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Abstract. The Heston model is an extension of the BS model. Among them, the volatility 
is no longer assumed to be constant and the variance follows a stochastic process. This 
paper compares the theoretical basis of the Heston model with the BS model, and options 
are priced and contrasted with ideal prices by using these two pricing models to find out 
which is better. The empirical analysis shows that Heston model has smaller errors for 
option pricing. 
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1 Introduction 

The Heston Model, introduced by Steven Heston in 1993, stands as a pivotal advancement in 
options pricing theory, particularly in capturing the dynamics of financial markets with greater 
fidelity than the Black-Scholes Model. Where the Black-Scholes Model assumes constant 
volatility, an assumption at odds with empirical observations, the Heston Model innovatively 
incorporates stochastic volatility, a key feature that reflects the fluctuating nature of market 
volatility. 

At its core, the Heston Model articulates a dynamic relationship between asset prices and their 
corresponding volatilities, allowing for a more nuanced understanding of options pricing 
dynamics. Unlike the simplistic assumption of constant volatility in the Black-Scholes Model, 
the Heston Model posits that both asset prices and volatilities evolve stochastically over time, 
acknowledging the inherent uncertainty and variability in financial markets. 

Central to the Heston Model’s formulation are the stochastic differential equations (SDEs) 
governing the evolution of asset prices and volatilities. While the asset price dynamics in the 
Heston Model resemble those of the Black-Scholes Model, following a geometric Brownian 
motion, the inclusion of a stochastic process for volatility sets it apart. Volatility in the Heston 
Model adheres to a mean-reverting process, characterized by a square-root diffusion, wherein 
volatility tends to gravitate towards a long-term average, reflecting observed market behavior 
more accurately. 

Furthermore, the Heston Model considers the correlation between asset price changes and 
changes in volatility, recognizing the intertwined nature of these two factors in driving options 
prices. This correlation feature allows the model to capture the co-movement between asset 
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prices and volatilities, enhancing its predictive power and applicability in various market 
conditions. 

In contrast to the Black-Scholes Model's simplicity, the Heston Model's incorporation of 
stochastic volatility imbues it with greater flexibility and robustness. By accounting for 
time-varying volatility, the Heston Model better accommodates the complexities of real-world 
market dynamics, making it a preferred choice for options pricing and risk management, 
especially in volatile or turbulent market environments. 

In summary, while the Black-Scholes Model laid the groundwork for options pricing theory, 
the Heston Model represents a significant leap forward by embracing stochastic volatility. 
Through its nuanced depiction of asset price and volatility dynamics, the Heston Model offers 
a more comprehensive and realistic framework for understanding and pricing financial 
derivatives, underscoring its enduring relevance in modern finance. 

2 Literature Review 

2.1 Ito Lemma[1] 

Ito Lemma was put forward by Japanese mathematician Ito in 1944. Ito Lemma is an 
important result describing the differential operation rules of stochastic processes. If there is a 

stochastic process tX , which can be described by the stochastic differential equation 

( , ) ( , )t t t tdX t X dt t X dW   , where ( , )tt X  is the drift term, ( , )tt X  is the 

volatility term, and tdW  is the differential of a Brownian motion. Then, the Ito lemma states 

that if ( , )f t x  is a function with continuous partial derivatives, then the differential form of 

the process ( , )t tY f t X  is given by: 
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derivative of f  with respect to x . 

2.2 Option-Pricing Model 

2.2.1 BS Model[2] 

In 1973, American mathematician Black and economist Scholes proposed the BS formula of 
European stock option pricing without paying dividends under some idealized assumptions, 
that is: 
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, 2 1d d T t   , S  is the stock 

price, ( )U  is the cumulative distribution function of normal distribution. Tis the maturity 

date, t  is the present time, r  is a risk-free interest rate. The premise of their conclusion is 
that the underlying asset price obeys the geometric Brownian motion: 

t t t tds s dt s dW   , where tW  is a Brownian motion. However, the hypothesis in the 

BS model: the return rate of the underlying asset obeys the normal distribution, the risk-free 
interest rate is constant, and the volatility rate is constant, which is obviously inconsistent with 
the actual situation. In addition, a fatal flaw of the BS formula is that it can only be priced for 
European options. The BS formula is directly used to price off options and other exotic 
options. 

2.2.2 CIR Model[3] 

Cox, Intersoll and Ross(1985)abandoned the assumption that the risk-free interest rate is 
constant in BS model and proposed CIR Model: 

( )t t t tdr r dt r dW    
 

Where  ,  ,   are positive constants, 22  . The interest rate determined by tr  

this equation is positive, thus avoiding the occurrence of negative interest rate. From the 
model, we can see that the volatility of interest rate is a monotonically increasing function of 

tr , which increases with the increase of tr , is no longer a constant, and is closer to the 

heteroscedasticity of the real interest rate. However, the problem of CIR model is that it is 
difficult to use the model to estimate the parameters, and it can not explain the term structure 
of interest rate well. 

2.2.3 Heston Model [4] 

Heston (1993) obtained the following stochastic differential equation model by using the CIR 
model: 
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Where ( )idw t , 1, 2i   is the Brownian motion under the realistic measure. The variance 

therefore follows the following SDE: 
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( , , )s v t v   is risk of volatility,   is a constant. We have the following formula: 

( , , ) max{0, }, (0, , ) 0U s v T S K U v T    
Call option price: 

1 2( , , ) ( , )C s v t SP KP t T P 
 

Let lnx S , substitute the above solution into the PDE, we have: 
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Where jP  satisfies the boundary value condition as follows: 

{ ln }( , , ; ln )j x KP x v T K I  
 

( )x t  satisfies the following SDE: 

1( ) ( ) ( )jdx t r u v dt v t dw t      

2( ) ( ) ( )j jdv a b v dt v t dw t  
 

Then jP  satisfies the following conditional probability form: 

( , , ; ln ) ( ( ) ln | ( ) , ( ) )j rP x v T K P x T K x t x v t v   
 

Solving the conditional probability is transformed into solving its characteristic function, and 

its characteristic function is defined as ( , , ; )jf x v T  , which satisfies the following final 

value conditions: 
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From this, we use the inverse Fourier transform and get the result: 
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We can also use the two-dimensional Girsanov theorem to derive the SDE of the stock price 

tS  and the volatility tv  under the risk-neutral measure, which is not expanded here[5]. 

The Heston model greatly enriches and develops the stochastic volatility model, which can 
better characterize the market volatility. In addition, the model derivation has a theoretical 
basis, which considers both the mean reversion process of volatility and the wave. Volatility, 
stock price correlation, in line with market observations. The literature shows that the model 
has European option pricing. The semi-explicit solution of the stochastic volatility model is 
found for the first time, which is more suitable than the past stochastic volatility model. Use 
value [6]. 

3 Empirical Analysis 

3.1 Data Selection 

This article selects 50 ETF subscription options that expire in March, April, June, and 
September 2024. Their theoretical option prices are calculated by BS model and Heston model 
and compared with the market price (March 8, 2024 ), and the calculation errors under the two 
methods are obtained. The daily closing price of the Shanghai 50 ETF from January 4, 2016 to 
January 4, 2023 is selected as the underlying asset price, and the logarithmic yield is 
calculated. The daily closing price of the option is the actual market price of the option. 

3.2 Descriptive Statistical Analysis 

We perform descriptive statistics on the above data and the results are shown in the table 
below. 

Table 1: Descriptive Statistics 

mean value variance standard deviation skewness kurtosis jarque-bera test 
0.000473 0.000234 0.0153 -0.4768 9.7367 2982.3468 

Conduct descriptive statistical analysis on the daily logarithmic returns of the Shanghai Stock 
Exchange 50ETF and use Ljung Box Q test for data autocorrelation. The logarithmic return is 

1ln lnt t tR P P  , where tP  is the daily closing price on day t . As shown in Table 1, the 

average daily return of the Shanghai Stock Exchange 50ETF approaches 0, with a kurtosis 
value of 9.7367 greater than 3, showing a significant peak feature; The skewness is -0.4768 
and is less than 0, showing a left skewness with left trailing characteristics; The statistical 
value of the J-B test is much greater than 0, which is significantly inconsistent with the normal 
distribution. 



 

 

3.3 Calculation of the Theoretical Price of Options 

The 240-day closing price of ETF50 subscription options on March 8 is selected to calculate 
its volatility. The calculation formula is 

1240* (ln( ) ln( ))t tVar S S  
 

The result is 14.32% . The SVT model is established for the return on underlying assets, and 
Bayesian estimation of volatility in BS model is obtained by MCMC algorithm[7]. We use 
simulated annealing algorithm to estimate the parameters of the Heston model [8]. According 
to the data given by shibor, we select the risk-free interest rate of 2 weeks, 3 months, 1 month 
and 6 months. Next, we price all of the March 8 50ETF call options using the BS model and 
the Heston model, respectively, and the results are presented in the Appendix. According to the 
above data, the following line chart is drawn. As shown in the following figure. (See Figure 1) 

 

Figure 1: Different Price Model. 

3.4 Calculation of the Error 

Let RC  be the true market price of 50 ETF call option, BC  is the theoretical option price 

obtained from the BS model, and HC  is the theoretical option price obtained from the 

Heston model. We compare the pricing errors of the two model prices with the market prices 

by means of the mean absolute error(MAE) and the mean relative error(MRE). Let MAE  be 

the MAE and MRE  be the MRE. Then: 
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Using Matlab software, their MAE  and MRE  were calculated for the BS model and the 

Heston model, respectively. The statistical results are shown in the table below. (See Table 2) 

Table 2: Sample Error 

( )MAE B  ( )MAE H  ( )MRE B  ( )MRE H  

0.01106 0.0072 0.2504 0.1848 

By comparing the difference between the 50 ETF subscription option price and the market 
price calculated by the Heston model and the difference between the 50 ETF subscription 
option price and the market price calculated by the BS model, it is found that both MAE and 
MRE are small, indicating that the pricing effect of the Heston model and the BS model are 
great. However, whether it is the MAE or the MRE, the Heston model is significantly lower 
than the BS model, indicating that the pricing effect of the Heston model is better than that of 
the BS model. 

4 Conclusion 

The daily logarithmic return rate of Shanghai 50 ETF shows significant peak characteristics 
and does not obey the normal distribution. The pricing effects of the two models on call 
options are good, and the pricing effect of the Heston model is better than that of the B-S 
model. The pricing effect of the B-S model lies in the accuracy of the volatility estimation, 
while the pricing effect of the Heston model depends on the selection of the algorithm and the 
accuracy of the parameter estimation. 

It is normal to have a certain degree of deviation between the actual price and the theoretical 
price. In the practical application of the model, we can combine the advantages and 
disadvantages of the model and different situations to choose, or we can use the two models 
comprehensively to make the calculation results more reference. 
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