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Abstract. The management of insurance companies is a complex problem in which several 

indicators intervene and for which the interactions between these indicators and the 

management levers (reinsurance strategy, asset allocation, etc.) are not simple. We apply 

one of the most popular multi-objective optimization methods, namely NSGA-II. The 

implemented algorithm allows to find almost 98% of the hypervolume of the Pareto front 

in 20 iterations. In addition, the quality of representation of the Pareto front seems to be 

independent of the number of business of lines to be optimized, which may suggest that 

the work in this study may be scaled to larger companies for business use. 

Keywords: Multi-objective Optimization, Genetic Algorithm, NSGA-II, Insurance, 

Reinsurance, Asset allocation. 

1   Introduction 

The optimization of reinsurance and asset allocation strategy is not an obvious problem as 

these instruments have an impact on both the profitability and the risk profile of the company. 

In this study, we adress the problem with one of the most popular multiobjective evolutionary 

algorithms, namely NSGA-II. 

We note that the optimization of reinsurance treaties has already been addressed in previous 

work (see in particular [14], [7], [11] and [5]). The previous approaches were mainly concerned 

with the optimization of layers of reinsurance treaty for a given line of business. This 

optimization problem can not be solved analytically, thus Schlottmann, Oesterreicher and 

Miteschele [11] have highlighted the interest of evolutionary algorithms for this purpose.  

However, to our knowledge, there is no previous work dealing with the simultaneous 

optimization of asset allocation and reinsurance strategy, moreover using the NSGA-II 

algorithm. Our work examines this problem while taking into account the usual key indicators 

of insurers (P&L, ROE, Solvency Ratio, SCR). 

The results obtained show that the implemented algorithm reach 98% of the hypervolume 

of the Pareto front in 20 iterations which is achieved in 17 min of computation with the hardware 

used in our experiments. In addition, the algorithm implemented seems to find the Pareto front 

independently of the number of the lines of business studied. 
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2   Reinsurance and asset allocation 

2.1   Reinsurance 

The two types of contracts studied in this article are: 

• Per risk XL (Excess of Loss): the reinsurer agrees to settle 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑆 −
 minXL, 0), maxXL ). minXL et maxXL are respectively named as the priority and 

the limit of the reinsurance contract. In return, the insurer must pay 𝑃𝑅 to the 

reinsurer. We set this premium as being equal to the pure premium: 

                                           𝔼( 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑆 −  minXL, 0), maxXL ))      (1) 

 

The parameters that one seeks to optimize in the case of an XL type contract are 

therefore minXL and maxXL. 

• Quota-Share: The Quota-Share reinsurance treaty is a pro rata reinsurance 

contract in which the reinsurer agrees to pay 𝛼𝑞𝑠% of the claims amount in return 

for the insurer's payment of 𝛼𝑞𝑠(1 − β𝑞𝑠)% of the written premiums. β𝑞𝑠 is called 

the ceding commision and is subject to negotiations between insurer and reinsurer. 

After studying the market data, we propose the following modeling: 

                                           𝛽𝑞𝑠 = 80% max(1 − 𝑆 𝑃⁄  , 0)       (2) 

With 𝑃 and 𝑆 respectively the historical premium and loss amounts of the insurer. 

The premium perceived by the reinsurer is therefore written: 

                                           𝑃𝑅 = 𝛼𝑞𝑠(1 − 𝛽𝑞𝑠) ⋅  𝑃       (3) 

The optimization of a quota-share reinsurance contract therefore lies in the 

optimization of the parameter 𝛼𝑞𝑠, also called the cession rate. 

2.1   Asset allocation 

The amount of funds to invest is divided here into three different asset classes: stocks, bonds 

and cash. These assets have different risk and return profile, so the choice of the amounts 

invested in each of these assets will impact both the risk and the profitability of the whole 

portfolio. Generally French insurers invest from 80% to 90% of their assets in bonds (see [1], 

[2], and [3]), which is considered a low-risk investment but produces a lower return than 

equities. 



 

 

 

 

3   Methods 

3.1   Objectives mapping 

We define in the following two parts the objective function of our optimization problem, 

namely: 

𝐹 ∶ 𝜔 ∈ Ω →  (𝑓1(𝜔), . . . 𝑓𝑛(𝜔))    (4) 

With Ω the decision space. 

 

Fig. 1. Objectives mapping. 

The calculation of objective values relies on stochastic simulations and on a projection 

model giving the distribution of different key indicators (P&L, ROE, etc.). Projection models 

are commonly used in insurance, they enable the assessment of business plan impact on the 

projection of key indicators. A projection model is defined over a fixed time horizon and with 

a specific time step, in this study we use a 5 years projection with an annual time step. 

The projection model implemented here can be broken down into four stages wich are 

represented on the figure Figure 1. [1]: 

1. Simulation of stochastic scenarios: we simulate claims' amounts  for each line of 

business as well as the main economic variables (zero-coupon rate, stock return). 

These scenarios are then used to compute the projection of liabilities and assets 

(see steps 2 and 3 below). In this study we simulate 1000 stochastic scenarios. 

2. Projection of liabilities: under the Solvency II regulatory framework the insurer's 

liabilities are composed of three elements: the Best Estimate Liabilities (BEL) 

which is the present value of the insurer's undertaking, the Risk Margin (RM) – 

which we take proportional to the BEL in order to reduce the calculation time – 

and the Net Asset Value, which is calculated as the difference between the market 

value of the assets and the sum of the BEL and the RM. 

3. Projection of assets: once the first two steps have been completed, we project the 

market value of the company's investments. This projection is carried out by 

iteratively projecting the market value of the investments, taking into account the 

evolution of the economic variables, the claims payments as well as the allocation 

strategy of the company. 



 

 

 

 

4. Calculation of the key indicators: Once steps 1, 2 and 3 have been completed, we 

calculate the value of the SCR and the different key indicators for each projection 

year and simulation. 

3.2   Objectives and constraints 

The defined projection model allows us to obtain the distributions of specific key indicators. 

The objectives are then defined by applying certain statistics (mean, standard deviation, VaR or 

quantile, etc.) on these indicators. 

In the following we will consider two objectives, namely: 

• 𝔼(𝑃&𝐿) 

• 𝔼(𝑆𝐶𝑅) 

The constraints taken into account - so called risk appetite constraints - are defined by: 

• 𝑉𝑎𝑅10%
5 𝑦𝑒𝑎𝑟𝑠

(𝑅𝑂𝐸)  >  1% 

• 𝑉𝑎𝑅10%
5 𝑦𝑒𝑎𝑟𝑠

(𝑆𝑜𝑙𝑣𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜)  >  200% 

• 𝑉𝑎𝑅90%
5 𝑦𝑒𝑎𝑟𝑠

(𝑆/𝑃)  <  100% 

Let us note that the expectation and the VaR are estimated by using the empirical average 

and the empirical quantile on the outputs from the projection model. 

3.3   Optimisation algorithm 

Evolutionary algorithms are naturally suitable algorithms for the optimisation problem 

studied here since they do not require any assumptions of derivability or convexity of the 

objective functions (see [9]). Hence we use one of the most popular algorithm, namely NSGA-

II. 

 NSGA-II provides a so-called "truly" multi-objective approach, as it makes it possible to 

simultaneously optimize several objectives and thus to find the entire Pareto front. As for all 

genetic algorithms, NSGA-II relies on genetic operators. The crossover and mutation operators 

used in this study are respectively SBX (Simulated binary Crossover) and polynomial mutation. 

The interested reader may refer to Kalyanmoy Deb et al. for more details (see [12]). 

Appication to asset allocation and reinsurance optimisation. The crossover and mutation 

operators initially proposed by K. Deb for the NSGA-II algorithm are defined for real-coded 

individuals represented by vectors of [0, 1]𝑛, with 𝑛 the number of parameters or "genes". This 

representation suits perfectly for the optimization of the quantitative parameters (asset 

allocation, priority and limit of XL treaties). However when taking into account qualitative 

parameters such as the choice between an XL or a Quota-Share coverage, the real-coded 

representation of individuals doesn’t naturally fit. The solution implemented here is to 

enumerate all the possible choice for each qualitative parameter and then to optimize the 

quantitative parameters for each of these choices. The algorithm is as follows: 

• Enumerate all possible choices for the types of reinsurance coverage. If we have 

𝑁𝑙𝑜𝑏 lines of business and 𝑛 different types of reinsurance contracts, the number 

of possibilities is 𝑁𝑙𝑜𝑏
𝑛 . 



 

 

 

 

• For each choice previously enumerated, we optimize the quantitative parameters 

with the algorithm NSGA-II launched on a parallel worker. 

The calculation in this study were done on a computer equiped with an intel i7 8th generation 

processor with 6 cores. So by using the package future of R, we parallelized calculations on the 

6 cores, which improved the computation time by a factor of 4. 

Dealing with constraints. To take into account the constraints of the optimization problem, we 

have chosen one of the most popular approach, namely the "multi-objective transformation" 

approach. It consists in integrating the constraints into the objectives set, thus it preserves the 

multi-objective aspect of the problem. 

The optimization problem is thus as follows: 

min(+ 𝔼(𝑃&𝐿), 

− 𝔼(𝑆𝐶𝑅), 

+ 𝑉𝑎𝑅10%
5 𝑦𝑒𝑎𝑟𝑠(𝑅𝑂𝐸),                      (5) 

+ 𝑉𝑎𝑅10%
5 𝑦𝑒𝑎𝑟𝑠(𝑆𝑜𝑙𝑣𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜), 

− 𝑉𝑎𝑅90%
5 𝑦𝑒𝑎𝑟𝑠

(𝑆/𝑃))   

4   Application and results 

4.1   Impact of hyperparameters on normalized hypervolume 

In this section we study the impact of the number of generations and of the population size 

on the quality of the Pareto front approximation, which is measured by the normalised relative 

hypervolume (𝑁𝑅𝐻𝑉). 

 

Number of generations. The Figure 2. [2] gives the evolution of the average 𝑁𝑅𝐻𝑉 over 30 

runs of the optimization algorithm. We observe after the first 20 iterations that the difference 

between the 𝑁𝑅𝐻𝑉 of the population and that of the reference front is less than 2.3%. We notice 

that the iteration 21 is reached on average after 17min24s, which can be considered as a 

reasonable time for a business use. 

NB. - The reference frontier corresponds to the set of non-dominated stratgies obtained on 

all the runs. The number of non-dominated strategies is 3,777. 



 

 

 

 

 

Fig. 2. Evolution of normalized relative hypervolume with the number of iterations. 

 

Population size. We observe in the figure 3 that the normalized relative hypervolume does not 

seem to be able to decree until 0. This is because the number of individuals is a limit to the 

quality of the Pareto front approximation. The Figure 3. [3] gives an illustration of the impact 

of the population size on the quality of representation of the Pareto front. 

The increase in population size shifts the whole curve downwards. However, in the 

proposed implementation, the calculation time increases linearly with the number of individuals. 

Thus the choice of the population size should result in practice from an trade-off between 

calculation cost and quality of representation of the Pareto front. 

 

Fig. 3. Impact of population size on convergence. 



 

 

 

 

4.2   Impact of the number of LOB on normalized hypervolume 

We study the impact of the number of lines of business on the Pareto front approximation 

quality. So we optimize the company's strategy in the case where it reinsures one, two or three 

different business lines. The Figure 4. [4] does not show obvious differences between the three 

curves, besides a one-way ANOVA test allows us to conclude that one can not reject the 

hypothesis of equality of the Pareto front approximation quality for one, two or three lines of 

business (p-value : 0.27 >  0.05). 

So the quality of the the Pareto front approximation seems independent of the number of 

lines of business considered in the problem. 

 

Fig. 4. Impact of the number of business lines on convergence. 

4.3   Analysis of the relevance of the Pareto Front 

In this section we analyse the Pareto front obtained with the optimization algorithm. The 

company considered consists of three lines of business and has three assets to its portfolio and 

its optimization problem is given by the equation (4). 

 

Fig. 5. Illustration of the Pareto front obtained. 



 

 

 

 

On Figure 5. [5] we represent the Pareto front. The points for which the constraints are 

respected are shown in blue, while the points for which the constraints are not respected are 

shown in red. We observe that the Pareto front has two zones for which the risk appetite 

constraints are respected, the table 1 gives an overview of these strategies. By comparing the 

asset allocation strategies obtained with the algorithm with the allocations observed on the 

French insurance market, we see that the amounts of equity, bonds and cash are in similar 

proportions for type B strategies, which reinforces the relevance of the projection model and the 

results obtained with the optimization algorithm. 

Table 1.  Overview of optimal strategies. Strategies 1 and 2 belong to set A, strategy 3 and 4 

belong to set B.  

N 𝔼(𝑃&𝐿) 𝔼(𝑆𝐶𝑅) 

Asset Allocation Reinsurance   

Equity Bond Cash LOB 1 LOB 2 LOB 3 

1 976k 12.9M 1% 95% 0% 460k XL 5k QS: 75% QS: 17% 

2 1.01M 13M 3% 96% 1% 840k XL 5k QS: 73% QS: 15% 

3 1.35M 17M 8% 90% 1% 711k XL 5k 328k XL 9k 430k XL 71k 

4 1.43M 18.3M 16% 83% 1% 941k XL 5k 856k XL 9k 466k XL 57k 

Table 2.  Asset allocation of French insurers. Shares invested in equities, bonds and cash by 

French insurers. Source : ACPR (see [ ]). 

NB. – 𝑀𝑖 refers to the amount invested in asset 𝑖. 

Semester 𝑀𝑠𝑡𝑜𝑐𝑘

𝑀𝑠𝑡𝑜𝑐𝑘 + 𝑀𝑏𝑜𝑛𝑑 + 𝑀𝑐𝑎𝑠ℎ

 
𝑀𝑏𝑜𝑛𝑑

𝑀𝑠𝑡𝑜𝑐𝑘 + 𝑀𝑏𝑜𝑛𝑑 + 𝑀𝑐𝑎𝑠ℎ

 
𝑀𝑐𝑎𝑠ℎ

𝑀𝑠𝑡𝑜𝑐𝑘 + 𝑀𝑏𝑜𝑛𝑑 + 𝑀𝑐𝑎𝑠ℎ

 

December – 2017 13% 84% 3% 

December – 2016 13% 82% 5% 

5   Conclusion 

Finally, the proposed method highlighted the benefit of evolutionary algorithms in 

insurance and more particularly in the decision-making process. This type of study is all the 

more important now that the regulatory context is becoming more and more restrictive for the 

management of insurance companies. 

The implemented algorithm reached 98% of the hypervolume of the reference front after 

20 iterations, which was achieved in 17min with a consumer laptop, equipped with an Intel 

processor i7 8700k. The method implemented here seems therefore relevant in business-use 

applications, however we note that the proposed parallelization reach its limits when the number 

of lines of busines becomes too large in comparison to the number of cores of the processor. 

In addition, we observed that the quality of representation of the Pareto front is the same 

when we consider 1, 2 or 3 lines of business. It therefore seems that the proposed approach can 

be generalized and still offer a good representation of the Pareto front when the number of 

business lines becomes larger. 



 

 

 

 

However it is important to note that the projection model developed is based on certain 

assumptions and may require adjustments in a real application. In addition, we have restricted 

ourselves to the optimization of two objectives - apart from risk appetite constraints - in order 

to facilitate the visualization of the Pareto front. It might be interesting to explore multicriteria 

analysis methods to guide decisions when the Pareto front can not be viewed in its entirety.  
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