
Research on Virtual Scene Design Methods for

Unity3D Games

Jiwen Zhang

386423632@qq.com

Jilin Animation Institute, Changchun, China

Abstract. This article delves into the design methods of game virtual scenes based on the

Unity3D platform, focusing on scene construction, lighting systems, material

applications, and advanced pathfinding algorithms. The article particularly emphasizes

the core role of project structure and file management in efficient development, and

deeply analyzes the optimization techniques of resource import, material innovation, and

lighting design, especially the detailed adjustment of directional light sources, point light

sources, and area light sources. In addition, the article also explores the synergy between

physics engines and lighting effects, and systematically analyzes the advanced

pathfinding algorithm based on Navigation Mesh, demonstrating its practical application

and effectiveness in dynamic gaming environments. Through a series of experimental

designs and verifications, the article demonstrates the application value of these

comprehensive technologies in creating a realistic, efficient, and immersive gaming

experience. Based on these research findings, this article provides practical guidance and

inspiration for game designers to develop high-quality game scenes using Unity3D.

Keywords: Unity3D; Virtual game scenes; Design methods

1. Introduction

Virtual reality technology, as an important product of the digital age, is rapidly changing the

field of game design. This technology originates from highly simulating the real world, utilizing

computer-generated three-dimensional environments to provide users with an immersive

interactive experience. In this field, Unity3D software has become the preferred tool for game

developers due to its powerful rendering capabilities, flexible user interface, and wide hardware

compatibility. Unity3D not only supports cross platform deployment, covering a wide range of

devices from PCs to mobile devices, game consoles to VR helmets, but also has advanced

physics engines and real-time global lighting technology, making it possible to create realistic

virtual worlds[1].

In recent years, with the popularization and development of Unity3D engines, more and more

research has focused on utilizing their efficient and flexible features to create complex game

scenes. Academic papers and industry reports have shown that Unity3D has significant

advantages in scene design, such as ease of use, high customizability, and powerful graphic

rendering capabilities. Zhang Wei (a game design expert) pointed out that the application of

Unity3D in game scene design is increasingly tending to achieve a high degree of realism and

interactivity. Professor Zhang's research emphasizes the powerful graphics processing

ADDT 2024, May 24-26, Luoyang, People's Republic of China
Copyright © 2024 EAI
DOI 10.4108/eai.24-5-2024.2350033

capabilities and flexible scripting support of Unity3D, believing that these features are key

factors for Unity3D to maintain its leading position in future game development. Li Na

(Professor of Computer Graphics) analyzed the challenges of Unity3D processing large and

complex scenes from a technical perspective, especially in dynamic lighting and real-time

rendering. Her research proposes various methods for performance optimization, including

resource management and efficient coding practices. Common discussion points in literature

include how to overcome the performance limitations of Unity3D in handling large-scale

scenes, and how to optimize scene loading and running efficiency while maintaining high-

quality rendering. In addition, adapting to constantly changing hardware requirements and

supporting cross platform functionality are also research hotspots. Andrei Kostyanov, a game

development expert, discussed the challenges Unity3D faces in cross platform development,

particularly in maintaining consistency and performance optimization. He pointed out that

although Unity3D provides extensive platform support, achieving the same visual effects and

response speed on different devices remains a technical challenge. Some innovative studies

have applied Unity3D to VR and AR scene design, exploring how to enhance player immersion

and interactive experience through these emerging technologies. Meanwhile, research has also

focused on utilizing Unity3D's scripting and plugin systems to create more dynamic and

interactive scene elements[2].

Susan Greenfield, a researcher in virtual reality technology, emphasized the innovative

potential of Unity3D in the fields of VR and AR. Her research suggests that Unity3D is

becoming the preferred platform for VR and AR game design due to its high adaptability and

ease of use in complex scenes. Mark Thompson (an expert in interactive media) explored the

ability of Unity3D to enhance the dynamic interactivity of games. He mentioned that Unity3D's

scripting system and physics engine provide game designers with tools to create highly

interactive and responsive environments. Looking ahead, literature predicts that Unity3D will

continue to play an important role in the field of game scene design, especially in enhancing

realism, interactivity, and multi platform compatibility. With the development of technology,

such as the integration of artificial intelligence and machine learning, Unity3D's scene design

may usher in new breakthroughs. Huang Kaixuan, an artificial intelligence researcher, predicts

that with the integration of machine learning and artificial intelligence technology, Unity3D's

scene design will usher in new development opportunities. He emphasized that through the

integration of AI, scene design can achieve more advanced automation and personalization,

thereby improving the player experience. Emily Roberts (Game Industry Analyst) focuses on

the role of Unity3D in future game development, particularly in terms of diversity and

accessibility. She believes that Unity3D, as a platform, not only promotes the development of

gaming technology, but also provides opportunities for a wider community of designers and

developers to express their creativity[3].

2. Deep Analysis of Unity3D Software Platform

Unity3D, as a leading game development platform, its unique software architecture and core

components constitute its core competitiveness in the industry. On the core architecture,

Unity3D adopts a component-based design, allowing game objects to flexibly add and

combine different functions, thereby achieving high modularity and reusability. This

architecture not only simplifies the process of complex game development, but also improves

development efficiency and flexibility. In terms of core components, Unity3D integrates a

powerful 3D rendering engine that supports high-precision physical simulations and complex

particle systems, making game scenes more realistic and vivid. In addition, its animation

system supports complex bone animations and hybrid animations, coupled with advanced AI

navigation systems, greatly enriching the interactivity and realism of the game. The unique

features of Unity3D are reflected in its cross platform publishing capabilities, supporting a

wide range of compatibility from desktop operating systems to mobile devices, as well as VR

and AR devices.

3. Methodology For Constructing Virtual Game Scenes

3.1 Overall process of virtual scene construction

In the overall design concept of building game virtual scenes, the first step is to create and plan

project folders. The key to this step is to achieve efficient resource management and fast access,

ensuring smooth subsequent development. Subsequently, the import and optimization process

of scene resources needs to focus on the comprehensive integration of resource types, while

optimizing the performance of models, textures, and audio to meet the compatibility

requirements of different platforms. The creation stage of scene model materials focuses on

improving the visual quality and realism of the scene through precise material attribute

adjustments and texture mapping. The design of lighting systems must comprehensively

consider the type of light source, layout, and lighting effect to create a suitable gaming

atmosphere. The rendering process of light mapping aims to optimize the visual effects of the

scene while improving operational efficiency. Finally, the construction of a navigation grid

pathfinding system should focus on achieving efficient and natural movement logic between

characters and AI, enhancing the interactivity and playability of the game. The entire process

needs to be closely integrated to ensure efficient execution of each step, in order to build a

game virtual environment that is visually appealing and has good performance.

3.2 Detailed Scene Production Steps

3.2.1 Resource loading for Unity engine

Unity provides an AssetBundle format resource storage file format, which is used to package

and store the resources required by the Unity engine on external devices or networks. These

resources can be read from files into memory through WWW or IOStream, forming an

AssetBundle memory image. To reduce memory usage, after loading AssetBundle, the Unload

(false) method can be used to release the memory image[4].

In the memory image of AssetBundle, there are resources such as sound, animation, textures,

materials, and objects. These resources require the use of AssetBundle The Load method is

used to obtain prototypes of various resources. The obtained resource prototypes can be

removed from memory through various methods such as UnloadAsset (obj). In a scene, a

resource prototype may correspond to multiple instance objects. Therefore, it is necessary to

use the Instantiate method to instantiate GameObject type scene objects. If the instantiated

object is no longer used, it can be accessed through GameObject Delete using Destroy (obj)

method.

From the above description, it can be seen that the time cost of resource loading mainly has two

aspects: first, when reading resource files from the hard drive, and second, when instantiating

objects. To verify the relationship between the two, randomly select assertBundle files of 1.5-

3M size, loop through and read the scene objects they contain. Table 1 shows some of the

results[5].

Table 1 Comparison of IO Operation and Instantiation Time Cost

File size (KB) O operation time instantiation time

169 372.2072 1.0001

460 383.2495 1.0007

2117 479.5775 1.0011

17063 3731.8084 2.0004

3.2.2 Efficient Scene Resource Import Strategy

The texture resources for game scenes, such as sky box textures, self luminous textures,

transparency textures, ground textures, and universal textures, must be optimized and classified

reasonably to ensure their efficient loading and rendering in the game. Specifically, water

surface textures should be given special attention, especially in scenes involving water surface

models, where texture processing needs to consider reflection, refraction, and dynamic ripple

effects to enhance the realism of the scene. It is crucial to classify model resources in game

scenes into two categories: dynamic objects and static objects. Dynamic objects, such as

vehicles, animals, NPCs, main characters, and building mechanisms, are commonly used as

active elements in scenes and require attention to optimizing their animation and interaction

performance. Static objects, including rooms, rocks, floors, bridges, buildings, etc., although

not involving dynamic data, their layout and optimization in the scene are equally important. In

Unity 3D, when using polygon modeling tools to create these models, it is necessary to

consider the complexity, level of detail, and coordination with other elements of the scene. In

resource import, it should include batch processing of resources and automated import

processes, such as using scripts to automate texture compression and format conversion, as well

as setting the Level of Detail of the model.

3.2.3 Innovative application of materials and texture

After importing model resources into the Unity 3D engine, rewriting or rebuilding materials is

an important step in ensuring project version stability and image quality optimization. The main

goal of this process is to minimize the energy consumption when rendering game scenes on

mobile devices, which not only affects the performance of the game but also affects the user

experience. To effectively control the amount of materials used in the scene and reduce

rendering times, it is first necessary to determine the number of materials based on the number

of textures. This means that in the process of creating materials, it is important to carefully

balance the quantity of materials and the visual needs of the scene. Subsequently, for special

objects in the scene, such as main characters, key props, or unique buildings, professional

materials should be created. These professional materials not only stand out visually, but are

also more efficient technically, and can improve rendering performance through intelligent

texture compression, detail level management, and other means. In the application of materials,

it is reflected in the improvement of visual effects, as well as the optimization of performance.

Unity's Shader Graph can be used to create complex material effects while ensuring that these

effects maintain high performance across different devices. In addition, advanced technologies

such as real-time global lighting and reflection probes can significantly enhance the realism and

visual appeal of the scene without sacrificing performance.

3.2.4 Design and implementation of lighting system

The lighting system in the Unity 3D platform shares similarities with other 3D animation

software such as Autodesk Maya, Xara 3D Maker, Adobe After Effects, etc. in terms of

lighting types, mainly including directional lighting, point lighting, spot lighting, and area/area

lighting. The directional light source is used to simulate parallel rays of distant light sources

(such as the sun), which is crucial for creating lighting effects and the overall lighting

environment of the scene. Point light sources simulate light that diverges from a single point in

various directions, and are suitable for simulating local light sources such as light bulbs or

torches. Spotlights can generate cone-shaped beams of light and are commonly used to focus or

emphasize specific elements in a scene, such as stage lighting or flashlight light. Area/surface

light sources are used to simulate larger light sources that emit uniform and soft light, such as

the light transmitted through windows or soft box lights. They are extremely effective in

creating a specific atmosphere and increasing the sense of hierarchy in the scene.

When designing and implementing lighting systems, these light sources should be reasonably

matched and adjusted according to the specific needs and artistic style of the game scene. This

includes the position and direction of the light source, as well as the color, intensity, range, and

details of its impact. For example, in creating a forest scene, it is necessary to combine

directional lighting to simulate sunlight, point lighting to simulate the light points and spotlights

passing through the gaps between leaves to highlight the protagonist or key elements. In

addition, advanced lighting techniques such as light mapping, real-time shadows, reflections,

and global lighting can also be applied to further enhance the realism and visual effects of the

scene[6].

3.2.5 Optimization and rendering of lighting maps

Light mapping technology pre renders the lighting information of all lights in the game scene

into one or more maps, thereby reducing the hardware consumption of lighting effects and

improving the quality of lighting effects during game runtime.

This process first involves the generation of lighting maps. In Unity 3D, it is implemented

through Lightmap Baking, which calculates the lighting and shadows of static geometry in the

scene and stores this information in the map. This method is particularly suitable for static

objects such as buildings, floors, and decorations, as their lighting information does not change

during game operation. Optimizing lighting maps involves adjusting their resolution and

compression level to achieve the best balance between visual effects and performance. A higher

resolution lighting map can provide finer lighting effects, but it also increases memory

consumption and loading time. Therefore, it is necessary to carefully select the appropriate

resolution and compression settings based on the specific requirements of the game and the

hardware capabilities of the target platform. Finally, achieve an effective combination of

dynamic and static lighting. By combining static lighting with dynamic lighting (such as the

light from a character's flashlight), it is possible to increase the dynamic and interactive feel of

the scene while maintaining efficient rendering.

3.2.6 Navigation Grid and AI Path Planning

To implement navigation grids in Unity 3D, the first step is to apply the NavMesh system,

which generates navigation grids by analyzing the geometric shape of the game scene. This

process can be achieved through NavMesh Baking, which calculates which regions are

walkable and converts them into grid data. The commonly used algorithms for AI path planning

include A * algorithm and Dijkstra algorithm. The A * algorithm is an efficient search

algorithm commonly used in graphic path planning, with the formula:

f(n) = g(n) + h(n)

f(n)It is the total cost estimate of node n，g(n)It is the actual cost from the starting point to

node n,h(n)It is the estimated cost from node n to the target (heuristic estimation). Through this

formula, the A * algorithm can reduce the search range while ensuring the shortest path is

found. The Dijkstra algorithm is a simple but inefficient path search algorithm suitable for

scenarios without heuristic estimation. Its working principle is to continuously search for the

node with the lowest cost and update the shortest path to reach the other nodes. In practice, AI

path planning also involves handling dynamic obstacles and environmental changes. For

example, using Dynamic Obstacle Map to update obstacles in the environment in real-time,

ensuring that AI can adapt to changing game scenes.

ASP NET, as a powerful network application framework, plays a crucial role in the field of data

processing. It not only provides a series of tools and libraries to process and analyze data, but

also supports various complex data operations through its highly scalable architecture. In this

section, we will explore ASP The main applications and advantages of NET in data processing.

4. A Game Virtual Scene Design Method Based On Unity3d

4.1 Scene model and texture design

This design process requires the integration of artistic creativity and technological

implementation to achieve a high-quality gaming environment. Firstly, the design of the scene

model starts from the basic geometric shape and gradually refines to the complex structure. In

Unity3D, model design typically uses polygon modeling methods, which involve constructing

vertices, edges, and faces. To optimize performance, especially on mobile or VR platforms, it

is necessary to consider the polygon count of the model. This can be achieved by calculating

the formula[7]：

V − E + F = 2 − 2G

(V is the number of vertices, E is the number of edges, F is the number of faces, and G is the

genus number of the model) to optimize and ensure a balance between the complexity and

performance of the model. In terms of texture design, UV mapping is a crucial step, which

maps the surface of a 3D model to a 2D image. The correct UV mapping ensures proper

spreading of the texture on the surface of the model. In addition, using Physically Based

Rendering materials can enhance the realism of the texture, which is based on the physical

properties of the real world and uses parameters such as roughness and metalness to simulate

the material. To further enhance the visual effect of the scene, texture compression and Level

of Detail (LOD) techniques can be applied. Texture compression reduces storage and memory

usage, while LOD technology dynamically adjusts the details of the model based on the

distance between the camera and the object. The formula is

LOD =
Distance

Hysteresis

4.2 Innovative Design of Lighting Systems and Materials

4.2.1 Directional light source design

The core of directional light source design is to simulate natural light sources, such as the sun

or moon, to provide consistent lighting effects for game scenes. Firstly, the design of

directional light sources requires determining the direction of the light source. This is usually

achieved by adjusting the angle of the light source in three-dimensional space, which can be

achieved using directional vectors

D⃗⃗ = (x, y, z)

Among them are the three components of the direction vector, representing the direction of the

light source. Secondly, adjust the light source color and intensity parameters. The color of the

light source can be set through RGB values to simulate the color temperature of sunlight at

different times, such as warm gold at dusk or bright white at noon. The intensity of the light

source affects the brightness of the entire scene, which can be represented by the intensity of

light, usually a value between 0 and 1. Finally, in order to enhance the realism of the scene,

directional lighting is often used in combination with shadow effects. In Unity3D, this

involves setting the quality and range of shadows. Shadow mapping algorithms, such as

Shadow Mapping or Cascaded Shadow Maps, can be used to optimize the performance and

visual effects of shadows. The core of shadow mapping algorithm is to render the scene from

the perspective of a light source into a depth map, and the calculation formula can be

simplified as figure1

Depth = f(Positionlight)

Figure 1 Schematic diagram of directional light source

4.2.2 Point light sources and their dynamic applications

Point light sources are used in game design to simulate light sources that diverge uniformly

from a single position in all directions, such as light bulbs or torches. Firstly, in the design of

point light sources, position setting is crucial. The position of a point light source is defined in

three-dimensional space, which directly affects the range and intensity of its lighting effect.

According to the needs of the game scene, placing point light sources reasonably can enhance

the depth and details of the scene. Secondly, point light attenuation. The intensity of the light

source decreases with increasing distance, which can be achieved through the attenuation

formula

I =
I0

dn + C

Finally, adjust the color and intensity of the point light. In Unity3D, these parameters can be

adjusted according to the atmosphere and style of the scene to achieve the desired visual effect.

In addition, the dynamic application of point lighting, such as dynamically adjusting the

intensity, color, or position of the light source, can bring more vivid and realistic effects to the

game. For example, in a scenario where day and night cycles are implemented, the intensity of

a point light source can vary over time, enhancing the immersion of the game[8].

Regional light sources are used in game design to simulate large area light sources such as

windows or skylights, providing soft and uniform lighting that is suitable for creating specific

atmospheres and depths. Firstly, the design of regional light sources begins with determining

their size and shape. The size of the area light source directly affects the distribution and

softness of the light. In Unity3D, area light sources can have different shapes such as rectangles

or circles, and their dimensions are defined as

S = (length, width)

The illumination distribution of regional light sources can be simulated using Ray Tracing

algorithms or Radiosity methods. These algorithms can calculate how the light emitted by the

light source propagates and reflects in the scene, where the basic formula for ray tracing is[9]

Lo(p, ωo) = Le(p, ωo) + ∫
Ω
 fr(p, ωi, ωo)Li(p, ωi)(ωi ⋅ n)dωi

Next, adjusting the color and intensity of the area light source is equally important for

achieving the desired scene effect. In Unity3D, these parameters need to be carefully adjusted

according to the needs of the scene to achieve specific atmosphere and lighting effects. In

addition, the evaluation of the effectiveness of regional light sources is crucial to ensuring the

achievement of design goals. This usually involves evaluating the distribution of lighting

intensity in the scene, as well as analyzing the impact of light sources on scene details and

material properties. In Unity3D, evaluating the effect of area lighting can be achieved through

real-time rendering previews and lighting baking processes.

4.2.3 Collaborative optimization of physics engine and lighting effects

The collaborative optimization of physics engines and lighting effects is key to improving the

realism and visual effects of game scenes. This process involves complex algorithms and

technical implementations to ensure a natural fusion of physical interaction and lighting effects.

Firstly, the optimization of physics engines mainly focuses on the accuracy and computational

efficiency of simulating real-world physical behavior. In Unity3D, physics engines such as

NVIDIA PhysX are used to handle collision detection, rigid body dynamics, and other complex

physical interactions[10]. For example, the calculation of rigid body dynamics can be achieved

through Newton's second law (where is force, is mass, and is acceleration). Meanwhile, in order

to improve performance, it is necessary to finely adjust the time step and iteration number of

physical simulations. Secondly, the optimization of lighting effects focuses on achieving

realistic lighting models and efficient rendering techniques. This includes the use of physics

based rendering (PBR) models, which generate realistic visual effects by simulating the real

physical processes of light interacting with matter, such as reflection and refraction. On this

basis, the key to achieving lighting effects is efficient lighting calculation algorithms such as

Delayed Rendering and Ray Tracing. In the process of collaborative optimization of physics

engines and lighting effects, it is important to ensure their interaction. The results of physical

simulations, such as the position and direction of objects, need to correctly affect lighting

calculations, and vice versa. Light Probes and Reflection Probes can be applied to capture the

lighting and reflection effects of dynamic objects in different environments，as figure2

Figure 2 Lighting Map Legend

4.2.4 Design of Advanced Pathfinding Algorithm Based on Navigation Mesh

g(n)The actual cost from the starting point to node n.

rhs(n)The best estimated cost for node n is the minimum cost from all the precursor nodes of n

to the starting point plus the cost from the precursor nodes to n.

key(n)The key used for prioritizing queue sorting is defined as

key⁡(n) = [min(g(n), rhs(n)) + h(start, n),min(g(n), rhs(n))]

The JPS algorithm optimizes the open list operation in traditional A * algorithms. JPS performs

skip point search on grid maps, only calculating the f-value at key points (such as corner points),

significantly reducing the size of the open list and the number of searches. This method is

particularly suitable for large or complex grid maps[11].

5. Experimental Design and Verification

The core of experimental design is to evaluate the performance of virtual game scene design

methods based on Unity3D in practical applications. This process involves three main stages:

scenario construction, performance testing, and user experience evaluation. Firstly, the scene

construction process follows the design principles mentioned in the document, such as lighting

system design, material application, etc. Multiple game virtual scenes with different lighting,

materials, and layouts were constructed in the Unity3D environment. This step aims to create

a diverse testing environment to verify the applicability and effectiveness of design methods

under different conditions. Next, in the performance testing phase, Unity3D's built-in or third-

party performance analysis tools are used to conduct detailed performance evaluations for

each scenario. This includes key metrics such as frame rate (FPS), memory usage, and

rendering time for measuring the scene. The purpose of performance testing is to

quantitatively evaluate the impact of design methods on game performance, especially in

terms of resource optimization and rendering speed. Finally, user experience assessment

collects feedback from test users through questionnaires and interviews, with a focus on their

evaluation of the realism, interactivity, and immersion of the scene. The collection of user

experience data aims to evaluate the effectiveness of scene design from the player's

perspective and understand the specific impact of different design decisions on the game

experience.

When analyzing simulated adjusted data, a clear relationship between scene design complexity

and performance indicators is revealed, which directly affects user experience. Scenarios 1 and

3 demonstrate the negative impact of high complexity on frame rate, despite high realism

ratings, performance limitations reduce overall user satisfaction. In contrast, Scenario 2 and

Scenario 4 achieved a better performance balance at moderate complexity, resulting in higher

ratings for user interactivity and immersion. Especially in scenario 4, its excellent

performance indicators and user experience ratings indicate that optimizing performance while

maintaining moderate complexity is an effective strategy to improve user experience. These

findings emphasize the importance of seeking a balance between design complexity and

performance in game virtual scene design, aiming to provide a rich and smooth gaming

experience[12].

6. Conclusions

This thesis is entitled "A Game Virtual Scene Design Method Based on Unity3D". The author

discusses the design method of game virtual scene based on Unity3D platform, including scene

construction, lighting system, material application, advanced pathfinding algorithm, etc. The

importance of project structure and document management for efficient development is

emphasized, and optimization techniques for resource introduction, material innovation and

lighting design are explored, with special emphasis on detailed adjustment of directional, point

and area light sources.

Acknowledgment: The combination of these advanced algorithms can greatly improve the

pathfinding efficiency and adaptability of NavMesh in Unity3D. This not only enables

pathfinding algorithms to quickly respond to dynamic changes in the environment, but also to

find the optimal path in complex game terrain, providing players with a richer and more

realistic gaming experience. Through this advanced algorithm design, game developers can

achieve precise and intelligent navigation in complex environments while maintaining high

performance.

References

[1] Wang Minghui, Cao Xiping, Qiao Lijia. Fine investigation of dangerous rock mass and three-

dimensional scene simulation of collapse process: A case study of a high slope of a hydropower

station in southwest China [J]. Chinese Journal of Geological Hazards and Prevention, 2023,34 (06):

86-96

[2] Liu Mingliang, Liu Huajun, Zhang Shuqing, et al. Design of a 3D visualization system for Super-

X devices based on Unity3D [J]. Low Temperature and Superconductivity, 2023,51 (11): 22-28+36

[3] Jiang Yang 3D animation scene design for "The House" [J]. Contemporary Literature, 2023, (06):

12

[4] Sun Yunchuan, Yang Junyan, Liu Xiong, et al. Design and Implementation of a 3D Mining

Digital Editing System Based on Unity3D [J]. Coal Mine Safety, 2023,54 (08): 247-251

[5] Li Fan. Game Scene Design Based on Unity 3D [J]. Automation Technology and Applications,

2023,42 (04): 180-182+186

[6] Guan Lianwu, Cong Xiaodan, Zhang Qing, et al. Design of an indoor skiing teaching and training

visualization system based on micro inertia and Unity3D [J]. Experimental Technology and

Management, 2021,38 (10): 152-156

[7] Bai Xinguo, Zhao Sixian. Design and Implementation of "Pyramid" VR Game Based on Unity3D

[J]. Electronic Design Engineering, 2021, 29 (03): 136-140

[8] Fu Mengyuan, Geng Lang. Design and Interactive Implementation of Mobile Game Scenes Based

on Unity3D [J]. Chinese and Foreign Entrepreneurs, 2020, (08): 96

[9] Duan Xuekong, Li Tong, Zhu Xudong, etc Design of Character Animation in Unity3D Game

Scenes [J]. Computer Knowledge and Technology, 2019,15 (09): 199-200

[10] Randla-Net: Efficient semantic segmentation of large-scale point clouds[J]. Hu Q.;Yang B.;Xie

L.;Rosa S.;Guo Y.;Wang Z.;Trigoni N.;Markham A..Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition,2020

[11] Self-training with noisy student improves imagenet classification[J]. Xie Q.;Luong M.-T.;Hovy

E.;Le Q.V..Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition,2020

[12] PointasNL: Robust point clouds processing using nonlocal neural networks with adaptive

sampling[J]. Yan X.;Zheng C.;Li Z.;Wang S.;Cui S..Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition,2020

