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  Abstract. Non negative Matrix Factorization (NMF) has been a popular representation 

method   for  pattern classification  problems.  It  tries  to decompose a non negative matrix of 

data samples as the product of a non negative basis matrix and a non negative coefficient 

matrix in NMF both supervised and unsupervised mode of operations is used. Among them 

supervised mode outperforms well due to the use of pre-learned basis vectors corresponding 

to each underlying sources. In this paper NMF algorithms such as method based in the 

Frobinuis norm, Kullback Leibler divergence , and an extension to NMF, by 

incorporating sparsity. Algorithms are used to evaluate the performance of BSS in which 

supervised mode is used. We further illustrate the effect of hyperparameter as the rank k 

let the metric chooses and the initialization of decomposition matrices, on the speed of 

convergence of NMF algorithm. 
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1 Introduction 

The separation of sources is the operation which, from the observations, 

makes it possible to obtain a set of signals proportional to the sources and to 

identify the contribution of each sources within the observed mixture. Thus we 

distinguish two subproblems: 

—(i) the identification of the mixture. 

—(ii) the reconstruction of the sources. 

This opposite problem is badly posed because without any information on the 

sources and on the mixture, an infinity of solutions would be admissible. It is 

then necessary to formulate additional hypotheses and to take into account 

additional information on mixing and sources. 

The problem of separation sources can be approached from two points of view. 

The first is that the decomposition of observations on a basis of elementary 

signals to eliminate the redundancy of information between the different obser- 

vations. So, the first methods were proposed by C. Jutten and J. Hérault [1] who 

realized a nonlinear (ACP) in which we can diagonalize the covariance matrix by 

the decomposition in eigenvalues (EVD).  Due to the limitation of diagonalizable 

matrices, singular value decomposition (SVD) makes (PCA) always possible 
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based on the orthogonality constraint. It offers the least error (with respect to 

some measures) with  the same reduced complexity, compared to other models.  

But it is not the only.  The NMF is used in place of other low rank factorizations, 

such as the (SVD) [2,3], because of its two primary advantages: storage and 

interpretability. Due to the non negativity constraints, the NMF produces a so-

called “additive parts-based” representation [2,4] of the data. One consequence of 

this that the factors of decomposition matrix are generally naturally sparse, there 

by saving a great idea of storage when compared with the (SVD)’s dense 

factors[5] . But is not for free. On the one hand, the decomposition of the SVD is 

known to have a polynomial complexity. On the other hand, it has been recently 

demonstrated that the factorization of NMF has a non-deterministic polynomial 

computation complexity (NP) [2] for which the existence of an optimal algorithm 

of a polynomial time is unknown. Moreover, non-orthogonal factors do not allow 

representation as in (PCA) but are used as a basis for unsupervised or prior 

modeling for supervised learning [6]. 

A second, more recent approach is that of the Independent Component Analysis 

(ICA), it will be necessary to wait for the work of P.Comon [7] to generalize 

this concept. The latter demonstrates, in the case of linear mixtures, that if the 

source signals are assumed to be mutually independent and non- Gaussian 

(except for at most one source), it is possible to separate these signals to a scale 

factor and a permutation by seeking to minimize the dependence 

measurements between the estimated signals at the output of the separation 

system. The implicit objective of the (ICA) is often to find physically significant 

components. However, in some field of environmental science, and using data 

that has the property of non-negativity, the solutions estimated by the methods 

based on the (ICA) lack of physical interpretability. In addition, the (ICA)  can 

not determine the variances (energies) of the independent components as well 

as the order of the independent sources because the basic functions are classified 

by non-Gaussianities [3]. In NMF, the non-negativity constraint leads to the 

representation based on parts of the input mixture that helps to develop 

structural constraints on the source signals. NMF does not require independent 

evaluation and is not limited to the length of the data. It provides more important 

basic vectors for the reconstruction of the underlying signal than the activation 

vectors [3]. 

Among the difficulties of matrix factorization in the area of blind separation, 

the ratio between the number of observations and the number of sources is   a 

problem of interest for a large number of applications and has allowed the 

taxonomy that we recall below. In most applications and relying on instantaneous 

linear mixtures, the number m of samples in X is much larger than the numbers n 

of observations and p of sources. We then separate the determined case     p = 

min (n, m), over-determined p < n, finally underdetermined such that    p > 

min(n, m). 

When a single-channel source separation problem is considered under- 

determined, it can not usually be solved without prior knowledge of the sources 

in the mixture. For this reason, the problem of estimating multiple overlapping 



 

 

 

 

sources from an input mixture is unclear and complex in the (BSS) environment. 

But (NMF) provides a solution to this single-channel source separation problem 

by using its non-negativity constraint as well as a supervised mode of operation 

for source separation [3]. So,  NMF is defined as: 

 

                                             X ≈ F .G  .                                                                         (1)  

 

Where X ∈ R+ n×m  is the spectrogram, F ∈ R+ n×p  matrix of basis vectors 

(columns), G ∈ R+ n×m   is the matrix of activations (rows) of the input mixture. 

In NMF when the spectrogram of mixture X is given, the matrices G and F can 

be computed via an optimization problem by: 

 

                                                 min
𝐹,𝐺

𝐷(𝑋||𝐹. 𝐺) .                                              (2)                                                                                                                                                             

 

 

where D denotes the divergence. the reduced dimension p depends on the 

application and is imposed by the problem that we seek to solve. It is the same 

for the content of the product matrices that vary also depending on the 

application and the processed data and can have different physical meanings. 

2   Algorithms for solving the NMF problem  

2.1   NMF method based on the Frobenius norm : 

 

The multiplicative methods can be obtained in two different ways, either by a heuristic 

approach, or by a Maximization-Minimization (MM) approach.  

Heuristic approach : Multiplicative methods based on the Frobenius norm solve the problem (1) 

by rewriting it as a matrix trace, i.e. 

 

                                   .                                                 (3) 

 

By developing this expression, we can show 3 functions in the expression of J(G, F), that is, 

 

             𝐽(𝐺, 𝐹) =  𝑇𝑟(𝑋𝑇 . 𝑋) − 𝑇𝑟(𝐹𝑇 . 𝐺𝑇 . 𝑋) − 𝑇𝑟(𝑋𝑇 . 𝐺. 𝐹) + 𝑇𝑟(𝐹𝑇 . 𝐺𝑇 . 𝐺) 

                             =  𝐽1 − 𝐽2 + 𝐽3  .                                                                                       (4) 
 

The calculation of the gradient of each of these three functions is carried out here with respect 

to a matrix F, while noting that the calculation of that with respect to G is similar. 

 

                                       
𝜕𝐽

𝜕𝐹
= 2𝐺𝑇 . (𝐺. 𝐹 − 𝑋) .                                                           (5)                                                                                           

 

we can identify the two non-negative functions appearing in the writing of the gradient, 

 



 

 

 

 

                                            ∇𝐹
+= 2𝐺𝑇. 𝐺. 𝐹 .                                                                      (6) 

                                   ∇𝐹
−= 2𝐺𝑇 . 𝑋     .                                                                                      (7) 

 

The heuristic approach consists in using these two non-negative functions in the update rules of 

F, and transpose the results for the update of G : 

             

                                     

                                          𝐹 → 𝐹  ° 
∇𝐹 

−   𝐽(𝐺,𝐹)

∇𝐹
+ 𝐽(𝐺,𝐹)

   .                                                          (8)                                                                                                                                                           

 

                                               𝐺 → 𝐺  ° 
∇𝐺 

−   𝐽(𝐺,𝐹)

∇𝐺
+ 𝐽(𝐺,𝐹)

    .                                                                          (9)    

 

                  

the multiplicative update rules for the Frobenius NMF are available in :   

 

                                               𝐹 → 𝐹  ° 
 (𝐺𝑇   .𝑋)

(𝐺𝑇 .𝐺.𝐹)
  .                                                                               (10) 

                                                 𝐺 → 𝐺  ° 
 (𝑋.𝐹𝑇   )

(𝐺.𝐹.𝐹𝑇 )
    .                                                            (11)                                                                                                                 

 

 

The Maximization-Minimization (MM) approach :is based on two steps to obtain the update 

rules. The principle of this method consists of : first look for increasing the cost function by a 

function called auxiliary function. then in a second step, to perform the minimization of the 

auxiliary function.  

In the problematic of the classical NMF, we can take the function J (G, F) reduced to its vector 

formulation and rewrite it in the form of a Taylor development in the second order, considering 

that , the column current of the matrix F, is the only variable of the problem  

           

             𝐽(𝜃) =  𝐽(𝜃𝑘) + ∇𝐽(𝜃𝑘)(𝜃 − 𝜃𝑘) +
 1

2
 (𝜃 − 𝜃𝑘)

𝑇
. 𝐺𝑇  − 𝐺(𝜃 − 𝜃𝑘) .         (12)                                 

Where  

                                        J(𝜃𝑘)=−𝐺 T(X−G.𝜃𝑘)    .                                                               (13)   

the quadratic general form of the auxiliary function H( ,) is given as a function of a positive A 

matrix, Lee and Seung [] propose to choose the matrix A in the form: 

       

                                      𝜃𝑘+1  =  
𝜃𝑘𝑜 𝐺𝑇𝑥    

𝐺𝑇.𝐺.𝜃𝑘   .                                                                        (14)  

 

The matrix formulation can be obtained by collecting the columns of the matrix F, which 

gives rise to the multiplicative updating rules for the Frobenius NMF problem :  

 

                                         𝜃𝑘+1  =  
𝜃𝑘𝑜 𝐺𝑇𝑥    

𝐺𝑇.𝐺.𝜃𝑘      .                                                                 (15)  

                                         𝐺 → 𝐺  ° 
 (𝑋.𝐹𝑇   )

(𝐺.𝐹.𝐹𝑇 )
      .                                                           (16)                                                                                                             



 

 

 

 

 

                  

    2.1   NMF methods based on Kullback Leibler divergence  : 

   

The strategy is of type MM and the auxiliary function obtained is based on the concavity of 

the logarithmic function. The cost function to be minimized is expressed as, 

 

                           𝐷𝐾𝐿(𝑋||𝐹. 𝐺) = ∑ [𝑋 log
𝑋

𝐺.𝐹
] − 𝑋 + 𝐺. 𝐹]𝑖,𝑗  𝑖,𝑗 .                                             (17) 

 

We adopt the notation f, and x as the respective current column vectors of F and X, 

 

   𝐽(𝑓) = 𝐷𝐾𝐿(𝑋||𝐹. 𝐺) =∑ 𝑥𝑖 𝑖 log 𝑥𝑖 − 𝑥𝑖 + ∑ 𝐺𝑖,𝑗 𝑓𝑗 𝑗 −  𝑥𝑖 log 𝐺𝑖,𝑗 𝑓𝑗   .                     (18) 

 

Using the concavity of the logarithmic function and Jensen’s inequality, the previous cost can 

be increased by the following auxiliary function 

𝐻(𝑓, 𝑓𝑘) = ∑ 𝑥𝑖 𝑖 log 𝑥𝑖 + ∑ 𝐺𝑖,𝑗 𝑓𝑗 𝑗 −  𝑥𝑖   ∑
𝐺𝑖,𝑗 𝑓𝑗

𝑘

∑ 𝐺𝑖,𝑗 𝑙 𝑓𝑙
𝑘𝑗   (log 𝐺𝑖,𝑗 𝑓𝑗𝑙𝑜𝑔

𝐺𝑖,𝑗 𝑓𝑗
𝑘

∑ 𝐺𝑖,𝑗 𝑙 𝑓𝑙
𝑘 ) . (19) 

 

The Maximization-Minimization Theorem implies that : 

      

                      𝐽(𝑓𝑘) > min (𝐻(𝑓, 𝑓𝑘)) = 𝐻(𝑓𝐾+1, 𝑓𝑘)) ≥ 𝐽(𝑓𝐾+1).                                 (20) 

 

Minimize H(.,fk) from f: 

 

                        
𝜕𝐻

𝜕𝑓𝑗

= ∑ 𝐺𝑖,𝑗 −
𝑓𝑗

𝑘

𝑓𝑗
𝑖  ∑ 𝑥𝑖 

𝐺𝑖,𝑗 𝑓𝑗
𝑘

∑ 𝐺𝑖,𝑗 𝑙 𝑓𝑙
𝑘𝑖   = 0     .                                                          (21) 

 

The minimum is then given by : 

 

                                            𝑓𝑘+1 =
𝑓𝑘+1  

𝐺.1
 ° (𝐺𝑇  

𝑥°1

𝐺.𝑓𝑘)  .                                                                   (22) 

 

By grouping these vectors, we get the update expression of  F : 

 

                                              𝑓𝑘+1 =
𝑓𝑘+1  

𝐺.1
 ° (𝐺𝑇  

𝑥°1

𝐺.𝑓𝑘) .                                                                  (23) 

 

By transposition, the rule for updating the matrix G is written : 

 

                                               𝐹 =
𝐹

𝐺𝑇.1
(𝐺𝑇 𝑥°1

𝐺.𝐹
)  .                                                                   (24) 

 

 

2.2   Sparse NMF  : 

 



 

 

 

 

The concept of sparse coding refers to a representational scheme where only a few units (out of 

a large population) are effectively used to represent typical data vectors [8]. In effect, this 

implies most units taking values close to zero while only few take significantly non-zero values. 

In this paper, we use a sparseness measure based on the relationship between the L1 norm and 

the L2 norm [9] : 

                                               𝑠𝑝𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠(𝑥) =

√𝑛−    
∑|𝑥𝑖|

√∑ 𝑥𝑖
2⁄

√𝑛 −1
     .                                          (25) 

 

where n is the dimensionality of  x. Our aim is to constrain (NMF) to find solutions with desired 

degrees of sparseness. The first question to answer is then : what exactly should be sparse? The 

basis vectors F or the coefficients G? This is a question that cannot be given a general answer; 

it all depends on the specific application in question. Further, just transposing the data matrix 

gnone) must be made by the experimenter. The sparse NMF problem can be formulated as : 

   

                                               𝐸(𝐹, 𝐺) = ‖𝑋 − 𝐹. 𝐺‖2  .                                                         (26) 

 

is minimized, under optional constraints : 

 

 

                                                sparseness(𝑓𝑖) = 𝑆𝑓, ∀ i .                                                            (27) 

                                                sparseness(𝑔𝑖)= Sg, ∀ i .                                                            (28) 

 

Where fi is the i-th column of F and gi is the i-th row of G. Here, Sf and Sg are the desired 

sparsenesses of F and G (respectively). These parameters are set by the user. 

 

 

 

3 uniqueness of NMF solution : 

 

Given the formulation of the NMF problem, it is clearly to be feared the existence of invertible 

square matrices T such that the pairs (WT, T-1H) are also solutions of the problem, since 

 

                                             F.G =(F.S)(S−1.H) .                                                                   (29) 

 

and that the cost of reconstruction depends only on the product F G. Given a solution (F0,G0), 

the pair(F0.S,S1.G) is the solution of the problem if and only if the two matrices F0.S and (S−1.G) 

have positive or zero coefficients. At least two types of cases can be exhibited where this is 

possible : 

     Trivial invariances : If we insist that S and its inverse S−1 have positive or zero coefficients, 

the F.S and (S−1.G) products are also positive and we are in the presence of a new solution to 

the initial problem. In this case,  it is easy to prove that such a matrix S is necessarily the product 

of a permutation matrix and a diagonal matrix with positive coefficients [11]. The permutation 

matrix introduces K degrees of invariance, but does not really change the solution; moreover, 

the uniqueness of a quantity is often defined at a close permutation. With regard to scale factors 

(diagonal matrix), the question can be solved by imposing a standardization on one of the factors 

F or G (in practice, one will often choose to standardize the columns of F in norm L2). These 



 

 

 

 

invariances are therefore not a real obstacle to a possible uniqueness of the solution, which will 

be defined by a permutation and a change of scale. 

Local invariances : The product (F0.G0) can also remain invariant on points in the vicinity of the 

couple that makes it.Suppose that F0 and G0 have strictly positive coefficients. Given a square 

matrix U, not necessarily with positive coefficients, we can find ε sufficiently small such that  

(I + εU) is invertible. One can make the limited development : (I + εU) ' (I −εU). The matrices 

(I +εU) and (I +εU)−1 perform local transformations around (F0.G0); provided that this point is 

not situated on the edges of the positive quadrant, and that ε is chosen sufficiently small, the 

points (F0(I +εU)) and ((I +εU)−1)G0 remain in this quadrant. Thus, we obtain a new solution 

to the problem of NMF, the pair (F0(I +εU), (I +εU)−1.G0). 

 

4  Non-uniqueness of the general case  : 

 

We have considered only pairs of solutions expressing themselves relative to each other via a 

linear transformation : (F, G) and (G.S,S−1.F). In reality, there is nothing to require that two 

solutions producing the same product F.G be connected in this way. 

                

                                       .                                                     (29) 

 

where I denotes the identity matrix. The matrix V is of rank 3.We can choose as factorizations 

(F0 = X,G0 = I) or (F1 = I,G1 = X) There is no invertible matrix S such that F0S = F1, for 

reasons of rank. However, if we choose K = rg (X), we can show that such counterexamples 

are impossible. In this case, all solutions are connected to each other by linear transformations 

[11]. 

5 The disadvantages of NMF  : 

 

Geometrically, the (NMF) consists in finding a cone belonging to the positive orthant which 

includes the components of the vectors of the observed data [10]. From this point of view, the 

cone is not always unique without additional constraints. From this geometrical interpretation, 

on the one hand, it appears that the (NMF) is not unique ,which poses a problem for the BSS. 

On the other hand, in (NMF), the criteria can be convex only according to one of the two 

matrices produced but not for both. The algorithms therefore only allow to converge towards a 

local minimum. Therefore, the convergence result strongly depends on the initialization of the 

algorithm. practically, it is not guaranteed that the decomposition obtained an important 

interpretation. To avoid this problem, it is necessary to exploit certain preliminary information 

or to impose certain constraints on the decomposition. For example, information from 

locations or special signals is used in a so-called supervised (NMF) in [3]. This method 

improves the accuracy of automatic transcription, but requires well-organized advance 

information. Another strategy is to rely on specific constraints from the characteristics of the 

processed signals. However, This conditions are very difficult to satisfy in the case of real 

data. 

 

6 The advantages of NMF  : 

 



 

 

 

 

The NMF is used in place of other low rank factorizations, because of its two primary 

advantages: storage and interpretability. Due to the nonnegativity constraints, the NMF 

produces a so-called “additive parts-based” representation of the data. One consequence of this 

is that the factors F and G are generally naturally sparse, there by saving a great deal of storage. 

The NMF also has impressive benefits in terms of interpretation of its factors. So, the basis 

vectors naturally correspond to conceptual properties of the data. 

 

 

7 Application : 

 

In this section, we present the empirical evidences that support NMF as a successful document 

clustering and topic modeling method.consider a text processing application that requires the 

factorization of a term-by-document matrix X. In this case, k can be considered the number of 

(hidden) topics present in the document collection. In this case, F becomes a term by-topic 

matrix whose columns are the NMF basis vectors. The non zero elements of column 1 of F, 

which is sparse and nonnegative, correspond to particular terms. So we compare the clustering 

quality between multiplicative update (MU) NMF based on Kullback Leibler divergence and 

other based on the Frobenius norm , Within the sparse NMF algorithms we compare the 

multiplicative updating (MU), Coordinate Descent(CD) wtih defferent initializations nndsvd, 

nndsvdar, random. 

 

7-1  Data Sets ”20 Newsgroups”: 

 

This data set consists of 20000 messages taken from 20 newsgroups. One thousand Usenet 

articles were taken from each of the following 20 newsgroups. Approximately 4 % of the articles 

are crossposted. The articles are typical postings and thus have headers including subject lines, 

signature files, and quoted portions of other articles. 

 

7-2  Determining a Suitable Metric When using Non-negative Matrix Factorization : 

 

In this paper we describes algorithms for nonnegative matrix factorization (NMF) with two cost 

functions of divergence.This cost functions parametrized by a single shape parameter beta that 

takes the Euclidean distance, the Kullback Leibler divergence and the Itakura-Saito divergence 

(the Itakura-Saito theory is established in [2]) .  So to examine the effect of different divergences 

on convergence speed, we test them on multiplicative update. 

 

 

Table 1.  the speed of convergence as a function of defferences cost function taken by fixing 

the number of components at 10. 

Methode 

NMF 
Frobenius                        KL Itakura-

Saito 

time (s) 1.509 0.277 5 

 

 

 

 



 

 

 

 

 

 

 

 
 

7-3 The effect of inisialization NMF with Sparseness contraint  : 

 

The NMF must be initialized and the initialization selected is crucial to getting good solutions. 

It is well-known that good initializations can improve the speed and accuracy of the solutions 

of many NMF algorithms. Add to this the fact that many NMF algorithms are sensitive with 

respect to the initialization of one or both NMF factors, and the impact of initializations becomes 

very important. In this section, we compare the results of three initialization procedures for 

sparse NMF :Nonnegative Double Singular Value Decomposition (NNDSVD), NNDSVD with 

zeros filled with small random values (NNDSVDar) and random initialization : 

 

Fig. 1 graphs of different solvers taken with different inisializations: NNSDVD in (a), NNSDar in 

(b)  and random inisialization in (c) . 

. 

Coordenate desent is established as the best algorithm for sparse NMF, and NN SDVD, NNSDar 

inisialization (graph (a), resp (b)) plays an important role to minimize convergence time and 

loss value. In all cases, a good initialization can improve the speed and accuracy of the 

algorithms, as it can produce faster convergence. 
 

8 Conclusion : 

   

Coordenate Non-negative matrix factorization (NMF) has proven itself a useful tool in the 

analysis of a diverse range of data. One of its most useful properties is that the resulting 

decompositions are often intuitive and easy to interpret because they are sparse. However, the 

sparseness achieved by NMF is not enough; in such situations like in extarction topic it might 

be useful to control some hyperparametres such as the inisialization of decompositions matrix 

that the best results are obtained by NNSDVD, NNSDar inisialisations for coordinate Descent 



 

 

 

 

(CD) and suitable metric has also are markable effect on the convergence speed of the algorithm. 

So, we see that the best results for multiplicative update are obtained from Frobenius norm. 
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