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 Abstract. Traffic simulation has a practical interest for modern 
society, mainly in minimizing the problems of congestion, which is the 
main cause of road accidents. In this way, several traffic models were 
developed based on Cellular Automata (CA). Moreover, the simulation of 
traffic system requires a high computing ability. Therefore, this paper 
explores the ways to use the graphics-processing unit (GPU) for reducing 
time simulation of such applications. We propose several software 
implementations to maximize GPU performance for NaSch model 
parallelization. Compared to CPU, the simulation results show that we need 
optimization effort to get better performance results for GPU. 
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1   Introduction 

Road traffic is considered as an important economic lever which has a significant impact 

on modern society. Much research is carried out in order to reduce the problems of 

congestion, road accidents, or the creation of appropriate infrastructure in a given socio-

economic context. Most of the information collected on traffic is based on empirical 

measurements by proximity sensors, traffic video or aerial and satellite images. The 

measurements are always done on a set of disparate vehicles in uncontrolled environments. 

Thus, with the development of information technology tools, the interest of scientists for 

numerical simulations is quickly established. Several traffic models were developed to 

approximate the actual drivers behavior and the conditions in which they operate. This type 

of simulation requires significant computing capability, causing a significant latency time 

ranging from several hours to several days. Additionally, new processors architectures were 

immersed in recent years. Designed initially for video games, graphic processors know 

considerable improvements in performance calculations, number of cores and memory 

bandwidth integrated in GPU cards. Indeed, some newer graphics cards have up to 5760 

calculations cores and up to 24 GB of dedicated RAM; with a relatively affordable price for 

scientists. Several generations of processors were releases with significant improvements in 

processor architecture, power consumption and the software framework, allowing access to 

the features of the GPU. In this context, we took an interest in GPU to implement a basic 

traffic model developed by 
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Schreckenberg [1]. The GPU could handle a very big number of interacting cars that require 

memory space and high-speed calculations. Therefore, algorithm optimization to the target 

GPU is a first step in simulating a large number of cars drivers behaviors. Then, in the second 

section of this paper, we present different models and methods for road traffic especially 

NaSch model and we introduce the architecture of Nvidia Cuda parallel programming. The 

third one, we present detailed implementations of NaSch model, sequential on CPU and 

parallel on GPU. In the fourth part, we show the experimental results and a discussion of their 

interpretation. Finally, we conclude the paper and we propose future prospects of our work. 

 

2   Introduction Methods and models for road trafic  

2.1 Trafic models  

To describe, understand and improve road traffic, studies provide mathematical models 

inspired from fluid mechanics, which describe the different interactions between the driver and 

his vehicle. These models include the mobile elements (vehicles, pedestrians ...) into a 

representation of the entire road system (roads, traffic, steering wheel ...). These studies are 

helpful to investment in infrastructure. The first traffic studies are born before the Second 

World War, they are based on an Adams approach [2] using the theory of probability, and on 

the work of Bruce D. Greenshields (Yale Office of Road traffic) [3] for modeling the evolution 

of flows, speeds and traffic at intersections. After the war, researchers were interested in 

tracking the vehicle [4] [5], they developed a theory of traffic flow [6] [7] and the Queueing 

theory [8]. Later, in the early 1970s, Payne and Whitham [9] were pioneers in proposing a new 

approach based on the fluid flows from fluids mechanics. More recently, while the car park 

grows, scientists try to improve the existing methods and propose new models more consistent 

with the current traffic conditions. To highlight the 

 

                     Fig. 1.  Cyclical road to simulate an infinite highway. 

different principles and attempt a classification among all the models, Hoogendoorn and Bovy 

[10] propose to take the level of detail in modeling (individual element) as classification 

criteria to determine four groups: 

• Microscopic models describe each component of the system in their behaviors and 

interactions in a high level of detail, for example a vehicle and its driver [4]; 

• Models submicroscopic, further the level of detail cited above, disclose the operated controls 

(indicators, speed changes ...) within the vehicle and put them in relation with the 

environmental conditions [10] [11]; 

• The mesoscopic models represent traffic in a lower level of detail by small ensembles whose 

behaviors are described in terms of probabilities [12] [13]; 

• Macroscopic models treat the traffic in a more global perspective and describe traffic in terms 
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of speed, flow and density; the specific characteristics of the fluid flow [6] [13]. 

•  

2.2 NaSch model 

NaSch model [1] is a cellular automata model [14] where a section of the road is divided 

into cells. Each cell has a specific length of 7.5 meters, which expresses the sum of the 

length of most types of vehicles with inter-vehicle distances, spacing a vehicle and its two 

nearest neighbors in the case of a blocked traffic. This value of the minimum space occupied 

by a vehicle is obtained by the inverse of the blocking density 133 veh/Km, measured 

empirically. A cell is either empty or occupied by a single vehicle. The possibility of 

accidents is null and overtaking is not allowed. An iteration of NaSch corresponds to a 

movement of vehicles in a one-second time interval, by a four-phase algorithm. The minimum 

speed is 7.5 m / s (27 km / h) corresponding to a speed V =1. Moreover, other speed values 

are integer multiples of 7.5 m/s. As for acceleration, it takes a maximum value of 7.5 m 

/ s (0.76 g). For the simulation, we consider a road that contains L cells, a closed circuit 

as illustrated in Figure 1. 

• PHASE I: ACCELERATION In this phase the vehicle ”𝑖” is accelerated by a unit without 

exceeding the prescribed maximum speed. As well, this phase is given by equation (1). 

 

𝑉𝑖
′(𝑡) = min(𝑉𝑖(𝑡) + 1, 𝑉𝑚𝑎𝑥)                                                                         (1) 

 

• PHASE II: DECELERATION Since the vehicle ”𝑖” is not alone on the road, we must 

take into account the vehicle 𝑖 +  1 in front of him, whose position is 𝑋 +  1(𝑡). As well 

the movement of the vehicle i does not exceed the vehicle position 𝑖 +  1 according to 

Equation (2). 

 

𝑉𝑖
′′(𝑡) = min(𝑉𝑖

′(𝑡), 𝑑(𝑡))   𝑤𝑖𝑡ℎ 𝑑𝑖(𝑡) = 𝑥𝑖+1(𝑡) − 𝑥𝑖(𝑡) − 1                                         (2)                  
    
𝑉𝑖

′′
  (𝑡)  =  𝑚𝑖𝑛(𝑉𝑖

′
 (𝑡), 𝑑(𝑡)) with  𝑑𝑖(𝑡) = 𝑥𝑖+1(𝑡)  −  𝑥𝑖(𝑡)  −  1  

 

• PHASE III: RANDOMIZATION Equation (3) allows simulating the behavior of drivers in 

an approximated way, and the speed is decelerated according to the probability p. 

  

   If 𝑉𝑖
′′

 

(𝑡)  >  0     then                                                                              (3) 

{
𝑉𝑖(𝑡 + 1) = 𝑉𝑖

′′(𝑡) − 1  with a probability  𝑝

𝑉𝑖(𝑡 + 1) = 𝑉𝑖
′′(𝑡)  with a probability  1 − 𝑝

                                                 (4) 

 

• PHASE IV: POSITIONS UPDATING Each vehicle is moved forward, taking into 

account the speed previously calculated. 

 

𝑥𝑖(𝑡 +  1)  =  𝑥𝑖(𝑡)  + 𝑉𝑖(𝑡 +  1)                                                 (5) 

 

Figure 2 summarizes the four steps in Nash and Figure 3 shows the results that we 



 

 

 

 

obtained by numerical simulation: 
2.3  NVIDIA Parallel computing solution 

1) The Architecture of NVIDIA GPU:: The first GPU card was released in 2007 called 

TESLA. Several generations have followed with increasing performances in: memory size, 

cores speed, the bandwidth of memory and finally, the pipelines configuration of tasks or 

threads execution. Nvidia made a classification of these processors according to their 

computing capabilities. There are major differences from one generation to another and even in 

different versions 

 

Fig. 2.  Moving vehicles in the four NaSch phases. 

 

Fig. 3.  Average speeds based on the number of vehicles. 

of the same generation architecture. Some specific features of the processors categories gives 



 

 

 

 

developers alternatives of parallelization that could reduce significantly the computation time 

for certain algorithms. A basic solution of GPGPU consists of a main processor CPU named 

Host, and an auxiliary processor GPU named Device. Each processor has its own RAM. 

Thus, the host has a main DDR3 RAM, and the Device has GDDR5 RAM. Communication 

between the two processors is done by PCIE bus. The figure 4 shows the simplified 

architecture of a GPU on a graphics card. The various types of memory available to the 

processor enable fast execution of instructions. The main computer language used is C, 

but it is possible to use other languages like C++, FORTRAN, Java and Phyton. However 

to access the functionality of the GPU we use an associated API called CUDA (Compute 

Unified Device Architecture). The manufacturer NVIDIA supplies this parallel computing 

platform. Thus, in comparison with third-party solutions, CUDA has the advantage of being 

improved continuously and especially to be optimized for different generations of GPUs. In 
a Cuda program, there are two types of code: the first, which is sequentially executed 
by the host, this code call device services via functions named kernels. The Device 
cores execute threads that are the images of these functions Kernels (second type of 
code) in parallel and asynchronous way. At the level of software, the threads are 
banded together in blocks, which their turns are grouped into a computing grid. Each 
grid corresponds to a kernel called by the host. The number of threads and blocks 
depends on the programmer choices and hardware limitations on used GPU 
generation. Threads can access multiple types of memory available to the GPU as 
shown on the figure 5. 

 

 

Fig. 4.  Hardware architecture of GPU-based high performance computing (HPC). 

 
 

 
 

Fig. 5.  Programming model organization of GPU parallel computing. 

 
 



 

 

 

 

Hardware Implementation: The streaming multiprocessor (SM) is a group of computing 

cores; their number depends on the generation and the version of the GPU chip. It creates, 

manages, plans, and executes in parallel several groups of 32 threads called warp. The figure 

6 illustrates an SM of Kepler architecture, which has four warps. The threads of the same warp 

begin together at the same program address. They have their own state registers, and their own 

counter instruction address, which gives them the ability to run independently. When we give 

to multiprocessor one or more blocks of threads to be executed, it distributes them into warps 

then they are organized by warps schedulers for their executions. The way a block is divided 

into warps is always the same; each warp contains consecutive threads, of threads whose 

identifier is incremented from the first warp containing the thread 0. A warp executes one 

common instruction at the same time; the maximum performance is achieved when all 32 

threads in a warp follow the same execution path. If the execution of a warp threads diverge 

via a data-dependent conditional branching, then the warp runs sequentially each path 

branching, while the threads that do not follow the path are disabled. When all the paths are 

complete, the threads converge back to the same execution path. The divergence of threads 

execution occurs only in a warp; different warps run independently, regardless that they 

execute commons or severed code sequences. The threads in a warp sequentially execute 

certain type of instruction as atomic operations. 

2     Implementation  

 3.1 Data model 

A. Parallel Implementation 

Like the sequential implementation, we adopted the same program and data 
structure. The major difference lies in the calculation delegation of four NaSch phases 
to the GPU. Moreover, Figure 8 summarizes the first implementation giving 
unexpected performance results. This fact led us to improve our implementation in 
stages. Among the experienced improvements, we use atomic operations and 
reduction of the requests number from CPU to the GPU (CUDA launch). It thus 
reached a program structure better optimized as shown in Figure 9. In addition, we 
test several configurations of calculations distributions cores to determine the 
optimization rules that will be used in future implementations. For each 
implementation three kernel functions are used, two of which are common to both 
GPU implementations: setupkernel and load configcar. A third function has two 

versions, and traficsimulationver2 trafic simulationver3, each applied respectively. A 

fourth, CalculVmoy, calculates the average speed of the vehicles and used only in the first 

implementation. The equivalent of this function has been completely merged in the second 

implementation, which in fact represent the second detailed optimization in the discussion 

section. The function TraficsimulationVer2 is loaded excessively by the host through the 

Calculpoint function. However, in traficsimulationver3 we implement Monte Carlo loop, NaSch 

iterations and speed average calculations within the kernel function, in this way we reduce the 

time cost of CUDA functions calls. 



 

 

 

 

 

 

Fig. 6.  Kepler SM architecture [15]. 

 

 

 

Fig. 7.  Sequential implementation on CPU. 



 

 

 

 

B. Sequential implementation 

The sequential implementation illustrated in Figure 7 begins with the determination of the 

simulation parameters, in which we specify the number of cells, the maximum number of 

vehicles, the number of plotting points, etc. Then three nested loops execute the NaSch 

iterations to plot the traffic characteristic curves. Moreover, at each Monte Carlo iteration, we 

reinitialize position and speed parameters for the vehicles. In addition to resetting the 

configuration, we introduce captor table for measuring the flow in a given position depending 

on the number of vehicles. 

 

 

Fig. 8.  The first implementation and first optimization for GPU. 

 

Fig. 9.  The second version of implementation for GPU. 



 

 

 

 

3     Result and discussion   

  3.1 First GPU optimization 

As announced in the previous section, the results are the opposite of what we planned. 

Clearly seen in Figure 10, the CPU is faster compared to the GPU. Therefore, we tried to 

improve performance by using atomic operations. Indeed, at the beginning a kernel function 

called CalculVmoy() was used which calculates sequentially the average speed vehicles. 

The problem with this implementation is that before calculating the average, we have to 

wait execution of the warp containing the concerned thread. The second version of the 

function CalculVmoy2() uses the atomic function atomicAdd () that allows different threads 

from different warp to add the intrinsic speed car. Although this operation is done sequentially 

on the warp, deferred executions of warps based on the principle of first come, first served, 

reduces the relatively long waiting time of the previous method. 

Moreover, we used a shared variable type to perform summation, giving more efficiency 

for atomic operations compared to the case of using global memory type variables; this 

is due to the big latency time to access to this memory type. 

 

 

 

Fig. 10.  Execution time CPU versus GPU Implementation 1, compared with GPU 

Implementation 1 using atomic operation. 

 
 
 

A. Second GPU optimization 

Despite the improvements obtained by the first implementation, the execution time remains 

long compared to the CPU. Thus, by using the performance analysis tool Nsight, it was 

noted that significant time is consumed by the Runtime API functions, specifically the 

CudaLaunch function to launch kernels. This is why we elaborate a second implementation. 



 

 

 

 

By bringing Monte Carlo loop within the kernel function 

traficSimulationVer3, temporal cost of kernels launches was reduced, as shown in Figure 11. 

Again, the performance is not up to what is expected. We noted a significant performance 

gain for a relatively small number of vehicles. Nevertheless, the two curves are joined to 

values approximating thousand vehicles. After analyzing our implementation, we note that an 

atomic function is requested excessively. This function calculates the average vehicle speeds in 

a single iteration. To address this problem, we adopt the following idea: each vehicle (thread) 

accumulates its speed throughout the iterations and in the end; we make atomic summation of 

all values. Figure 12 reflects the improvements achieved in the second optimization. We 

remark the clear advantage of the GPU compared to CPU and the previous GPU 

implementations. Moreover, we note that the CPU and GPU curves intersect, as in the previous 

section. An important point to remember is that we use 1000 threads per block for time 

measurements in both implementations. Thereafter we explore more computing distribution 

configurations given the results shown in Figure 13. Thus, for 2000 vehicles, there are 

significant performance losses in the configuration of two threads by 1000 blocks. Although, 

the use of a large number of blocks means using more processing cores, so we observe a 

significant reduction in performance by increasing vehicles number. This could be explained 

by using the second atomic function, which computes the average speed based on those 

previously calculated by threads block. Because a block cannot access to the shared memory 

of its neighbors, the atomic operation is performed with global variable. The time required is 

therefore more gradually as the number of blocks is increased. 

4   Conclusion 

The general problem with GPU programming is the need to have strong technical 

skills to success a parallel implementation of a given algorithm. Thus, in this work we have 

implemented an evolving version of the NaSch algorithm. The constraints imposed by the 

traffic model led us to propose improvements in several stages to achieve results in line with 

our expectations. The implementation methods have a significant impact on computing 

performance. Using atomic operations and reducing kernel launching has benefit to minimize 

calculation latency in GPU cores. As a future work we will use our developed model the 

investigate applications in Deep Learning and Machine Learning [16]. An other perspectives 

in relation to the algorithms used are cloud and edge computing 
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Fig. 11.  Execution Time CPU versus GPU Implementation 1 atomic, compared to the 

second GPU optimization implementation 1. 



 

 

 

 

 

Fig. 12.  Execution Time CPU versus GPU Implementation 2 optimization 1, compared to 

the second GPU optimization implementation. 

 

Fig. 13.  Execution Time GPU Implementation 2 optimization2 with different 

configurations calculations distributions 


