecasts. Consequently, the new model (M1) emerges as the optimal choice for fore-
casting, as evidenced by its having the lowest Mean Absolute Error (MAE) and Mean Squared 
Error (MSE). 

 



Table 9. Forecast Results. 

Model 
SSAEPD Normal 

M1 M2 M3 M4 M5 M6 M7 M8 

MAE (10⁻²) 4.33 5.98 5.46 5.03 3.97 3.99 5.28 5.82 

MSE (10⁻²) 0.40 1.86 0.62 0.56 0.26 0.27 0.57 0.71 

Notes: M1=AR(1)-TGARCH(1,1)-GC_SSAEPD; 

M2=AR(1)-GARCH(1,1)-GC_SSAEPD; 

M3=AR(1)-IGARCH-GC_SSAEPD, b0i ≠ 0, (i = 1, 2); 

M4=AR(0)-IGARCH-GC_SSAEPD,b0i = 0, (i = 1, 2); 

M5=AR(1)-TGARCH(1,1)-GC_Nomral; 

M6=AR(1)-GARCH(1,1)-GC_Normal; 

M7=AR(1)-IGARCH-GC_Normal,b0i ≠ 0, (i = 1, 2); 

M8=AR(0)-IGARCH-GC_Normal,b0i = 0, (i = 1, 2). RiskMetrics. 

4.6 Value-at-Risk (VaR) 

In this study, we estimate parameters using 500 observations and then calculate the predicted 
one-step-ahead Value-at-Risk (VaR) using three methods: Historical Simulation, Variance-Co-
variance, and Monte Carlo Simulation. To evaluate the performance of VaR models, we employ 
four backtesting methods: Proportion of Failures, Kupiec Test, Christoffersen Test, and Loss 
Function. The results for 90%, 95%, and 99% confidence levels are reported in Table 10. 

Several key findings emerge from our analysis: 1) Historical Simulation provides more accurate 
VaR estimates at the 90% confidence level, while the Monte Carlo method shows distinct ad-
vantages at the 99% confidence level, consistent with findings by Kiohos [27]. This demon-
strates that confidence levels significantly influence the performance of VaR methodologies. 2) 
Both SSAEPD marginals and TGARCH specifications enhance the precision of VaR forecasts. 
However, the specification of conditional moments plays a more crucial role than the choice of 
marginals, as evidenced by minor variations across different marginals. Therefore, a TGARCH 
volatility model with SSAEPD marginals is recommended for optimal VaR forecasting in our 
sample. 3) Under the same method, particularly the Variance-Covariance method, VaR forecasts 
show minimal variation across different specifications, suggesting that the choice of calculation 
method is more pivotal than the specification in achieving accurate VaR forecasts. 

Table 10. Backtesting Value-at-Risk (VaR). 

 HS    VC  MC  
Model 90% 95% 99%  90% 95%99% 90% 95% 99% 

Panel A: Proportion of Failures N/T (%) 
M1 0 0.80 0.03 12.07 0.800.25 0 0.25 0 
M2 8.06 2.08 0.25 12.07 0.800.25 0.80 0 0 
M3 0 0.80 0.03 12.07 0.800.25 10.25 0 0 



M4 8.06 2.08 0.25 12.07 0.800.25 9.65 0.25 0 
M5 12.07 0.80 0.03 0 0.800.25 13.02 2.08 0.25 
M6 0 2.08 0.25 12.07 0.800.25 10.25 0 0 
M7 0 0.80 0.03 12.07 0.800.25 0.80 0.25 0 
M8 8.06 2.08 0.25 12.07 0.800.25 10.25 0 0 

Panel B: P-value pUC of Kupiec's Test for Unconditional Coverage(%) 
M1 11.75 4.81* 31.84 4.19* 4.81*3.71* 1.23* 2.01* 11.20 
M2 7.39 10.23 3.71* 4.19* 4.81*3.71* 0* 0.50* 19.97 
M3 11.75 4.81* 31.84 4.19* 4.81*3.71* 0* 2.01* 19.97 
M4 7.39 10.23 3.71* 4.19* 4.81*3.71* 0.48* 0* 19.97 
M5 4.19* 4.81* 31.84 0* 4.81*3.71* 7.39 10.23 3.71* 
M6 4.77* 10.23 3.71* 4.19* 4.81*3.71* 0* 0* 19.97 
M7 11.75 4.81* 31.84 2.34* 4.81*3.71* 0* 2.01* 11.02 
M8 4.77* 10.23 3.71* 4.19* 4.81*3.71* 0* 0* 19.97 

Panel C: P-value pcc of Christoffersne's Test for Independence(%) 
M1 32.24 27.56 0* 25.85 27.5627.63 19.57 22.40 34.11 
M2 26.39 32.47 27.63 25.85 27.5627.63 11.11 44.62 34.11 
M3 32.24 27.56 0* 25.85 27.5627.63 8.38 28.05 34.11 
M4 26.39 32.47 27.63 25.85 27.5627.63 18.36 22.40 34.11 
M5 25.85 27.56 0* 0* 27.5627.63 26.39 .32.47 27.63 
M6 23.07 32.47 27.63 25.85 27.5627.63 8.38 16.72 34.11 
M7 32.24 27.56 0* 22.67 27.5627.63 11.11 22.40 0* 
M8 23.07 32.47 27.63 25.85 27.5627.63 8.38 34.11 0* 

Panel D: Lopez' Loss Function 
M1 18.02 6.01 3.01 16.02 6.015.01 4.02 1.01 0 
M2 32.03 7.02 5.00 16.02 6.015.01 6.01 2.00 1.00 
M3 18.02 6.01 3.0 16.02 6.015.01 5.01 1.00 0 
M4 32.03 7.02 5.00 16.02 6.015.01 10.02 5.01 0 
M5 16.02 6.01 3.00 17.12 6.015.01 32.03 7.02 5.00 
M6 33.03 7.02 5.01 16.02 6.015.01 5.00 0 0 
M7 18.02 6.01 3.00 15.02 6.015.01 6.01 5.01 1.00 
M8 33.03 7.02 5.00 16.02 6.015.01 5.00 0 0 

Notes: Ml=AR(l)-TGARCH(l,l)-GC_SSAEPD; M2=AR(l)-GARCH(l,l)-GC_SSAEPD; 

M3=AR(l)-IGARCH-GC_SSAEPD, b0i /= 0, (i = 1, 2); M4=AR(0)-IGARCH-GC_SSAEPD,b0i = 0, 
(i = 1, 2); 

M5=AR(l)-TGARCH(l,l)-GC_Nomral; M6=AR(l)-GARCH(l,l)-GC_Normal; 

M7=AR(l)-IGARCH-GC_Normal,b0i /= 0, (i = 1, 2); M8=AR(0)-IGARCH-GC_Normal,b0i = 0, (i 
= 1, 2). RiskMetrics. HS= History Simulation; VC=Variance Covariance; MC=Monte Carlo 

The null of Kupiec's Test is the probability of observed exception is equal to the probability of expected 
exception The null of Christoffersne's Test is the exceptions are independently distributed. 

* means the null is rejected ;CV(5%) means the Critical Value under 5% Significance Level. 

5 Conclusion and Future Extension 

This study introduces a significant advancement in the field of financial risk management 
through the development of a novel RiskMetrics model. By integrating the Gaussian Copula 



with the Standardized Standard Asymmetric Exponential Power Distribution (SSAEPD), our 
model adeptly captures the complex dynamics and dependencies inherent in Sovereign Credit 
Default Swaps (CDSs). Our approach diverges from traditional methodologies by providing a 
more nuanced understanding of risk distributions, particularly addressing the challenges posed 
by the 'fat tails' and asymmetries that are common in financial data. The empirical evidence 
presented in this paper demonstrates the superior performance of our SSAEPD-GARCH-Copula 
model compared to the conventional RiskMetrics framework. Through the application of three 
distinct Value-at-Risk (VaR) estimation techniques—Historical Simulation, Variance-Covari-
ance, and Monte Carlo simulations—our model not only fits the data more accurately but also 
enhances the precision of VaR forecasts. This is further corroborated by rigorous backtesting, 
which confirms the reliability and robustness of our model in predicting and managing risks in 
the context of Sovereign CDSs. 

The implications of our findings are substantial for practitioners and policymakers in the finan-
cial sector. By adopting our modified RiskMetrics model, they can achieve a more accurate and 
reliable risk assessment, which is crucial for effective decision-making and regulatory compli-
ance. Moreover, our model's ability to fine-tune the estimation of risk parameters can help in 
better tailoring risk management strategies to meet the specific needs and profiles of individual 
financial institutions or portfolios. 

In conclusion, the SSAEPD-GARCH-Copula model represents a transformative tool in the ar-
senal of financial risk management. It marks a step forward in the refinement of risk assessment 
methodologies, offering enhanced analytical precision and a deeper insight into the complex 
interdependencies of financial instruments. This work not only contributes to academic dis-
course but also has practical implications, suggesting a pathway towards more sophisticated and 
resilient risk management practices in the finance industry. 
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