
GPU optimized parallel implementation of NaSch

traffic model

Yassine El Hafid, Abdessamad El Rharras, Mohamed Wahbi and Rachid Saadane

{yassine.el.hafid,a.elrharras,wahbi.mo,rachid.saadane}@gmail.com

SIRC/LaGeS EHTP, EHTP

Casablanca, Morocco

 Abstract. Traffic simulation has a practical interest for modern
society, mainly in minimizing the problems of congestion, which is the
main cause of road accidents. In this way, several traffic models were
developed based on Cellular Automata (CA). Moreover, the simulation of
traffic system requires a high computing ability. Therefore, this paper
explores the ways to use the graphics-processing unit (GPU) for reducing
time simulation of such applications. We propose several software
implementations to maximize GPU performance for NaSch model
parallelization. Compared to CPU, the simulation results show that we need
optimization effort to get better performance results for GPU.

Keywords: GPGPU, CPU, CUDA, NaSch model, Road Traffic, Parallel

computing optimization

1 Introduction

Road traffic is considered as an important economic lever which has a significant impact

on modern society. Much research is carried out in order to reduce the problems of

congestion, road accidents, or the creation of appropriate infrastructure in a given socio-

economic context. Most of the information collected on traffic is based on empirical

measurements by proximity sensors, traffic video or aerial and satellite images. The

measurements are always done on a set of disparate vehicles in uncontrolled environments.

Thus, with the development of information technology tools, the interest of scientists for

numerical simulations is quickly established. Several traffic models were developed to

approximate the actual drivers behavior and the conditions in which they operate. This type

of simulation requires significant computing capability, causing a significant latency time

ranging from several hours to several days. Additionally, new processors architectures were

immersed in recent years. Designed initially for video games, graphic processors know

considerable improvements in performance calculations, number of cores and memory

bandwidth integrated in GPU cards. Indeed, some newer graphics cards have up to 5760

calculations cores and up to 24 GB of dedicated RAM; with a relatively affordable price for

scientists. Several generations of processors were releases with significant improvements in

processor architecture, power consumption and the software framework, allowing access to

the features of the GPU. In this context, we took an interest in GPU to implement a basic

traffic model developed by

ICCWCS 2019, April 24-25, Kenitra, Morocco
Copyright © 2019 EAI
DOI 10.4108/eai.24-4-2019.2284233

K. Identify applicable funding agency here. If none, delete this. Nagel and M.

Schreckenberg [1]. The GPU could handle a very big number of interacting cars that require

memory space and high-speed calculations. Therefore, algorithm optimization to the target

GPU is a first step in simulating a large number of cars drivers behaviors. Then, in the second

section of this paper, we present different models and methods for road traffic especially

NaSch model and we introduce the architecture of Nvidia Cuda parallel programming. The

third one, we present detailed implementations of NaSch model, sequential on CPU and

parallel on GPU. In the fourth part, we show the experimental results and a discussion of their

interpretation. Finally, we conclude the paper and we propose future prospects of our work.

2 Introduction Methods and models for road trafic

2.1 Trafic models

To describe, understand and improve road traffic, studies provide mathematical models

inspired from fluid mechanics, which describe the different interactions between the driver and

his vehicle. These models include the mobile elements (vehicles, pedestrians ...) into a

representation of the entire road system (roads, traffic, steering wheel ...). These studies are

helpful to investment in infrastructure. The first traffic studies are born before the Second

World War, they are based on an Adams approach [2] using the theory of probability, and on

the work of Bruce D. Greenshields (Yale Office of Road traffic) [3] for modeling the evolution

of flows, speeds and traffic at intersections. After the war, researchers were interested in

tracking the vehicle [4] [5], they developed a theory of traffic flow [6] [7] and the Queueing

theory [8]. Later, in the early 1970s, Payne and Whitham [9] were pioneers in proposing a new

approach based on the fluid flows from fluids mechanics. More recently, while the car park

grows, scientists try to improve the existing methods and propose new models more consistent

with the current traffic conditions. To highlight the

 Fig. 1. Cyclical road to simulate an infinite highway.

different principles and attempt a classification among all the models, Hoogendoorn and Bovy

[10] propose to take the level of detail in modeling (individual element) as classification

criteria to determine four groups:

• Microscopic models describe each component of the system in their behaviors and

interactions in a high level of detail, for example a vehicle and its driver [4];

• Models submicroscopic, further the level of detail cited above, disclose the operated controls

(indicators, speed changes ...) within the vehicle and put them in relation with the

environmental conditions [10] [11];

• The mesoscopic models represent traffic in a lower level of detail by small ensembles whose

behaviors are described in terms of probabilities [12] [13];

• Macroscopic models treat the traffic in a more global perspective and describe traffic in terms

′

of speed, flow and density; the specific characteristics of the fluid flow [6] [13].

•

2.2 NaSch model

NaSch model [1] is a cellular automata model [14] where a section of the road is divided

into cells. Each cell has a specific length of 7.5 meters, which expresses the sum of the

length of most types of vehicles with inter-vehicle distances, spacing a vehicle and its two

nearest neighbors in the case of a blocked traffic. This value of the minimum space occupied

by a vehicle is obtained by the inverse of the blocking density 133 veh/Km, measured

empirically. A cell is either empty or occupied by a single vehicle. The possibility of

accidents is null and overtaking is not allowed. An iteration of NaSch corresponds to a

movement of vehicles in a one-second time interval, by a four-phase algorithm. The minimum

speed is 7.5 m / s (27 km / h) corresponding to a speed V =1. Moreover, other speed values

are integer multiples of 7.5 m/s. As for acceleration, it takes a maximum value of 7.5 m

/ s (0.76 g). For the simulation, we consider a road that contains L cells, a closed circuit

as illustrated in Figure 1.

• PHASE I: ACCELERATION In this phase the vehicle ”𝑖” is accelerated by a unit without

exceeding the prescribed maximum speed. As well, this phase is given by equation (1).

𝑉𝑖
′(𝑡) = min(𝑉𝑖(𝑡) + 1, 𝑉𝑚𝑎𝑥) (1)

• PHASE II: DECELERATION Since the vehicle ”𝑖” is not alone on the road, we must

take into account the vehicle 𝑖 + 1 in front of him, whose position is 𝑋 + 1(𝑡). As well

the movement of the vehicle i does not exceed the vehicle position 𝑖 + 1 according to

Equation (2).

𝑉𝑖
′′(𝑡) = min(𝑉𝑖

′(𝑡), 𝑑(𝑡)) 𝑤𝑖𝑡ℎ 𝑑𝑖(𝑡) = 𝑥𝑖+1(𝑡) − 𝑥𝑖(𝑡) − 1 (2)

𝑉𝑖

′′
 (𝑡) = 𝑚𝑖𝑛(𝑉𝑖

′
 (𝑡), 𝑑(𝑡)) with 𝑑𝑖(𝑡) = 𝑥𝑖+1(𝑡) − 𝑥𝑖(𝑡) − 1

• PHASE III: RANDOMIZATION Equation (3) allows simulating the behavior of drivers in

an approximated way, and the speed is decelerated according to the probability p.

 If 𝑉𝑖
′′

(𝑡) > 0 then (3)

{
𝑉𝑖(𝑡 + 1) = 𝑉𝑖

′′(𝑡) − 1 with a probability 𝑝

𝑉𝑖(𝑡 + 1) = 𝑉𝑖
′′(𝑡) with a probability 1 − 𝑝

 (4)

• PHASE IV: POSITIONS UPDATING Each vehicle is moved forward, taking into

account the speed previously calculated.

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (5)

Figure 2 summarizes the four steps in Nash and Figure 3 shows the results that we

obtained by numerical simulation:
2.3 NVIDIA Parallel computing solution

1) The Architecture of NVIDIA GPU:: The first GPU card was released in 2007 called

TESLA. Several generations have followed with increasing performances in: memory size,

cores speed, the bandwidth of memory and finally, the pipelines configuration of tasks or

threads execution. Nvidia made a classification of these processors according to their

computing capabilities. There are major differences from one generation to another and even in

different versions

Fig. 2. Moving vehicles in the four NaSch phases.

Fig. 3. Average speeds based on the number of vehicles.

of the same generation architecture. Some specific features of the processors categories gives

developers alternatives of parallelization that could reduce significantly the computation time

for certain algorithms. A basic solution of GPGPU consists of a main processor CPU named

Host, and an auxiliary processor GPU named Device. Each processor has its own RAM.

Thus, the host has a main DDR3 RAM, and the Device has GDDR5 RAM. Communication

between the two processors is done by PCIE bus. The figure 4 shows the simplified

architecture of a GPU on a graphics card. The various types of memory available to the

processor enable fast execution of instructions. The main computer language used is C,

but it is possible to use other languages like C++, FORTRAN, Java and Phyton. However

to access the functionality of the GPU we use an associated API called CUDA (Compute

Unified Device Architecture). The manufacturer NVIDIA supplies this parallel computing

platform. Thus, in comparison with third-party solutions, CUDA has the advantage of being

improved continuously and especially to be optimized for different generations of GPUs. In
a Cuda program, there are two types of code: the first, which is sequentially executed
by the host, this code call device services via functions named kernels. The Device
cores execute threads that are the images of these functions Kernels (second type of
code) in parallel and asynchronous way. At the level of software, the threads are
banded together in blocks, which their turns are grouped into a computing grid. Each
grid corresponds to a kernel called by the host. The number of threads and blocks
depends on the programmer choices and hardware limitations on used GPU
generation. Threads can access multiple types of memory available to the GPU as
shown on the figure 5.

Fig. 4. Hardware architecture of GPU-based high performance computing (HPC).

Fig. 5. Programming model organization of GPU parallel computing.

Hardware Implementation: The streaming multiprocessor (SM) is a group of computing

cores; their number depends on the generation and the version of the GPU chip. It creates,

manages, plans, and executes in parallel several groups of 32 threads called warp. The figure

6 illustrates an SM of Kepler architecture, which has four warps. The threads of the same warp

begin together at the same program address. They have their own state registers, and their own

counter instruction address, which gives them the ability to run independently. When we give

to multiprocessor one or more blocks of threads to be executed, it distributes them into warps

then they are organized by warps schedulers for their executions. The way a block is divided

into warps is always the same; each warp contains consecutive threads, of threads whose

identifier is incremented from the first warp containing the thread 0. A warp executes one

common instruction at the same time; the maximum performance is achieved when all 32

threads in a warp follow the same execution path. If the execution of a warp threads diverge

via a data-dependent conditional branching, then the warp runs sequentially each path

branching, while the threads that do not follow the path are disabled. When all the paths are

complete, the threads converge back to the same execution path. The divergence of threads

execution occurs only in a warp; different warps run independently, regardless that they

execute commons or severed code sequences. The threads in a warp sequentially execute

certain type of instruction as atomic operations.

2 Implementation

 3.1 Data model

A. Parallel Implementation

Like the sequential implementation, we adopted the same program and data
structure. The major difference lies in the calculation delegation of four NaSch phases
to the GPU. Moreover, Figure 8 summarizes the first implementation giving
unexpected performance results. This fact led us to improve our implementation in
stages. Among the experienced improvements, we use atomic operations and
reduction of the requests number from CPU to the GPU (CUDA launch). It thus
reached a program structure better optimized as shown in Figure 9. In addition, we
test several configurations of calculations distributions cores to determine the
optimization rules that will be used in future implementations. For each
implementation three kernel functions are used, two of which are common to both
GPU implementations: setupkernel and load configcar. A third function has two

versions, and traficsimulationver2 trafic simulationver3, each applied respectively. A

fourth, CalculVmoy, calculates the average speed of the vehicles and used only in the first

implementation. The equivalent of this function has been completely merged in the second

implementation, which in fact represent the second detailed optimization in the discussion

section. The function TraficsimulationVer2 is loaded excessively by the host through the

Calculpoint function. However, in traficsimulationver3 we implement Monte Carlo loop, NaSch

iterations and speed average calculations within the kernel function, in this way we reduce the

time cost of CUDA functions calls.

Fig. 6. Kepler SM architecture [15].

Fig. 7. Sequential implementation on CPU.

B. Sequential implementation

The sequential implementation illustrated in Figure 7 begins with the determination of the

simulation parameters, in which we specify the number of cells, the maximum number of

vehicles, the number of plotting points, etc. Then three nested loops execute the NaSch

iterations to plot the traffic characteristic curves. Moreover, at each Monte Carlo iteration, we

reinitialize position and speed parameters for the vehicles. In addition to resetting the

configuration, we introduce captor table for measuring the flow in a given position depending

on the number of vehicles.

Fig. 8. The first implementation and first optimization for GPU.

Fig. 9. The second version of implementation for GPU.

3 Result and discussion

 3.1 First GPU optimization

As announced in the previous section, the results are the opposite of what we planned.

Clearly seen in Figure 10, the CPU is faster compared to the GPU. Therefore, we tried to

improve performance by using atomic operations. Indeed, at the beginning a kernel function

called CalculVmoy() was used which calculates sequentially the average speed vehicles.

The problem with this implementation is that before calculating the average, we have to

wait execution of the warp containing the concerned thread. The second version of the

function CalculVmoy2() uses the atomic function atomicAdd () that allows different threads

from different warp to add the intrinsic speed car. Although this operation is done sequentially

on the warp, deferred executions of warps based on the principle of first come, first served,

reduces the relatively long waiting time of the previous method.

Moreover, we used a shared variable type to perform summation, giving more efficiency

for atomic operations compared to the case of using global memory type variables; this

is due to the big latency time to access to this memory type.

Fig. 10. Execution time CPU versus GPU Implementation 1, compared with GPU

Implementation 1 using atomic operation.

A. Second GPU optimization

Despite the improvements obtained by the first implementation, the execution time remains

long compared to the CPU. Thus, by using the performance analysis tool Nsight, it was

noted that significant time is consumed by the Runtime API functions, specifically the

CudaLaunch function to launch kernels. This is why we elaborate a second implementation.

By bringing Monte Carlo loop within the kernel function

traficSimulationVer3, temporal cost of kernels launches was reduced, as shown in Figure 11.

Again, the performance is not up to what is expected. We noted a significant performance

gain for a relatively small number of vehicles. Nevertheless, the two curves are joined to

values approximating thousand vehicles. After analyzing our implementation, we note that an

atomic function is requested excessively. This function calculates the average vehicle speeds in

a single iteration. To address this problem, we adopt the following idea: each vehicle (thread)

accumulates its speed throughout the iterations and in the end; we make atomic summation of

all values. Figure 12 reflects the improvements achieved in the second optimization. We

remark the clear advantage of the GPU compared to CPU and the previous GPU

implementations. Moreover, we note that the CPU and GPU curves intersect, as in the previous

section. An important point to remember is that we use 1000 threads per block for time

measurements in both implementations. Thereafter we explore more computing distribution

configurations given the results shown in Figure 13. Thus, for 2000 vehicles, there are

significant performance losses in the configuration of two threads by 1000 blocks. Although,

the use of a large number of blocks means using more processing cores, so we observe a

significant reduction in performance by increasing vehicles number. This could be explained

by using the second atomic function, which computes the average speed based on those

previously calculated by threads block. Because a block cannot access to the shared memory

of its neighbors, the atomic operation is performed with global variable. The time required is

therefore more gradually as the number of blocks is increased.

4 Conclusion

The general problem with GPU programming is the need to have strong technical

skills to success a parallel implementation of a given algorithm. Thus, in this work we have

implemented an evolving version of the NaSch algorithm. The constraints imposed by the

traffic model led us to propose improvements in several stages to achieve results in line with

our expectations. The implementation methods have a significant impact on computing

performance. Using atomic operations and reducing kernel launching has benefit to minimize

calculation latency in GPU cores. As a future work we will use our developed model the

investigate applications in Deep Learning and Machine Learning [16]. An other perspectives

in relation to the algorithms used are cloud and edge computing

References

[1] Nagel, K. and Schreckenberg, M.: A cellular automaton model for freeway traffic. Journal

de physique I, 2(12):2221-2229, 1992. [2] William F Adams. Road traffic considered as a

random series.(includes plates). Journal of the ICE, 4(1):121-130, 1936.

[3] Greenshields, BD. Channing, Ws. and Miller, Hh.: A study of traffic capacity. In Highway

research board proceedings, volume 1935. National Research Council (USA), Highway

Research Board.

[4] A Pipes, L.: An operational analysis of traffic dynamics. Journal of applied physics,

24(3):274-281, 1953.

[5] Robert E Chandler, Robert Herman, and Elliott W Montroll.: Traffic dynamics: studies in

car following. Operations research, 6(2):165- 184, 1958.

[6] J Lighthill, M. and Beresford, Whitham G.: On kinematic waves. A theory of traffic flow

on long crowded roads. In Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, volume 229, pages 317-345. The Royal Society, 1955.

[7] Paul I Richards. Shock waves on the highway. Operations research, 4(1):42-51, 1956. [8]

L Saaty, T.: Elements of queueing theory, volume 423. McGraw- Hill New York, 1961.

[9] J Payne, H. Models of freeway traffic and control. Mathematical models of public systems,

1971.

[10] Hoogendoorn, S. P. and HL Bovy, P.: State-of-the-art of vehicular traffic flow modelling.

Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control

Engineering, 215(4):283-303, 2001.

[11] Brockfeld, E. Barlovic, R. Schadschneider, A. and Schreckenberg , M.: Optimizing traffic

lights in a cellular automaton model for city traffic. Physical Review E, 64(5):056132, 2001.

[12] Maerivoet, S. and De Moor, B. Cellular automata models of road traffic. Physics Reports,

419(1):1-64, 2005.

[13] Leonard, DR. Gower, P. and Taylor. Contram, NB.: Structure of the model. Research

report-Transport and Road Research Laboratory, (178), 1989.

[14] Makowiec, D.: The classification of homogeneous and symmetric cellular automata.

Work, 1991, 1949. [15] NVIDIA. Nvidia kepler gk110 white paper, 2012.

[16] Abadi, M. et al. TensorFlow: A System for Large-Scale Machine Learning, 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI ’16), November 2-4,

2016 • Savannah, GA, USA.

.

Fig. 11. Execution Time CPU versus GPU Implementation 1 atomic, compared to the

second GPU optimization implementation 1.

Fig. 12. Execution Time CPU versus GPU Implementation 2 optimization 1, compared to

the second GPU optimization implementation.

Fig. 13. Execution Time GPU Implementation 2 optimization2 with different

configurations calculations distributions

