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Abstract: Classification of Iris flower dataset is the best known problem to be 

found in the pattern recognition literature. It contains four attributes of the 
flowers belonging to three different species. The objective is to design a model 
which can differentiate the species based on the attributes of the flowers. In this 
paper, we have used three different Bayesian models to perform this 
classification task viz. mixture model based method, hierarchical modeling 
based method and classical multinomial logistic regression. It was   found out 

that mixture model based method was able to classify the data upto 83.33% 
accuracy without exploiting any prior knowledge except the number of 
components of mixtures (which is 3). Bayesian hierarchical model did use the 
knowledge of the membership of data but main advantage of using this 
technique was that we obtained the posterior predictive density which is not 
possible if we use logistic regression or mixture models. Logistic Regression 

significantly performed better as compared to mixture models with classification 
accuracy upto 98.33%. 
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1 Introduction 

Classification of Iris flower dataset is the best known problem to be found in the pattern 

recognition literature [1,2].  It contains four attributes of the flowers belonging to three different 

species. The objective of paper is to classify the multivariate Iris dataset (with three classes) using 

various Bayesian models. We have specifically used three models, viz. Bayesian Hierarchical 

Model, Mixture Model and Multinomial’ Logistic Regression based Model. 
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Fig 1: y = sepal.length + sepal.width  +  petal.length  +  petal.width  is used to predict 
the underlying species of the flower. Histogram and density plot of y. 

 

2 Dataset 

The Iris flower dataset [2] has been used throughout the paper. The dataset consists  of  three  

species,  namely,  ’setosa’,  ’virginica’  and  ’versicoloar’,  each having 50 samples. Four 

attributes, namely, sepal length, sepal width, petal length and petal width of the flowers are used to 

design a classifier which can distinguish the species from each other. In particular, sum of all 

attributes is used as an observation variable. 

Histogram and density plots for  the observation variable are shown in Fig. 1. It can be  seen that 

there are  two peaks in the density plot which shows that by appropriately modeling the  density, 

we can at least identify two species in the dataset1. This is the motivation behind using mixtures 
model and hierarchical model to model the dataset. For comparison, we will use multinomial 

logistic regression (generalization of logistic regression) to classify three classes present in the 
data.1 

 
 

 
1It can be shown that one of the classes (viz. Setosa) is linearly separable from the other two, while 

the remaining two are not linearly separable. 
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3 Model 

Gaussian Mixtures Model 

When we fit a mixture model to data,  we usually have  the y values and do not know which 

’population’ they belong to. In mixture models, latent variables are used to provide this 

information regarding membership of the observation point to a particular population [1]. 

To solve the problem, we have used Gaussian Mixture Model (GMM). The motivation 
behind using GMM is that GMM can approximate any density (multimodal) if we 

choose proper number of populations with ap- propriate memberships. The GMM model 

looks like: 

yi|zi, µz , σ2 ∼ Nz (µz , σ2), i = 1, . . . , n

 (1) 
where zi is the latent variable used to identify the population which an observation yi 

belongs to . Here, z[i] was assumed to follow categorical distribution where each 
probability ωi of z[i] followed dirichlet prior. The choice of this prior was to exploit the 

conjugacy of the model. 

From Fig 1, it apears that we have two populations, where observations are coming 
from. However, since we know that we have to identify three classes, we will assume 

three normal distributions (again owing to conjugacy of normal distribution for mean) 
with variance 1 and different (and unknown means). All the three means are further 

assumed to come from normal distribution with parameters: 

µ1 ∼ N (−1, 0.01), µ2 ∼ N (0, 0.01), µ3 ∼ N (1, 0.01) 

It was found out (empirically) that all µ’s did not depend on the choice of means and 
result obtained were same irrespective of these means. 

 
Checking the model and Results 

We ran Monte-carlo markov chain (MCMC) convergence tests with 3 chains with 1000 

iterations as burn in period [3]. Three means (with standard deviations) corresponding to three 

classes were obtained as: 

µ1 = 10.355 ± 0.179, µ2 = 14.93 ± 0.278, µ3 = 17.75 ± 0.377. 

z latent variable show the membership of the observation to the unknown population. 
The confusion matrix is given by Table 1. 

It can be seen that around 83.33% predictions have been made correct by the model 

exploing GMM. Specifically, there was a lot of ambiguity while classifying the species 

’Virginica’ and ’versicoloar’.  This can be attributed the fact that the ’Setosa’ is linearly 

separable from the other two classes, while the remaining two are not linearly separable. 

For  this  model,  we  could  not  obtain  the  Gelman  And  Rubin’s  Conver- gence 

Diagnostic. Effective size of the variables were found to be 4152.926 for µ1, 1103.172 



for µ2 and 1168.982 for µ3. Deviance Information Criterion (DIC) for the model was 

obtained as 549.8. 
Table 1: Confusion matrix for GMM 

 

True (↓) Predicted(→) Setosa Virginica versicoloar 

Setosa 50 0 0 

Virginica 5 45 0 

Versicoloar 0 16 34 

 

 
Bayesian Hierarchical Model 

In Bayesian hierarchical modeling [1] of data, we shall again assume normal likelihood 

function: 

yij|µj, σ ∼ N(µji, σ
2) i = 1, . . . , n, j = 1, 2, 3

 (2) 
where j subscript denotes three classes of data. This model implies that observation yij 

is assumed to follow normal distribution with mean µji and σ2.  One of the key 

difference between Eq. (2) and Eq. (1) is that in the former we are trying to estimate the 

membership of the observation variable using latent variable zi whereas in the later case 

µji clearly utilizes the knowledge of the membership of observation to the population. 

 
Checking the model and Results 

We ran MCMC convergence tests with 3 chains with 1000 iterations as burn in period. 

Three means (with standard deviations) corresponding to three classes were obtained as: 

µ1 = 10.143 ± 0.171, µ2 = 14.296 ± 0.173, µ3 = 17.135 ± 0.172. 
It is noted that there was not a very huge difference between the means obtained using 

mixture model and means obtained using hierarchical model. However, we again 

emphasize that Eq. (1) does not exploit any information related to the membership of 

observation to the population it belongs to. 
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Fig 2: (a) and (b)Residual Analysis associated with the posterior means of the parameters. (c) Predictive 

posterior density corresponding to Species ’Setosa’ 

 
For this  model,  the  Gelman  And  Rubin’s  Convergence  Diagnostic  was obtained to 

be 1 for all the variables. Effective size of the variables were found to be 9867.433 for 

µ1, 8814.902 for µ2 and 15763.297 for µ3. These numbers are significantly larger than 

the one obtained by mixture model. Deviance Information Criterion (DIC) for the model 

was obtained as 488.1 which is smaller than the one obtained using mixture model. This 

is quite natural because mixture models have additional latent variables which leads to 

greater DIC value. 

To check the fit via residuals, we looked at the residuals associcated with the posterior 

means of the parameters as shown in Fig. 2. 

 
Multinomial Logistic Regression 

For binary discrete variables, data is fit into linear regression model, which then be 

acted upon by a logistic function (where ’logit’ is link function) predicting the target 

categorical dependent variable [1]. This is the heuristic behind ’binary’ logistic variable. 

When there are several possible categories that the dependent  variable can fall into, we 

have multinomial logistic regression. If y ∈ {1, 2, . . . , k}, model the data using 

multinomial likelihood  function  where k parameters φ1, . . . , φk−1 are used to specify 

the probability of each of the outcomes with Σk−1φ   = 1 i=1 φ . 

Therefore ik Σk−1 

φi = p(y = i; φ), with φk = p(y = k; φ) = 1 − φi. 
i=1 

Table 2: Confusion matrix for Multinomial Logistic Regression with threshold = 

0.7. 

True (↓) Predicted(→) Setosa Virginica versicoloar 

Setosa 50 0 0 

Virginica 2 48 0 

versicoloar 0 2 48 

re
s
id

 

−
3
 

−
2
 

−
1 

0
 

1
 

2
 

3
 

re
s
id

 

−
3
 

−
2
 

−
1 

0
 

1
 

2
 

3
 

D
e

n
s
it
y
 

0
.0

0
 0

.0
5

 0
.1

0
 0

.1
5
 0

.2
0
 0

.2
5
 

0
.3

0
 



It can be shown that 

 

where x is a vector of covariates and θj is the parameter vector (weights) corresponding to class j. 

This is also called softmax regression. 

By using the log link function and Eq. (3), we classify the dataset and obtain the confusion matrix 

shown in Table 2. 

It can be seen that using this model, we have obtained 98.33% classification accuracy. 

 

4 Conclusions 

In this paper, we tried to classify Iris flower dataset using three models, viz. Gaussian mixture 

model, Bayesian hierarchical model and multinomial logistic regression. While GMM does not use 
any a priori information re- garding the membership of data to a specific population (except 

number of mixtures which in this case is 3), Bayesian hierarchical modeling and multinomial 

regression do use this information. It was seen that the results obtained using GMM and 
hierarchical model were based on the approxima- tion of the underlying density of the data and 

they were almost equivalent. Whereas logistic regression based modeling was based on firstly 

fitting data onto linear regression model and then using an ’appropriate’ link function to predict the 
target categorical variable. For reproducibility of the results and more detailed analysis of the data, 

R notebook has been uploaded on the github page https://github.com/shruti51/Iris Classification. 
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