
Reference Model of Open Distributed Processing Basic

Modelling Concepts in Event-B

Abdessamad JARRAR1, Nawfal FERFRA2, Taoufiq GADI1, Youssef BALOUKI1
1 University Hassan First, Faculty of Sciences and Technologies of Settat, Computing, Imaging and

Modeling of Complex Systems Laboratory, Morocco
2 CMR The Moroccan Pension Fund, Rabat, Morocco

Abstract. We present a set of recommendations to help engineers using the Event-B

formal methods to specify the basic modelling concepts of the Reference Model of Open

Distributed Processing (RM-ODP). This model is developed by the IUT and ISO in order

to standarise the development of Open Distributed Processing (ODP). RM-ODP is

criticized for inssuficient definition of the basic modeling concepts which limits the

applicability of the model. Therefore, the IUT and ISO provide for users a sematic

architecture formalization in several formal methods (LOTOS, ACT ONE, SDL-92, Z,

and ESTELLE). However, these formal methods are very basic and suffer from the lack

of predefined mathematical operators and also some of them are very poor in term of

specification techniques. These issues encourage us to develop our recommendations for

specifying and developing the ODP using a more sophisticated method called Event-B.

This formal methods is very rich in term of predifined mathematical operator and

provides sophisticated techniques that can be used during the specification process.

Additionaly, Event-B provide a set of verification proofs that highly guarentee the

absence of bugs.

Keywords: Open Distributed Processing, RM-ODP, Formal methods, Event-B,

architecture semantic formalization.

1 Introduction

Verifying the absence of bugs in Open Distributed Processing systems is a challenging

task in the context of software engineering [2]. Therefore, it is highly recommended to use

powerful tools and techniques to study these systems. One of the most successful techniques

in this domain is formal methods approach. The use of formal methods highly guarantees

strong assurance of bugs’ absence by means of mathematical modelization and proofs.

However, using formal methods is, in general, not an easy task because it requires a very well

understanding of the system processing. Therefore, we propose in this paper a set of

recommendations in term of a pattern –similar to design patterns- to help engineering to

develop systems using the Event-B formal method [1].

Event-B is a formal method that verifies systems’ correctness based on theorem proving

which is a method-by-method verification technique [3]. This method have been applied to

several ODP systems such as Meteor line 14 driverless metro in Paris in which no bug has

been detected [4]. Therefore, we chose the Event-B as a formalization and verification

method.

This paper contributes to a stepwise facilitating the modelization and verification of ODP

systems. We propose a pattern that illuminates how it is possible to model RM-ODP concepts

ICCWCS 2019, April 24-25, Kenitra, Morocco
Copyright © 2019 EAI
DOI 10.4108/eai.24-4-2019.2284096

using Event-B. The approach proposed is this paper covers the most important basic

modelling concepts and specification concepts.

The rest of the paper is organized as follows. Section 2 gives some background on the

fundamental concepts of ODP and formal methods. Section 3 presents the contribution of the

paper. Section 4 illuminate the approach proposed in term of a set of recommendations and

guides on how to formally model RM-ODP basic concepts in Event-B. Finally, we conclude

in section 5.

2 background and literature review

2.1 RM-ODP parts

The rapid growth of distributed systems encourages scientists to develop a coordinating

framework for the standardization of ODP system. Therefore, the International Organization

for Standardization (ISO), the International Electro-technical Commission (IEC) and the

Telecommunication Standardization Sector (ITU-T) joint effort to develop the Reference

Model of Open Distributed Processing [12]. This reference Model provides an architecture

that supports distribution, interworking and portability. It is made up of four part, these are:

1. Overview: this first part contains motivation, scoping, justifications and explanation

about the use of ODP architecture. It contains also guide lines of how the RM-ODP

can be interpreted and a categorization of required areas of standardization [11].

2. Foundations: this brief part with only 18 pages contains the foundations of RM-ODP.

It contains concepts of categories, basic interpretation concepts, linguistic concepts,

modelization concepts, specification concepts, organization concepts, system and

object properties, designation concepts, behaviour and management concepts, and

principles of conformance to ODP standards [10].

3. Architecture: this part includes the specification of the characteristics required for a

distributed processing system to be open. These are the constraints that the open

distributed processing (ODP) must conform [9].

Architectural semantics: the recommendation presented in this part is an integral part of

the RM-ODP. It contains a formalization of ODP modelling concepts obtained by the

interpretation of each concept according to the constructions of the different standardized

formal description techniques [6].

2.2 Formal methods

Modeling can be defined as the representation of a real-world system either graphically

representation or mathematically. It is a stage before construction any system that illuminate

its expected structure. Modeling helps also to study and test some system properties to reduce

the risk of failures. For example, by modeling correctly an auto-driving cars system, we are

able to prove theoretically that it is impossible for two cars to collide. Modeling can be done

by means of graphical representation or mathematical equations. The first one is easy to read

and can visualize the system structure better, which means it can be shown to clients.

However, it is not very accurate in term of representation and its verification techniques are

not powerful. On the other hand, mathematical representations need mathematical knowledge

to be read and cannot be shown to most clients. It is also not easy to use due to the required

accuracy and the huge number of proofs. Despite all that, it is very powerful for detecting

errors and ensures a strong assurance of bugs’ absence. Therefore, we think that the use of

formal methods based on mathematical representation is highly required.

In event-B, a system is developed as sequence of models. These models are refined in

successive steps by making each model richer in term of details. In other words, we start with

a very abstract model called initial model, and then we refine it to get a more concrete models.

These models are made up of contexts and machines [7]. Contexts are the static parts of

models; they are presented in term of sets, constants and axioms, whereas, machines are the

dynamic part of models. In a machine, the dynamic status of the system is described by means

of variables; the statuses of the system are constrained by invariants. Invariants are

mathematical properties describing the necessary condition that must be preserved during the

system life-time. Statuses transitions are described by events, which are a set of actions. Each

action changes the value of certain variable. Events may have some necessary conditions to be

triggered; these conditions are called guards. The figure below illustrates the development

process when using event-B:

Fig. 2. Process of development in event-B [16]

To ensure that the system will not contain bugs, some mathematical proofs called proof

obligations must be performed. One of the most important proofs among proof obligation is

invariants preservation that ensures the preservation of all invariant before and after an event

trigger. They include also dead-lock freedom to ensure that the system will never be in a status

where no guard is verified, which means no event can be trigger. Almost all these proofs are

established automatically by means of an eclipse platform called Rodin [8]. It provides the

fundamental functionality for syntactic analysis and proof-based verification of Event-B

models [8]. In some cases, we may be forced to interfere manually by guiding Rodin in order

to perform some proofs. To do so, it may be necessary to specify the hypotheses that Rodin

should consider in order to perform proofs. The reason why this should be done is that Rodin

ignore some properties if he that they are not necessary for the proof. In other cases, we

propose some additional hypothesis that will be proved later separately and will help proving

the current desired proof.

3 Contribution

The Reference Model of Open Distributed Processing is mainly based on distributed

processing development and the use of formal specification techniques. Whereas, RM-ODP

documents are criticized of being very abstract and ambiguous, formal methods provide a very

specific models by mean of mathematical representation of distributed systems. In the ITU-T

X.904 – Computational formalization [5], the semantic architecture presented in several

formal languages (LOTOS, ACT ONE, SDL-92, Z, and ESTELLE).The main contribution of

this paper is presenting the architecture semantic using Event-B alongside recommendation on

how to develop ODP systems using Event-B. this method provide several advantages

compared to other methods such as the independence of temporal ordering, the richness in

sense of mathematical predefined operators in addition to the use of techniques to model such

as refinement.

Furthermore, Event-B is a formal method based on proof obligations that provide a strong

assurance of bugs’ absence. Therefore, Event-B is a very suitable formal method to develop

ODP systems.

4 Computational formalization

Object modelling is a formalization approach based on abstraction and encapsulation. By

means of abstraction we describe the system main functionality separately without considering

details, while encapsulation hides all kinds of heterogeneity, security, mechanism,

localization, etc [17].

The object modelling concepts cover basic modelling concepts and specification concepts.

Basic modelling concepts define the most fundamental concepts of ODP system such as

action, objects, interface, and activity [19]. Whereas, specification concepts stands for the

reasoning approach used for ODP systems design such as refinement, invariant and

compatibility.

In this section, we describe how to formalize the main basic modelling in event-B. We

provide also an example of self driving cars along the description to facilitate the

understanding of approach.

4.1 Object

An object may be any system component, for example an object may be router or a

computer in a network and may be a car in an auto driving cars system. To describe an object

in Event-B, a set OBJECTS is defined in the context. After that, we can introduce an object as

variable and presented it as an object by mean of a typing invariant (inv 1). In this paper, an

abstract recommended model for development of any ODP system is presented and it is up to

ready to integrate the concept in the system [20].

CONTEXT
RM-ODP

SETS
OBJECTS

END

The rest of concepts are presented along an example of self driving car modelling,

therefore the OBJECTS are substituted by a set CARS to facilitate models understanding.

4.2 Environment of an object

The environment of an object is described in term of its relation with it. Any object input

or output is considered as a part of the environment. In general, the environment is interacting

with object within an event as an event parameter. For example, in an auto driving cars

system, the environment which is weather is affecting the car (which is the object) in term of

deciding either it is allowed to move or not [21]. The event parameter in this case is wind

speed which should be less than about 35 miles per hour to allow car moving. This may be

formalized below by an event that prevents car from moving and associate to it the state

stopping.

4.3 State of an object

The state of an object is described as a total function from the set OBJECTS to a set of

STATES. The set of states is presented in term of enumeration [15]. For example, states

moving/stopping can be an enumeration of car states in the auto driving cars system.

SETS

OBJECTS

STATES

CONSTANTS

moving

stopping

AXIOMS

axm1 : partition(STATES,{moving},{stopping})

END

moving_preventing
ANY

wind_speed
car

WHERE
grd1 : wind_speed ∈ ℕ
grd2 : wind_speed ≥ 35
grd3 : car ∈ CARS

THEN
act1 : state(car)=stopping

END

MACHINE
RM-ODP

VARIABLES
object

INVARIANTS
inv1 : object ∈ OBJECTS

The partition predicate is an easy way to enumerate sets. Mathematically, the partition

predicate is defined as follows:

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑆, 𝑥, 𝑦 ⟺ 𝑥⋃𝑦 = 𝑆 ∧ 𝑥⋂𝑦 = ∅

Where x and y are two subsets of a set S.

The state function that associates to a car a certain state is defined by means of an

invariant in the machine as follows:

4.4 Action

We must be careful here to avoid confusion between RM-ODP action and Event-B action.

The first is an operation that changes the object states, whereas, the event-B action changes the

value of a variable. Therefore, we will refer to them in this section as ODP_action and

B_action.

An ODP_action is modelled in event-B by the performance of an event. The effect is the

instantaneous change in state (or the null change) of the objects with which that ODP_action is

associated. An object is defined by a set of variables that describe the current state of the

object; the values of these variables may change by means of B_actions in an event. In the

auto driving car example, we model the ODP_action that change the state of the car from

moving to stopping using an event Stop_car as below:

4.5 Interface

An abstraction of the behaviour of an object obtained by identifying the operations

associated with that object that is to form the substance of the interface. In the auto driving

cars example, we may define an interface vehicle in the initial model that express all the

possible operation that a vehicle perform such as moving, stopping, accelerating, etc. this can

be expressed as an iUML-B representation [14].

4.6 Activity

While Event-B is based on graphical representation, the presentation of an activity as a

single headed directed acyclic graph of action does not exist directly in Event-B. However, we

can express an activity by forcing a certain order of ODP_actions. This can be done by

defining an enumeration denoting the various steps of activity, then we use guard to ensure

that the correct event is the only one that may occurs. The steps’ transition is done by means

of an action the associate to the current step variable the next wanted action.

Stop_car
ANY

car
WHERE

grd1 : car ∈ CARS
THEN

act1 : state(car)≔stopping
act2 : speed(car)≔0

END

inv2 : state ∈ CARS → STATES

For example, let A, B, C, and D four ODP_actions that should occur in this order. We

define an enumeration of set that include all possible steps beside two additional ones that are:

the start and the end. The steps enumeration set is defined as follows:

After that, a variable called current_step is defined indicating the current step. The

current_step is initialized by start, then a guard in the A event ensure that the current step is

the start. A B_action is also added that indicate the next step which is step1. The B event will

have a guard that current_step is step1, so on and so forth.

4.7 Behaviour of an object

The behaviour of an object is the set of all possible activities that may occur. The actual

activity that will occur depends on the environment of the object and the current state [13]. A

very practical way to present the behaviour o an object is by using iUML-B which is a

graphical representation of the different states of the object.

4.8 Communication

Communication may be modelled in event-B through the interaction between object. This

communication is presented in several forms in the event-B model. In some cases, it is

presented as an invariant (for example: two cars should keep a minimum distance between

them) or as an event (for example: a car may follow another), etc. all interactions between two

objects are guided by a communication between them. In general, the communication between

objects is performed by exchanging outputs and inputs of associated variables.

5 Conclusion

Modelling an ODP system that follows the RM-ODP with a significant number of

components is, in general, a challenging task that should be performed carefully. Moreover,

the use of a sophisticated formal method such as Event-B rise also the complexity of the task,

therefore, we propose a number of recommendations and guides that helps modelling such

systems. These recommendations and guides illuminate how to model the main concepts of

object modelling.

The recommendations proposed in this paper were used in several works [16, 18, 22-25]

and all proof obligations were performed correctly using Rodin platform. Therefore, the use of

these recommendations highly guarantees the correctness of the model thus the discharging of

proofs.

References

[1] Qi Zhang, Zhiqiu HuangJian Xie: Distributed System Model Using SysML and Event-B,

International Conference on Machine Learning and Intelligent Communications, MLICOM

2017: Machine Learning and Intelligent Communications pp 326-336(2018).

Partition (STEPS,{start},{step1},{step2},{step3},{step4},{end})

[2] Ciancarini, P., Poggi, F., Rossi, D., & Sillitti, A. Analyzing and predicting concurrency

bugs in open source systems. In Neural Networks (IJCNN), 2017 International Joint

Conference on (pp. 721-728). IEEE (2017).

[3] Fayollas, C., Palanque, P., Fabre, J. C., Martinie, C., & Déléris, Y. Dealing with Faults

During Operations: Beyond Classical Use of Formal Methods. In The Handbook of Formal

Methods in Human-Computer Interaction (pp. 549-575). Springer, Cham (2017).

[4] Lecomte, T., Deharbe, D., Prun, E., & Mottin, E. (2017, November). Applying a formal

method in industry: a 25-year trajectory. In Brazilian Symposium on Formal Methods (pp. 70-

87). Springer, Cham.

[5] ISO/IEC 10746-4:1998/Amd.1 Information technology — Open Distributed Processing

— Reference Model: Architectural semantics — Part 4 AMENDMENT 1: Computational

formalization (2001).

[6] ITU Recommendation X.904 I ISO/.IEC CD 10746-4, Open Distributed Processing -

Reference Model- Part 4: Overview (1994).

 [7] J.-R. Abrial: Modeling in Event-B: System and Software Engineering, Cambridge

University Press New York (2010).

[8] C. Rodin, M. Jastram, and M. Butler: User’s Handbook.(2011).

[9] ITU Recommendation X.903 I ISO/.IEC 10746-3: 1995, Open Distributed Processing -

Reference Model- Part 3: Overview.

[10] ITU Recommendation X.902 I ISO/.IEC 10746-2: 1995, Open Distributed Processing -

Reference Model - Part 2: Overview.

[11] ITU Recommendation X.901 I ISO/.IEC CD 10746-1, Open Distributed Processing -

Reference Model- Part 1: Overview (1994).

[12] The international standard ISO/IEC 10746, information technology – open distributed

processing – reference model: Architectural semantics, first edition (1998).

[13] Asprino, L., Nuzzolese, A. G., Russo, A., Gangemi, A., Presutti, V., & Nolfi, S. (2017).

An Ontology Design Pattern for supporting behaviour arbitration in cognitive agents.

Advances in Ontology Design and Patterns, 32, 85.

[14] Snook, C., Hoang, T. S., & Butler, M. Analysing security protocols using refinement in

iUML-B. In NASA Formal Methods Symposium (pp. 84-98). Springer, Cham (2017).

[15] DONG, Q., JI, M. Q., ZHU, Y. F., & YANG, F. (2018). The CORAS Approach for

OPM Based Risk Management. DEStech Transactions on Engineering and Technology

Research, (pmsms) (2018).

[16] Jarrar, A., & Balouki, Y. Towards Sophisticated Air Traffic Control System Using

Formal Methods. Modelling and Simulation in Engineering, (2018).

[17] Genilloud, G., & Wegmann, A. A foundation for the concept of role in object modelling.

In Enterprise Distributed Object Computing Conference, 2000. EDOC 2000. Proceedings.

Fourth International (pp. 76-85). IEEE (2000).

[18] Jarrar, A., & Balouki, Y. (2018). Formal modeling of a complex adaptive air traffic

control system. Complex Adaptive Systems Modeling, 6(1), 6 (2018).

[19] Cheatham, M., Vardeman II, C. F., Karima, N., & Hitzler, P. (2017, October).

Computational Environment: An ODP to Support Finding and Recreating Computational

Analyses. In WOP@ ISWC (2017).

[20] Oliveira, I. L., Câmara, J. H., Torres, R. M., & Lisboa-Filho, J. Design of a Corporate

SDI in Power Sector Using a Formal Model. Infrastructures, 2(4), 18 (2017).

[21] Laassiri, J. Data Security and risks for IoT in intercommunicating objects. In

Proceedings of the 2nd international Conference on Big Data, Cloud and Applications(p. 3).

ACM (2017).

[22] Jarrar, A., Balouki, Y., & Gadi, T. Formal Specification of QoS Negotiation in ODP

System. International Journal of Electrical and Computer Engineering (IJECE), 7(4), 2045-

2053 (2017).

[23] Jarrar, A., Gadi, T., & Balouki, Y. Modeling the Internet of Things System Using

Complex Adaptive System Concepts. In Proceedings of the 2nd International Conference on

Computing and Wireless Communication Systems (p. 22). ACM (2017).

[24] Jarrar, A., Bellasri, O., Chougdali, S., & Balouki, Y. Formal Specification and

Verification of Transmission Control Protocol. In Proceedings of the 2nd International

Conference on Computing and Wireless Communication Systems (p. 30). ACM (2017).

[25] Jarrar, A., Balouki, Y., Gadi, T., & Chougdali, S. Modeling Aircraft Landing

Scheduling in Event B. In International Conference on Information Technology and

Communication Systems (pp. 127-142). Springer, Cham (2017).

