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Abstract.  In this work, we present an ECG delineation and the automated diagnosis of 

coronary artery disease in the electrocardiogram (ECG). In preprocessing stage, the 

baseline wander (BLW) and 60 Hz power line interference (PLI) were removed using 

discrete wavelet transform (DWT). The QRS detection is carried out using Daubechies 

(Db4) DWT. Feature extraction and classification is done using a convolutional neural 

network (CNN) containing three convolutional layers, three max-pooling layers, and three 

fully connected layers. The standard 12 lead ECG signals of 50 healthy subjects and 50 

myocardial infarction subjects (MI) of one minute are obtained from the Physikalisch-

Technische Bundesanstalt (PTB) database. We achieved an accuracy of 94.83%. 

sensitivity of 94.75%, and specificity of 94.93% on PTB database. 
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1   Introduction 

Cardiovascular disease is the leading cause of death in the world. According to the World 

Health Organization (WHO), more than 17.7 million people die each year due to cardiovascular 

disease, representing 31% of total global mortality [1]. This number is in permanent growth. 

The main risk factors are obesity, tobacco, high blood pressure, diabetes and genetic factors. 

Ischemic heart disease happens when coronary arteries get narrower and reduce the blood flow 

to the heart. This is also called coronary heart disease (CHD). This can ultimately lead to the 

heart attack [2]. The electrocardiogram (ECG) is the most used cardiological examination at 

hospitals and cardiology offices to diagnose heart disease. It is easy to set up, painless and 

inexpensive. 

As illustrated in Figure 1, an ECG is a series of waves and deflections recording the heart’s 

electrical activity from a certain view. Each view called a lead, monitor voltage changes between 

electrodes placed in different positions on the body. Leads I, II, and III are bipolar leads. Leads 

aVR, aVL, aVF, V1 through V6 are unipolar leads. An ECG tracing looks different in each lead 

because the recorded angle of electrical activity changes with each lead [3]. The ECG signal is 

characterized by a recurrent wave sequence of P, QRS, and T-wave associated with each beat. 

Each wave of the ECG represents a phase of heart functioning. Each deformation detected on 

the duration and the forms of these waves can be considered as an indicator of cardiac 

abnormalities. 
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Fig.1. ECG segments and time intervals 
 

Ischemia and Myocardial Infarction (MI) are among the most serious cardiac abnormalities. 

These anomalies appear on the ECG signal as ST segment or T wave changes. The ST segment 

elevation and depression indicate the myocardial ischemia. ST segment elevation is measured 

from the isoelectric line level (the flat part of the ECG between the P wave and the QRS 

complex) to the J point. The J point is the “junction” point between the end of QRS complex 

and the onset of ST segment. 

There have been several methods dealing with automated characterization of Coronary 

Artery Disease (CAD). Sun et al. [4] proposed myocardial infarction detection, in 12 ECG leads, 

using multiple instance learning technique. Authors uses Support vector machine (SVM), NN 

and k-nearest neighbor (KNN) classifiers. They achieved MI detection sensitivity 92.3% and 

specificity 88.1%. Harldsson et al [5] used Hermite expansions with NN technique to classify 

MI in 12 leads ECG.  They achieved ROC area 83.4%. Lahiri et al. [6] proposed MI detection 

in 12 leads ECG using Phase space fractal dimension of ECG and Artificial neural network. 

They obtained sensitivity 96,55% and specificity 95,24%. 

Sharma et al. [7] proposed MI classification in 12-lead ECG using wavelet transform and 

SVM. Over 549 records of PTB databases, they achieved MI detection sensitivity 93%, 

specificity 99% and accuracy 96%. In Ref. [8], Arif et al. proposed KNN classifier to detect MI 

in 12-lead ECG. They used 3200 Normal beats and 16,960 MI and obtained sensitivity 99.97% 

and specificity 99.9%. Zheng et al. [9] used Naïve Bayes, SVM and Random Forest classifiers 

to detect the presence of old myocardial infarction in body surface potential maps. They 

achieved MI detection accuracy 81.9% with Naïve Bayes, 82.8% with SVM and 84.5% with 

Random Forest classifier. In Ref. [10] Acharya et al. proposed KNN classifier for automated 

detection and localization of myocardial infarction in 12-lead ECG. They used 125,652 normal 

beats and 485,753 MI from PTBDB and obtained sensitivity 99.45%, specificity 96.27% and 

accuracy 98.80%. Acharya et al. [11] used KNN and decision tree (DT) classifiers to detect 

(CAD) in 12-leads ECG. With Bispectrum-KNN, they achieved accuracy 98.2% sensitivity 

94.8%, and specificity 99.3%. Pyakillya et al. [12] proposed Deep Learning algorithm for ECG 

Arrhythmia Classification using convolutional neural network (CNN). They used 1-dimentional 

(1D) CNN architecture comprising 7 convolutional layers with filter width 5 and 128 neurons 

+ max-pooling and dropout after every layer + Global Average Pooling + 3 FCN layers with 

(256/128/64) neurons + dropout after every layer + softmax layer with 4 outputs (4 classes: 

normal sinus rhythm, AF, other rhythm and noisy). The best resulted accuracy on validation 

data is about 86%. Andrew Ng’s scientific group (Pranav Rajpurkar, Awni Y. Hannun, 



 

 

 

 

Masoumeh Haghpanahi, Codie Bourn) [13] proposed 34-layer CNN architecture for Arrhythmia 

Detection. They exceed the average cardiologist performance in both recall (sensitivity) and 

precision (positive predictive value). Liu et al. [14] proposed Real-time Multilead CNN (ML-

CNN) for MI detection. To make the ML-CNN suitable for multilead ECG processing, they use 

1-D kernels shared among the different leads to generate local optimal features. they achieved 

sensitivity 95.40%, specificity 97.37% and accuracy 96.00%. T. Reasat et al. [15] used shallow 

convolutional neural networks to detect Inferior Myocardial Infarction (IMI) in 3 leads ECG 

signal; lead II, III and aVF. The performance of the model is evaluated on IMI and healthy 

signals obtained from PTB database. They achieved an accuracy, sensitivity and specificity of 

84.54%, 85.33% and 84.09%, respectively. 

In this work, we propose an deep convolutional neural networks (CNN) in the classification 

of two ECG classes; normal and IMI. 

2   Methodology 

2.1   Data collection 

 

ECG signals used in this study are taken from the Physikalisch-Technische Bundesanstalt 

(PTB) database [16]. The database contains 549 records from 290 subjects (aged 17 to 87, mean 

57.2; 209 men, mean age 55.5, and 81 women, mean age 61.6; ages were not recorded for 1 

female and 14 male subjects).  

Each subject is represented by one to five records. There are no subjects numbered 124, 

132, 134, or 161. Each record includes 15 leads: the conventional 12 leads (I, II, III, aVR, aVL, 

aVF, V1, V2, V3, V4, V5, V6) together with the 3 Frank lead ECGs (Vx, Vy, Vz). Each signal 

is digitized at 1000 samples per second, with 16-bit resolution [17].  

In this work, we used ECG signal from lead II, III and aVF and focused on inferior 

myocardial infarction (IMI) and healthy signals. 

 

2.2   Preprocessing 

 

In the preprocessing stage, the Baseline wander (BW) and 60 Hz power line interference 

(PLI) must be removed. The removal of this disturbance is an important step in ECG signal 

analysis, to produce a stable signal for subsequent automatic processing [18]. 

The method that we propose to eliminate the baseline is based on DWT decomposition up 

to level 8, which generates a set of approximation coefficients(C8), and eight sets of detail 

coefficients(d1,…,d8). By cancellation of approximations, the filtered signal is recovered from 

the details only [19]. Some results in the removal of baseline wanders is shown in Figure 2. For 

removal of 60Hz PLI interference, we propose to add a sine wave of 60 Hz frequency to the 

ECG test signals, to exemplify the original ECG signal as contaminated with PLI. The signal is 

recovered from all coefficients except details D(7,58), D(7,59) and D(7,60). This cancels all 

frequencies in the band 60 ± 1.5 Hz [20]. The results in removal of 60Hz PLI interference are 

shown in Figure. 3. [20]. 

 

 

  



 

 

 

 

3   Detection of QRS complexes  

The QRS complex reflects the electrical activity within the heart during the ventricular 

contraction, the time of its occurrence, as well as its shape, provide much information about the 

current state of the heart. The QRS detection is the most important step for almost all ECG 

analysis algorithms. Pan and Willis J.Tompkins were the first to develop a real-time QRS 

detection algorithm that uses an automatically adjustable threshold [21]. In this work, the 

decomposition of the ECG signal is made using Daubechies (Db4) DWT up to level 8. To 

choose the best coefficient, we compare the correlation coefficient between all the detail 

coefficients individually with the original ECG signal. The coefficient d4 [8.125Hz-16.25Hz] 

has the highest cross-correlation compared to other coefficients. Therefore, in the time domain, 

d4 is highly correlated with the original signal. The ECG signal is reconstructed with the 

coefficient d4. To detect the R Peaks, we use a hard thresholding method [19].  Figure 4 shows 

the original ECG signal with R peaks localization. The algorithm is also evaluated, in 12 leads 

PTB database, using Two performance measures : sensitivity (Se) and Positive predictivity (+P) 

defined respectively as:   
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Fig. 2.  Results for removal of baseline wanders: (a) noised ECG: 

(b) Baseline free ECG; (c) Removed baseline 

 

Fig. 3. Results in removal of PLI interference: (a) noised ECG; 

(b) Filtered ECG; (c) 60 Hz power line noise; (d) 60 Hz noise 

zoomed in 0.5s. 



 

 

 

 

 

Fig. 4. Original ECG signal with R peak detection. 

 

Where TP means a true positive, FN means a false negative and FP denotes a false 

positive detection. 

 

Table 1  illustrates the one-minute results for three patients from PTB database: 

Table 1. Results for 1 minute R peaks detection from  PTBDB 

Patient Records TP FN FP Se (%) +P (%) 

PTB P.013 

s0045lrem 980 5 4 99.49 99.59 

s0051lrem 957 5 5 99.48 99.48 

s0072lrem 1032 5 5 99.52 99.52 

PTB P.019 

s0058lrem 1032 4 7 99.61 99.33 

s0070lrem 986 4 5 99.60 99.50 

s0077lrem 847 5 6 99.41 99.30 

PTB P.021 

s0065lrem 852 5 5 99.42 99.42 

s0073lrem 1041 5 3 99.52 99.71 

s0097lrem 1064 4 5 99.63 99.53 

PTB P.117 
s0291lrem 780 5 6 99.36 99.24 

s0292lrem 790 4 5 99.50 99.37 

Total 10361 51 56 99.51 99.46 

 

4   CNN based Classifier 

Convolutional neural networks (CNN) have emerged from the study of the visual cortex of 

the brain, and they have been used in image recognition since the 1980s "the neocognitron" [22], 

which has progressively evolved into what we today call the convolutional neural networks. An 

important step was taken in 1998 by Yann LeCun, Bottou, Yoshua Bengio and Patrick Haffner, 

who introduced the famous LeNet-5 architecture, widely used to recognize handwritten check 

numbers. 

 

 

 



 

 

 

 

4.1   Pre-processing  

 

Each ECG beat consists of a maximum of 670 samples (fs = 1KHz); considering the 

maximum values of the PR and QT intervals (PRmax + QTmax = 200ms + 470ms = 670ms). 

This value will be the size of the input vector (m = 670). To make sure that the P, QRS and T 

waves are included, we use the positions of the R peaks.  

To solve the problem of amplitude scaling and eliminate the shift effect before introducing 

the ECG segments into the one-dimensional CNN, each segment of the ECG signals is 

normalized with the Z-score normalization method. 

 

4.2   The architecture  

 

In this work, we use a CNN architecture comprising 3 convolutional layers, 3 subsampling 

layers (Max pooling) and 3 fully connected layers. Each convolutional layer is followed by 

LeakyRelu [23] activation function to recover the non linearity into the data [24].  The output 

layer of the last fully connected network is a Softmax layer (layer 9) with a two-dimensional 

"vector" output since this is a two-class problem (normal and IMI). Figure 5 illustrates the 

overall structure of our proposed CNN. Table 2 summarizes the details of this CNN structure. 

The number of neurons at the output of each channel was evaluated using this formula: 

 

 𝑜 =  ⌊
𝑛 + 2𝑝 − 𝑚

𝑠
⌋ + 1 

(3) 

where n the length of input vector, m the Kernel size, p the padding (p=0) and s the Stride.   

 

 

Fig. 5.  The proposed CNN architecture 
 

 



 

 

 

 

 

Table 2. Details of the CNN structure 

Input vector size (670) 

Layers Kernel 

size 

stride Number of neurons 

for each channel 

(1) Convolution 127 1 544 
(2) Max pooling 2 2 272 

(3) Convolution 21 1 252 

(4) Max pooling 2 2 126 
(5) Convolution 7 1 120 

(6) Max pooling 2 2 60 

(7) Fully connected   40 
(8) Fully connected   20 

(9) Fully connected   2 

 

4.3   Experiments and Results 

 

In this study, we use a backpropagation, based on stochastic gradient descent (SGD), to 

adjust the momentum, regularization and learning rate. The best performances were obtained 

by adjusting the Momentum at 5x10-3, the learning rate 0.6, and the Regularization at 0,1. We 

performed several epochs of training and testing. We validates the CNN model for each epoch. 

The classification error is stabilized and has converged  after 45 epochs. 

To validate our model, we used 10-fold cross validation. The performances (Accuracy, 

sensitivity, and specificity) are evaluated at each iteration. The overall performance is the 

average performance recorded in the 10 iterations. To make a better comparison between 

various performance indices, the confusion matrix presented in Table 3 is used. Overall 

performance with optimal settings is shown in Figure 6.  

Table 3. Confusion matrix of the CNN classifier 

 Predicted 

 Normal IMI 

Normal 1780 95 

IMI 1895 105 

 

 

 

Fig. 6.  Results of the CNN classifier 



 

 

 

 

4.4   Discussion 

 

Table 4 shows some techniques used in the literature for the automated classification of 

myocardial infarction validated on the same database (PTBDB). 

Table 4. Comparison of our MI classifiers with other methods in PTB database 

Author, Year Ref Classifier 
Performance 

%  Se % Spec %  Acc  

Sun et al., 2012  [25] SVM 92,60 82,4 - 

Safdarian et al., 2014  [26] Naïve Bayes - - 94,74 

Lu et al. 2000  [27] Fuzzy ANN 84,60 90 - 

Liu et al., 2017  [28] CNN 95,40 97,37 96 

Our work CNN 94,75 94,93 94,83 

 

The performance of our system is not the best, but it exceeds several works cited in the 

table above. Our precision is close to that of Liu et al. [28] obtained with a CNN network. This 

last work uses a larger data size than ours, with 122 training records and 125 test records, for a 

total of 34769 12-lead beats. In our study, we used only 100 ECG recordings of one minute, on 

three leads DII, DIII and aVF; commonly used derivations for the diagnosis of inferior 

infarction. This choice is justified by a hardware limitation since we use the CPU version of 

Keras-tensorflow. To reduce the calculation time and increase the data size, we have to use the 

GPU version. 

5   Conclusion and future work 

In this paper, we present an algorithm of automatic detection of inferior myocardial 

infarction based on convolutional neural network (CNN), using leads II, III and aVF from PTB 

database. In the preprocessing stage, discrete wavelet transform (DWT) was used to remove the 

baseline wander and power line interference. DWT was also used for QRS detection. The 

filtered signals are normalized and sent directly to the CNN network. We achieved an average 

sensitivity, specificity and accuracy of 94,75%, 94,93% and 94,83% respectively.  

In this study, we used a binary classification that does not provide information about the 

location of myocardial infarction. Indeed, there are 10 types of infarction in the PTB database, 

classified according to the location in the myocardium. In the future, our CNN classifier could 

be extended to an 11-class classifier to be able to recognize the different types of infarction. 
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