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Abstract. The study presents a comprehensive analysis of the impact of green finance on 
carbon emissions in China, utilizing the Spatial Durbin Model (SDM) to account for 
spatial autocorrelation and spillover effects. By constructing a spatial panel data set that 
includes variables such as green credit, investment, and insurance, alongside provincial 
carbon emissions data, the research reveals that green finance significantly reduces 
carbon emissions both directly within provinces and indirectly through neighboring 
effects. The findings suggest that enhancing green finance initiatives can play a crucial 
role in China's carbon mitigation strategies. This work not only contributes to the 
understanding of green finance's role in environmental sustainability but also provides 
empirical evidence supporting policy formulations aimed at reducing carbon emissions. 
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1 Introduction 

Amidst growing concerns over climate change, green finance has been identified as a key 
mechanism to reduce carbon emissions by channeling investments into environmentally 
sustainable projects. Recent research has increasingly focused on quantifying the impact of 
green financial mechanisms on carbon emission levels, employing various econometric 
models to capture the intricate relationships between financial practices and environmental 
outcomes. Despite these efforts, the spatial dimension of carbon emissions—an aspect critical 
to understanding regional disparities and spillover effects—has received relatively less 
attention. The spatial distribution of economic activities and environmental practices across 
provinces in China presents a complex landscape for the analysis of green finance’s impact on 
carbon emissions. 

This study leverages the Spatial Durbin Model (SDM) to examine both the direct and indirect 
effects of green finance on carbon emissions across Chinese provinces, considering the spatial 
interconnections between regions. By constructing a comprehensive spatial panel dataset, 
including variables for green credit, securities, insurance, investment, and carbon finance, this 
research uncovers that green finance significantly lowers carbon emissions within and across 
provinces. These findings underscore the importance of cross-regional cooperation and policy 
integration to enhance the efficacy of green finance in China's environmental strategy. This 
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paper contributes to the understanding of the spatial effects of green finance on carbon 
emissions, offering insights for policymakers to craft more effective environmental policies 
that leverage the financial sector towards achieving China's sustainability goals. 

2 Related works 

In the literature review of green finance's impact on carbon emissions, several recent studies 
have contributed valuable insights: Tabash and Al-Absy [1] explored the European carbon 
emission trading markets and their influence on financial market returns. Their research 
indicated that investments focused on green energy could significantly reduce carbon risks, 
highlighting a vital link between financial markets and environmental sustainability. Meesaala 
and Mohammadi [2] conducted a systematic literature review on green finance within the 
MENA region. They found that green finance plays a crucial role in supporting industries with 
lower carbon emissions, underlining the importance of financial aid in environmental 
improvement efforts. Liu et al. [3] investigated how economic policy uncertainty affects 
carbon emissions among Chinese exporters. Their findings reveal that green finance policies 
are instrumental in mitigating emissions, especially in regions with economic disparities. Ren 
et al. [4] examined the impact of green finance on agricultural carbon efficiency in China 
through a quasi-experimental approach. They demonstrated that green finance significantly 
enhances carbon efficiency, suggesting a promising avenue for reducing agricultural carbon 
emissions. András and Holczinger [5] analyzed the effectiveness of preferential capital 
requirements for green lending, showing how such financial policies encourage investments in 
projects and technologies that aim to reduce carbon emissions, thereby fostering a transition 
towards a more sustainable economy. Furthermore, forecasting methods have applications in 
multiple fields [6-7]. Some scholars use prediction methods to deal with carbon emissions. 
Gao et al. [8] introduced a fractional grey Riccati model (FGRM(1,1)) for CO2 emission 
forecasting. This model enhanced prediction accuracy and provide valuable insights for 
atmospheric environmental governance and sustainable development, addressing gaps in 
modeling mechanisms present in previous studies. Together, these studies underscore the 
multifaceted role of green finance in reducing carbon emissions across different regions and 
sectors, from the financial markets of Europe to the agricultural fields of China, and the 
innovative landscapes of BRICS countries. They collectively affirm the critical importance of 
integrating financial policies with environmental objectives to achieve a sustainable future. 

3 Model 

3.1 Methodology for measuring indicators 

3.1.1 Data positivity 

Considering that only very small data need to be processed into very large data in this paper, 
only very small data are presented here: 𝑥௟ = 𝑚𝑎𝑥ሺ𝑥ሻ − 𝑥௜. 
 

 



 

3.1.2 Data normalization 

In order to eliminate the effect of different magnitudes, the data also need to be standardized. 
If all the data are greater than or equal to 0 after standardization, then the equation can be used 
for standardization:  𝑧௜௝ = ௫೔ೕට∑ ௫೔ೕమ೙೔సభ . 

If after the standardization cannot guarantee that all the numbers are greater than or equal to 0, 
it is necessary to standardize with the following formula (the way of internalization, which 
will be controlled in the range of 0 to 1), due to the indicators in this paper each year there are 
values equal to 0, so they are all using the following data standardization method for data 
processing: 𝑧௜௝ = ௫೔ೕି௠௜௡൛௫భೕ,௫మೕ,⋯,௫೙ೕൟ௠௔௫൛௫భೕ,௫మೕ,⋯,௫೙ೕൟି௠௜௡൛௫భೕ,௫మೕ,⋯,௫೙ೕൟ. 
3.1.3 Entropy weighting method to calculate weights 

(1) Normalization is performed and the probability matrix P is calculated: 𝑃௜௝ = ௭೔ೕ∑ ௭೔ೕ೙೔సభ . 

(2) Calculate the information entropy of each indicator: 

The information entropy is related to the uncertainty of the data, if the degree of data 
fluctuation is large, its information entropy value is large, and conversely if the degree of data 
fluctuation is small, its information entropy value is small. As there may be values of 0 in the 
probability matrix, because ln(0) is infinite, this paper sets ln(0) to 0. 𝑒௝ = − ଵ௟௡ሺ௡ሻ ∗∑ ቀ𝑝௜௝𝑙𝑛൫𝑝௜௝൯ቁ௡௜ୀଵ  

(3) Calculate the information utility value as well as entropy weight calculation: 𝑑௝ = 1 −𝑒௝ , 𝑤௝ = ௗೕ∑ ௗೕ೘ೕసభ  

(4) Improvement by adding preference coefficients 

Based on the entropy weight-Topsis method, a subjective factor, the preference coefficient, 
was introduced to combine subjective and objective weight calculations. In this study, we 
synthesized a large amount of information and assigned a corresponding preference coefficient 𝐻௝  to each indicator based on the importance and relevant characteristics of the indicator. 
Similar considerations were made for the other indicators, and the preference coefficients were 
finally determined. 

(5) Calculate optimal and worst distances 

Define the maximum value: 𝑍ା =൫𝑚𝑎𝑥ሺ𝑧ଵଵ, 𝑧ଶଵ, ⋯ , 𝑧௡ଵሻ, 𝑚𝑎𝑥ሺ𝑧ଵଶ, 𝑧ଶଶ, ⋯ , 𝑧௡ଶሻ, ⋯ , 𝑚𝑎𝑥ሺ𝑧ଵ௠, 𝑧ଶ௠, ⋯ , 𝑧௡௠ሻ൯. 

Define the minimum value: 𝑍ି =൫𝑚𝑖𝑛ሺ𝑧ଵଵ, 𝑧ଶଵ, ⋯ , 𝑧௡ଵሻ, 𝑚𝑖𝑛ሺ𝑧ଵଶ, 𝑧ଶଶ, ⋯ , 𝑧௡ଶሻ, ⋯ , 𝑚𝑖𝑛ሺ𝑧ଵ௠, 𝑧ଶ௠, ⋯ , 𝑧௡௠ሻ൯. 

Define the distance between the ith (i=1,2,⋯,n) evaluation object and the maximum value: 𝐷௜ା = ට∑ 𝑊௝ ∗ 𝐻௝ ∗ ൫𝑍௝ା − 𝑧௜௝൯²௠௝ୀଵ . 



 

Define the distance between the ith (i=1,2,⋯,n) evaluation object and the minimum value: D୧ି = ට∑ W୨ ∗ H୨ ∗ ൫Z୨ି − z୧୨൯²୫୨ୀଵ . 
It should be noted here that 𝑊௝ ∗ 𝐻௝ needs to be renormalised, and the steps are consistent with 
the algorithm for entropy weight normalisation. 

(6) Calculate the unnormalized index as well as the normalized index 

Unnormalized index: S୧ = ୈ౟షୈ౟షାୈ౟శ. Normalized indices: S = ୗౠ∑ ୗౠ౟ౣసభ . 

Finally, the normalization index is then ranked to get the final result. 

3.2 Benchmark regression analysis of the impact of green finance on carbon emissions 

3.2.1 Description of variables 

Most of the variables are obtained by formulae, and the data required for the calculations are 
obtained from the WIND database, the IFIND platform, and the statistical yearbooks of the 
National Bureau of Statistics and the provinces. The specific definitions are shown in Table 1: 

Table 1.  Description of variables 

Type of 
variable Variable Name Variable 

symbol Variable Definition 

Explained 
Variables Carbon Emission Intensity CEI Calculated 

Core 
Explanatory 

Variables 

Green Finance 
Development Index GFI Calculated 

Explanatory 
Variables 

Urbanisation Level UR Urban population/total population 

Foreign Trade Level FT Total import and export trade of each 
province/GDP 

Level of Foreign Direct 
Investment FDI Foreign direct investment/GDP 

R&D Expenditure R&D R&D expenditure by province/GDP 
Population Density PD Population per square kilometre 

Fiscal decentralisation FD 
Real per capita local financial expenditure in 

each region / Real per capita financial 
expenditure at the central level 

Energy structure ERS Coal energy consumption / Total energy 
consumption 

Economic growth PCG GDP per capita 

3.2.2 Spatial autocorrelation test 

(1) Spatial weight matrix construction 

The spatial weight matrix W can reflect the spatial relationship of different individuals, and its 
size can reflect the strength of the spatial dependence, which has four specific forms: 

 

 



 

a. Neighbourhood matrix 

According to the rook adjacency principle (two adjacent regions have a common edge), the 
weights are set based on whether the provinces and cities are geographically adjacent to each 
other. 𝑊௜௝ = ቄ 1   𝑖 𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑗0   𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠 . 

b. Geographic distance matrix 

The narrow distance usually refers to the distance between the centre of mass of two regions 
or the distance between administrative centres, which is constructed in the form shown in the 

following equation: 𝑊௜௝ = ൝ ଵௗ೔ೕ    𝑖 ≠ 𝑗0     𝑖 = 𝑗 , where 𝑑௜௝ is the spherical geographic distance between 

the administrative centres of region i and region j, which is obtained based on the 
measurement of latitude and longitude data. 

c. Economic distance matrix 

An economic distance matrix is a data structure used to measure economic linkages or 
similarities between different locations in economic space. In this paper, the economic 
distance between regions is measured by the difference in GDP per capita, and the economic 

distance matrix is constructed as in the following equation: 𝑊௜௝ = ൝ ଵห௬ഢതതതି௬ണതതതห    𝑖 ≠ 𝑗       0         𝑖 = 𝑗 , where 

(y_i )  ̅ and (y_j )  ̅ denote the average GDP per capita of region i and region j, respectively, 
over the period 2007-2022. 

d. Economic Geography Matrix 

An economic geography matrix is a specific type of spatial weight matrix that combines 
information on geographic distances and economic linkages. It is constructed in the following 

equation: 𝑊௜௝ = ൝  ଵௗ೔ೕ×ห௬ഢതതതି௬ണതതതห    𝑖 ≠ 𝑗                 0          𝑖 = 𝑗. 
(2) Moran index measurement 

The Moran Index reflects the degree of similarity or strength of correlation between the carbon 
emission intensity of spatially adjacent regions. 

a. Global Moran index test 

Global spatial autocorrelation was performed with the global Moran index. The value of 
Moran index is distributed in [-1,1], when Moran index is greater than 0, it means that the 
carbon emission intensity of the global province has a spatial positive correlation, and the 
larger the carbon emission intensity the greater the possibility of agglomeration; when Moran 
index is less than 0, it means that the carbon emission intensity of the global province has a 
spatial negative correlation, and the larger the carbon emission intensity the lower the 
possibility of agglomeration; when Moran index is close to 0, it means that the carbon 
emission intensity of the global province has a spatial negative correlation, and the larger the 
carbon emission intensity the smaller the possibility of agglomeration; when Moran index is 
near to 0, it means that the global provincial carbon emission intensity has spatial randomness. 



 

The definition formula of the global Moran index is: 𝐼 = ∑ ∑ ௐ∗೔ೕሺ௫೔ି௫̅ሻ൫௫ೕି௫̅൯೙ೕసభ೙೔సభ ௌమ ∑ ∑ ௐ೔ೕ೙ೕసభ೙೔సభ , 𝑆ଶ =∑ ൫௫ೕି௫̅൯మ೙೔సభ ௡ , where n is the total number of spatial units, 𝑥௜ or 𝑥௝ denotes the carbon emission 
intensity of the ith or jth spatial unit, 𝑊∗௜௝  denotes the spatial weight, and 𝑆ଶ  denotes the 
sample variance [7]. Time-series change of the All-area Moran Index of carbon emission 
intensity in China's provinces is shown in Figure 1. Its horizontal axis represents time. Its 
vertical axis represents the all-area Moran Index of carbon emission intensity The partial 
results of the global Moran index are shown in Table 2. 

 
Figure 1.  Time-series change of the All-area Moran Index of carbon emission intensity in China's 

provinces, 2007-2022 

Table 2.   Provincial Carbon Emission Intensity Regional Moran Index 

Year Adjacency 
matrix 

Geographical 
distance matrix 

Economic 
distance matrix 

Economic geography 
matrix 

2019 0.199** 0.030** 0.041 0.121* 
2020 0.196** 0.028** 0.054 0.133* 
2021 0.180** 0.015* 0.037 0.108* 
2022 0.149** 0.003 0.032 0.083 

P <0.01***, P<0.05**, P<0.1* 

b. Local Moran index test 

The local Moran index test is used to test the local spatial autocorrelation of provincial carbon 
emission intensity to judge the high and low situation of a province's carbon emission intensity 
with the average level of carbon emission intensity of the neighbouring regions, and the 
calculation formula of the local Moran index is: 𝐼௜ = ሺ௫೔ି௫̅ሻௌమ ∑ 𝑊௜௝ሺ𝑥௝ − 𝑥̅ሻ௡௝ୀଵ , where is the 
total number of spatial units, or denotes the carbon emission intensity of the first or second 
spatial unit, denotes the spatial weight, and denotes the sample variance [9]. 

If the local Moran's index is positive, it means that there is a high and high concentration or 
low and low concentration of carbon emission intensity between the province and its 
neighbouring regions; while if the local Moran's index is negative, it means that there is a high 
low concentration or low high concentration of carbon emission intensity between the 
province and its neighbouring regions [10]. 



 

In addition, the local spatial correlation can be demonstrated by Moran scatterplot. The Moran 
scatterplot is divided into four quadrants, from the top right to the bottom right for quadrants 
one, two, three, and four, respectively, which denote high and high agglomeration (HH), low 
and high agglomeration (LH), low and low agglomeration (LL), and high and low 
agglomeration (HL), in that order. 

Figures 2 and 3 show the scatter plots of Moran index based on the neighbourhood matrix and 
geographic distance matrix of carbon emission intensity data, respectively, and the plotting 
time is selected as 2007 and 2022. It can be found that in both 2007 and 2022, 60% of the 
provinces fall in the first and third quadrants based on either the adjacency matrix or the 
geographic matrix. This is similar to the results of the global Moran index, which confirms the 
positive spatial correlation of carbon emission intensity among provinces. 

 
Figure 2.  Moran Scatterplot of Carbon Emission Intensity Based on Neighbourhood Matrix, 2007 vs. 

2022 

 
Figure 3.  Moran scatter plot of carbon emission intensity based on geographic distance matrix, 2007 

and 2022 

3.2.3 Driving mechanism analysis based on spatial Durbin model 

(1) Spatial panel model construction 

The spatial Durbin model, the spatial autoregressive model, and the spatial error model are the 
three most commonly used spatial panel econometric models. The general measurement 



 

equation of the spatial panel measurement model is  𝑌௜௧ = 𝛼𝐼௞ + 𝜌𝑊𝑌௜௧ + 𝛽𝑋௜௧ + 𝜃𝑊𝑋௜௧ +𝜀௜௧ , 𝜀௜௧ = 𝜎𝑊𝜀௧ + 𝜙௜௧. 𝑌௜௧ is the explanatory variable, 𝑋௜௧ is the explanatory variable, 𝛼 is a constant, 𝐼௞  is the unit 
matrix, the coefficient 𝛽  reflects the effect of the explanatory variable on the explanatory 
variable, the parameters 𝜌, 𝜃, and 𝜎 are the spatial autoregressive coefficients of each term, 𝑊 
is the spatial weight matrix, and 𝜀௜௧  is the stochastic error term. the values of 𝜌, 𝜃, and 𝜎 
determine the general form of the spatial panel econometric model reduces to which specific 
model, such as when 𝜌, 𝜃 is not 0 and 𝜎 is 0, it reduces to the spatial Durbin model (SDM). 

(2) Model testing 

By calculating the Lagrange multipliers (LM and Robust LM), the LM test results are shown 
in Table 3. The test results show that LM-error and LM-lag are significant at 99% confidence 
level, while Robust LM-error has a p-value greater than 0.1 and fails the significance test. It 
indicates that it is more appropriate to choose the spatial lag model in the LM test. 

Table 3.   LM test results 

Test test value p-value 
Moran’s I 4.752 0.000 
LM-error 21.152 0.000 

Robust LM-error 0.639 0.151 
LM-lag 28.695 0.000 

Robust LM-lag 8.183 0.089 
 

Table 4.   Wald test and LR test results 

Test method original hypothesis statistic p-value 
Wald-SAR SDM translatable to SAR 30.16 0.0002 
Wald-SEM SDM translatable to SEM 71.96 0.0000 

LR-SAR SDM translatable to SAR 42.52 0.0000 
LR-SEM SDM translatable to SEM 67.17 0.0000 

 

Through the Hausman test, the test results are shown in Table 5: should be selected random 
effects model or fixed effects model, according to the results, the statistic is 9.74, at the 99.9% 
confidence level through the test, where the selection of random effects model does not meet 
the requirements, and therefore the selection of fixed effects model. 

Table 5.   Hausman test results 

Test Method Statistic p-value 
Hausman test 9.74 0.0004 

In order to make the results more accurate, this paper further conducts Wald test and LR test, 
the results are shown in Table 4. 

With individual fixed effects, the Wald test and LR test rejected the original hypothesis, 
indicating that the spatial Durbin model refused to degenerate into SEM or SAR, and that the 
spatial Durbin model (SEM) was chosen as the most appropriate, followed by further 
confirmation of the use of time fixed effects and regression to produce the final results. 



 

4 Experiment and result 

4.1 Data 

The dataset used in this paper covers five dimensions: green credit, green securities, green 
insurance, green investment and carbon finance, and the specific data include the proportion of 
green credit scale, the proportion of interest expenses of the six high-energy-consuming 
industries, and the proportion of market capitalisation of environmentally friendly enterprises, 
etc. The data are mainly obtained from the social responsibility reports of the major banks, 
their financial annual reports, the database of the Choice Financial Terminal, and the "Social 
Responsibility Report of the Banking Industry" published by the China Association of the 
Banking Industry. Banking Industry Social Responsibility Report", etc. The dataset also 
includes data on carbon emissions, which are estimated based on the energy consumption 
structure and carbon emission coefficients of each province. The raw data include coal, oil and 
natural gas consumption of each province, etc., which are sourced from China Energy 
Statistics Yearbook, China Statistics Yearbook, and relevant reports such as average carbon 
dioxide emission coefficients of unit power supply of the provincial power grids. In addition, 
the dataset includes other relevant economic and social indicators, such as gross regional 
product (GDP), population density, urbanisation level, etc., which are mainly sourced from the 
National Bureau of Statistics (NBS) and other officially released statistics. 

Comprehensive analyses of these data help assess the impact of green finance on provincial 
carbon emissions and provide a scientific basis for the formulation of relevant policies. 

4.2 Regression results  

In this paper, a series of tests determined that the most suitable for this study is the spatial 
Durbin model with fixed effects, and the following table reports the regression results based 
on the three spatial weighting matrices (neighbourhood matrix, geographic distance matrix, 
and economic geography matrix), and based on the regression results, we study the impact of 
green finance on carbon emissions and obtain the conclusions as follows: 

In Table 6, column X can be interpreted as the local effect, which indicates the impact of local 
explanatory variables on local carbon emission intensity, while column WX is the spatial 
spillover effect, which indicates the impact of explanatory variables in the neighbouring 
regions on local carbon emission intensity. 

Table 6.   Spatial Durbin model regression results based on different spatial weight matrices 

Variables Adjacency matrix Geographic distance matrix Economic geography 
matrix 

X WX X WX X WX 

lnGFI -0.264*** 
(-2.57) 

-0.125* 
(-1.74) 

-0.159** 
(-1.77) 

-1.010 
(1.48) 

-0.466*** 
(-3.87) 

-1.158*** 
(-3.81) 

UR 0.426* 
(-1.68) 

-2.423** 
(-2.80) 

1.543*** 
(-4.11) 

9.282*** 
(4.45) 

0.727* 
(1.89) 

1.417 
(1.09) 

FT 1.152*** 
(10.39) 

-0.656*** 
(-3.78) 

1.034*** 
(12.57) 

-4.145*** 
(-6.88) 

0.770*** 
(7.73) 

-0.977*** 
(-3.44) 

FDI -0.080* 
(1.80) 

14.134*** 
(4.67) 

-4.863*** 
(-3.76) 

44.560*** 
(5.35) 

0.154 
(0.12) 

14.272*** 
(3.30) 



 

R&D 27.771*** 
(5.50) 

10.761 
(1.21) 

22.286*** 
(5.25) 

-
130.504*** 

(-4.29) 

33.806*** 
(6.14) 

-
39.500*** 

(-2.80) 

lnPD -0.255*** 
(-7.95) 

0.482*** 
(7.91) 

-0.068*** 
(-3.02) 

1.909*** 
(9.72) 

-0.266*** 
(-8.51) 

0.456*** 
(5.21) 

lnFD -1.143*** 
(-10.04) 

1.952*** 
(8.01) 

-0.586*** 
(-6.19) 

1.304** 
(2.22) 

-1.449*** 
(-11.38) 

1.825*** 
(5.37) 

ERS 0.972*** 
(6.75) 

2.008*** 
(5.95) 

1.476*** 
(13.38) 

19.170*** 
(16.65) 

2.201*** 
(13.39) 

2.329*** 
(4.79) 

lnPCG 1.440*** 
(11.70) 

-1.010*** 
(-4.31) 

0.894*** 
(8.35) 

-0.623 
(0.28) 

1.421*** 
(7.67) 

-0.860 
(-1.58) 

rho 0.221*** 
(3.56) 

0.209*** 
(-6.66) 

0.058*** 
(3.63) 

Note: Values of Z-statistics corresponding to the regression coefficients are in parentheses; *, **, *** 
indicate significance at the 10 per cent, 5 per cent and 1 per cent significance levels, respectively. 

The results in Table 6 do not fully reflect the impact of green finance and other explanatory 
variables on carbon emission intensity, nor can they accurately estimate the spatial spillover 
effect of green finance on carbon emission intensity in the neighbouring provinces, so the total 
effect is estimated by partial differentiation and decomposed into direct and indirect effects, so 
as to observe the impacts of the explanatory variables corresponding to the province, the 
explanatory variables of the neighbouring regions on the intensity of carbon emissions, and to 
better portray the impact of green finance on carbon emissions. The results are shown in Table 
7: 

Table 7.   Spatial Durbin model decomposition results based on different spatial weight matrices 

Variabl
es 

Adjacency matrix Geographic distance matrix Economic geography matrix 
Direct e

ffect 
Indirect eff

ect 
Total effec

t 
Direct effe

ct 
Indirect eff

ect 
Total effec

t 
Direct effe

ct 
Indirect eff

ect 
Total effec

t 

lnGFI 
-0.270*

** 
(5.19) 

-0.216** 
(2.43) 

-0.486 
(-1.57) 

-0.213*** 
(-2.64) 

-0.591* 
(1.86) 

-0.805 
(1.22) 

-0.468*** 
(6.75) 

-0.188*** 
(-3.75) 

-0.656*** 
(-4.48) 

UR -0.597 
(-1.19) 

-3.129*** 
(-2.87) 

-3.727*8* 
(-3.50) 

-2.093*** 
(-4.79) 

5.350*** 
(5.24) 

3.256*** 
(3.97) 

0.710 
(1.62) 

1.366*** 
(1.05) 

2.077* 
(1.65) 

FT 
1.143*

** 
(10.82) 

-0.048** 
(-2.25) 

0.660*** 
(2.93) 

1.301*** 
(13.79) 

-2.618*** 
(-8.67) 

1.316*** 
(-4.60) 

0.778*** 
(7.91) 

-0.949*** 
(-2.98) 

-0.171 
(-0.50) 

FDI -0.701 
(0.48) 

17.301*** 
(17.301) 

18.002*** 
(3.59) 

-7.224*** 
(-5.75) 

24.226*** 
(6.60) 

17.001*** 
(4.07) 

0.229 
(0.18) 

14.351*** 
(3.36) 

14.581*** 
(3.09) 

R&D 
28.640

*** 
(5.92) 

21.234* 
(1.78) 

49.875*** 
(3.60) 

29.606*** 
(-6.76) 

-75.637*** 
(-4.77) 

-46.030*** 
(-3.05) 

33.525*** 
(6.41) 

-38.362*** 
(-2.68) 

-4.837 
-0.33) 

lnPD 
-0.231*

** 
(-7.52) 

0.522*** 
(7.21) 

0.290*** 
(3.91) 

-0.160*** 
(-6.68) 

0.947*** 
(8.72)) 

0.786*** 
(7.13) 

-0.262*** 
(-8.25) 

0.453*** 
(5.06) 

0.190** 
(2.15) 

lnFD 

-1.046*
** 

(-10.0
5) 

2.056*** 
(6.74) 

1.010*** 
(3.09) 

-0.682*** 
(-7.07) 

1.005*** 
(3.31) 

0.322 
(1.16) 

-1.436*** 
(-11.69) 

1.837*** 
(5.33) 

0.401 
(1.15) 

ERS 
1.094*

** 
(8.03) 

2.793*** 
(7.18) 

3.888*** 
(9.38) 

0.672*** 
(4.65) 

8.215*** 
(10.83) 

8.888*** 
(11.42) 

2.218*** 
(13.61) 

2.503*** 
(4.33) 

4.721*** 
(6.86) 

lnPCG 
1.402*

** 
(10.76) 

-0.841*** 
(-2.86) 

0.560 
(-0.98) 

0.987*** 
(8.51) 

-0.898*** 
(-2.92) 

0.089 
(0.28) 

1.421*** 
(8.42) 

-0.832** 
(-2.43) 

0.588* 
(1.68) 

From the decomposition results, it can be seen that under three different spatial weight 
matrices, the direct effect of the level of green financial development after taking the 
logarithm are all significantly negative at the 1% level, with coefficients of -0.270, -0.213 and 
-0.468 in order, which once again indicates that the green finance development can directly 
reduce the local carbon emissions. In terms of indirect effects, the coefficients of green finance 



 

under different weight matrices are all significantly negative, with the coefficients of -0.216, -
0.591 and -0.188 in turn, i.e., the green finance development in neighbouring provinces will 
significantly reduce carbon emissions in the province. 

5 Conclusion 

This study conclusively demonstrates that green finance significantly reduces carbon 
emissions in China, both within and across provincial boundaries, underscoring its vital role in 
advancing the country’s sustainability goals. The application of the Spatial Durbin Model 
(SDM) has highlighted the direct impact of green finance on lowering emissions within 
provinces, as well as its indirect, spillover effects on neighboring regions. These findings 
advocate for the strategic importance of incorporating spatial dynamics into the design and 
implementation of environmental policies. The research suggests that enhancing green finance 
mechanisms can serve as a critical lever for China's transition to a low-carbon economy, 
emphasizing the need for integrated policy efforts that transcend regional divides. As deep 
learning algorithms continue to advance in classification and prediction tasks [11-12], future 
research could try to improve the model based on deep learning algorithms and thus solve 
more practical problems. Future directions should focus on exploring the underlying pathways 
through which green finance influences environmental outcomes and the interplay with other 
factors like technological advances and policy frameworks. In essence, this study reinforces 
the case for robust support and expansion of green finance initiatives, alongside national and 
provincial policy alignment, to optimize the environmental benefits and propel China towards 
its carbon reduction targets more effectively. 
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