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        Abstract: In applications like autonomous vehicle driving or robot 

maneuverability, Precise depth estimation from images is vital for 

understanding the scene and its reconstruction. Traditional depth 

estimation techniques are based on component correspondences of 

several viewpoints. Monocular depth estimation from a single image is 

a challenging task due to the inherent ambiguity in the scene's geometry. 

Deep neural networks have shown great promise in addressing this 

problem by capturing complex features from the image and providing 

accurate depth maps. In this paper, we review the recent advances in 

monocular depth estimation based on deep learning techniques. We 

explore the various network frameworks and training methods used to 

improve the accuracy of depth estimation. We also examine the 

limitations of current methods and discuss open challenges in this field. 

Our goal is to provide a comprehensive overview of the current state-

of-the-art in monocular depth estimation based on deep learning and to 

inspire further research in this area. The paper examines a variety of 

learning strategies, as well as datasets for Monocular depth estimates 

and challenges. 

     Keywords: CNN, Monocular, KITTI Dataset, NYU Dataset  

1. Introduction 

The term "depth estimation (DE)" refers to a set of processes and calculations used 

to depict a scene's spatial structure. In other words, to figure out how far apart each 

of the scene's points are.  

Understanding and reconstructing scenes from images are among the key tasks in 

many applications. Recent advances in DE have concentrated on performing 2D to 

3D reconstruction using convolutional neural networks (CNNs). While these 
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techniques' performance has steadily improved, the accuracy and resolution of these 

approximated depth maps are still causing considerable problems.  

An approach for deducing depth information from a monocular image has recently 

piqued people's interest. The depth information provides crucial pieces of 

information or clues, such as the horizontal border, the vanishing point's location, 

and so on, that aid in the proficient interpretation of a scene. As a result, 

improvements in DE are becoming essential to developing computer vision 

techniques such as model-based 3D reconstruction. Because it enables for the 

interpretation of the geometric structure of collected images, such a depth estimate 

is critical for frameworks for autonomous driving. Despite substantial progress in 

estimating depth information using stereo images and video sequences, monocular 

depth estimation (MDE) remains a difficult problem because of the intrinsic 

uncertainty introduced by the ill-posed nature [1]. 

1.1 DE Methods: The methods for calculating depth are as follows: 

1.1.1 Geometry-based methods: The use of geometric constrictions to recover 3D 

structures from images is a well-established strategy for detecting depth that has 

been extensively explored over the last 40 years. A delegate technique for analysing 

three-dimensional structures from a series of two-dimensional image configurations 

is structure from motion. It's a popular choice for 3D reconstruction and SLAM. 

Precision component coordination and image sequences of high resolution are 

critical to the accuracy of DE. Furthermore, SFM has a monocular scale ambiguity 

[2]. Stereo vision matching [3] allows you to recreate a scene's three-dimensional 

layout by detecting it from two different viewpoints. In order to resolve the 

dissimilarity maps between images, the model utilizes two cameras to emulate the 

human visual system. As opposed to the SFM interaction, which depends on 

monocular sequences, scale information is used to estimate depths in the stereo 

vision matching process. Although they usually rely on image sequences or image 

pairings, geometry-based algorithms may accurately identify the depth values of 

sparse spots [3]. Due to the fact that a single image provides information only in 

two dimensions, reconstructing a detailed depth map from it poses a significant 

challenge since depth is a characteristic of the three-dimensional world.  

1.1.2 Sensor-based methods: Sensors that measure depth, such as LIDAR and RGB-

D cameras, can quickly retrieve the resultant image's depth information. Although 

RGB-D cameras can directly retrieve the detailed depth map of an RGB image at 

the pixel level, they suffer from outside sunlight sensitivity and have a limited 

measuring range [4]. While LIDAR is commonly used in the industry of self-driving 

cars to estimate depth, it can only provide a 3D map with sparse detail. Furthermore, 

depth sensors' high-power consumption and large bulk limit their use in less 

advanced mechanics, such as drones. Over the years, the usage of monocular 

cameras has been on the rise due to their compact size and cost-effectiveness, 

resulting in an increase in the practice of inferring a depth map from a single image 

[5]. 
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1.1.3 Deep learning-based methods: Deep neural networks have excelled in image 

processing applications including object recognition and classification due to the 

quick advancement of deep learning. Recent advancements have also demonstrated 

that deep learning can create a pixel-level depth map from start to finish from a 

single image. CNNs, recurrent neural networks (RNNs), and other neural networks 

have all been demonstrated to be good at estimating monocular depth [6], [7]. The 

main purpose of this paper is to grasp traditional approaches to MDE in an intuitive 

way. In the remaining sections, the following is summarized: Section II reviews 

pertinent literature. The section III discusses the most commonly used datasets and 

evaluation indicators for MDE. A review of deep learning methods for MDE is 

presented in Section IV. The review summarizes the current challenges in Section 

V. Finally, Section VI concludes the review. 

2. Related Work  

This Section summarises research on DE using images. 

2.1 Traditional methods: By analysing image attributes with a nonlinear diffusion 

system and determining the distance between all components and the evaluated 

ground region's top position, Chun et al. were able to extract the ground section of 

indoor scenes. Recent research has concentrated on determining the optimal depth 

map for a given colour image via structural similarity learning across diverse scenes 

Karsch et al. [8]. The approach proposed by Torralba and Oliva is based on 

analyzing the frequency characteristics of an image to estimate depth. Specifically, 

they compute the distance between two spots in the image using a probabilistic 

model based on statistical properties of spectral magnitudes. This approach can be 

useful in situations where traditional depth DE techniques based on visual cues may 

not work well, such as in low-light conditions or for scenes with low texture [9]. 
The technique presented by Choi et al. suggests using depth gradients as a means of 

inferring depth instead of directly selecting depth values from the training data. The 

approach is founded on the notion that depth is linked to the scene's gradient and 

can be estimated by analyzing gradient patterns in the image. To include these depth 

gradients in the reconstruction process, the researchers utilized a Poisson 

reconstruction framework [10]. Karsch et al. developed a method to compute the 

depth map from a color image by analyzing its spectral features, and subsequently 

used a transfer scheme to refine the resulting depth map [11], [12]. Furthermore, as 

suggested by structural similarity, Konrad et al. sought to combine three 

transformation outputs adaptively, namely location-depth, color-depth, and motion-

depth [13]. 

2.2 Deep learning-based methods: Following the advent of deep neural network-

based image classification, depth estimation using the generative model has 

identified key issues. 

Ibraheem et al. suggested a transfer learning-based supervised approach for 

estimating depth maps. This technique estimates depth maps using a CNN.  Feature 



4 

extraction is based on an encoder-decoder network design that utilizes pre-trained 

DenseNet-169 and ImageNet networks.  Moreover, the acquired data is transmitted 

to the decoder, which uses the sampling layer to create the final depth maps. It is 

trained using densified depth images, which have been expanded horizontally and 

colour-coded by swapping green and red channels in input images. The depth maps 

have a resolution of 320×240 pixels, but they are likely skewed by the bilinear up-

sampling layer, which doesn't show the exact depth information for each region 

[14]. 

Using a coarse-to-fine technique to apply deep neural networks, Eigen et al. planned 

to directly gain proficiency with the link between colour input images and depth 

maps. To create the initial depth map, many convolutional layers are used, which 

are then fed into the next convolutional network to recover precise details from the 

original input. Despite the fact that the final output is hazy due to continuous 

convolution layer pooling processes, it displays the generative model's incredible 

ability to estimate the depth map from a monocular image. With enhanced 

organisational designs, a variety of approaches have been provided [15]. Garg et al. 

suggested an unsupervised technique for estimating a disparity map based on stereo 

reconstruction loss minimization [16]. Similarly, Godard et al. assessed the depth 

map in an unsupervised manner. Rather than using a predetermined set of features, 

the neural network was trained in a holistic manner using raw pixel values as inputs. 

As a result, the network is able to automatically discover and learn the most 

important features for the specific task it was trained on [17]. Due to the fact that 

both the left and right pictures can be rebuilt using the generated disparity map, their 

consistency loss may be used to effectively reinstate the depth information in the 

absence of the ground truth. It's worth noting that this methodology needs just a 

single image for the test stage. Despite the fact that such techniques fundamentally 

improve the depth estimation performance, they need an extra image, which is likely 

not ideal in the industry field. Gan et al. recently presented a coarse-to-fine learning 

strategy for multiscale systems [18]. As a result, both local and global features are 

taken into account for constructing a coarse depth map As the refining module 

learns residuals and extracts features from earlier scales and vertical pooling, the 

sample size of the coarse depth map increases steadily. The generative model based 

on deep neural networks has become very effective in detecting depth from a 

monocular image, however most prior techniques fail to clearly show the depth 

border, resulting in a blurry restoration. 

3.  Datasets for Depth Estimation  

a) To improve the accuracy of DE, researchers rely on multiple datasets that provide 

a variety of images and depth maps for analysis. These datasets are selected based 

on their ability to cover different scenarios and object types, making them ideal for 

training and evaluating the performance of DE algorithms. In this paper, we explore 

the role of different datasets in the field of DE and our goal is to provide insights 

into the selection and utilization of datasets for improving the accuracy of DE [19]. 
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Following are the most common datasets that are used to observe the scenes, as 

indicated in Table1. 

3.1 KITTI: The dataset contains a set-up of vision tasks assembled utilizing an 

autonomous driving platform [20]. The full benchmark consists of numerous tasks 

like visual odometry, optical flow, etc. The KITTI dataset comprises of the object 

detection dataset, comprising the monocular images and bounding boxes. This 

particular dataset is widely recognized as a standard benchmark and primary source 

for training data when it comes to unsupervised and semi-supervised MDE. It 

comprises 56 scenes that have been categorized into 'city', 'residential' and 'road' 

classifications, with 28 scenes dedicated to each of the training and testing sets. 

These scenes are actual images that have been curated to enable effective training 

and evaluation of DE models. Furthermore, each scene contains stereo image pairs 

of resolution 1224×368.  

3.2 NYU Depth: The NYU Depth dataset is a collection of 464 indoor video 

sequences that were captured using RGB-D cameras, and contain data from both 

depth and RGB cameras in Microsoft Kinect. This dataset is considered to be the 

primary resource for supervised MDE. It includes 249 indoor scenes for training 

and 215 for testing, with a balanced relationship between the RGB images and depth 

maps despite the different frame rates of the depth and RGB cameras. The dataset 

has been curated in such a way that each depth map is associated with its closest 

RGB image to ensure accurate pairing of the data. The projections from the camera 

are used to alter the RGB and depth sets based on the geometrical association 

defined by the dataset. Since of the discontinuous nature of the projection, all pixels 

are erased during the tests because they lack a corresponding depth value. 

3.3 Cityscapes: The semantic information associated with segmentation tasks is the 

primary focus of the Cityscapes dataset [22]. It contains five-thousand fine labelled 

images and twenty-thousand coarse labelled pictures. It is composed of 22,973 

stereo video sequences, acquired from 50 urban societies. It is used solely for the 

purpose of training unsupervised DE techniques. Furthermore, Cityscapes may be 

used to accurately train depth networks, and pretraining can boost performance. The 

various existing experiments have proved the viability of this dataset.  

3.4 Make3D: It is composed of monocular depth and RGB images [23]. It does not 

contain any pairs of stereo images or monocular sequences. The unsupervised and 

semi-supervised learning strategies do not use it as the training set, but it is used in 

supervised approaches. This dataset is generally used as testing data for 

unsupervised techniques used to determine evaluate various dataset’s generalisation 

capability. 

 
3.5 Pandora: Comprising of 250,000 high-resolution RGB (1920x1080 pixel) and 

depth (512x424) images with annotations, the Pandora dataset (24) is utilized for 

head centre localization and estimating shoulder and head pose. The dataset 
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provides a comprehensive resource for research in computer vision, particularly in 

areas that require precise head and body orientation estimation. 
 

 

Table 1. Datasets Used for MDE 

Dataset  Outline 

KITTI 

 

 A dataset for autonomous driving research, with stereo RGB images and 

depth maps provided for outdoor scenes. 

NYU Depth  A dataset with indoor scenes captured by a Kinect sensor, with depth 

maps provided at a resolution of 640x480. 

Cityscapes  A dataset for urban scene understanding, with high-resolution stereo 

RGB images and depth maps provided for street scenes. 

Make3D  A dataset with stereo images of outdoor scenes captured by a laser 

scanner, with ground truth depth maps provided. 

Pandora  A dataset for autonomous driving research, with stereo RGB images and 

depth maps provided for urban and rural scenes. 

 

b) Evaluation Indicators in Depth Estimation: To assess depth estimate 

performance, "Root Mean Square Error" (RMSE), "RMSE log", "Absolute Relative 

Difference" (Abs Rel), "Square Relative Error" (Sq Rel), and Accuracy are used 

most widely [19]. Specifically, they are:  

• RMSE = √ 
1

|𝑁|
∑𝑖𝜖𝑁   || 𝑑𝑖  − 𝑑𝑖 

∗ ||2 )                                         (1)  

• RMSE log = √ 
1

|𝑁|
∑𝑖𝜖𝑁|| 𝑙𝑜𝑔(𝑑𝑖)  − 𝑙𝑜𝑔(𝑑𝑖 

∗ ) ||2 )                 (2) 

• Abs Rel = 
1

|𝑁|
∑𝑖𝜖𝑁  

|𝑑𝑖 −𝑑𝑖 
∗ |

|𝑑𝑖 
∗ |

                                                        (3) 

• Sq Rel = 
1

|𝑁|
∑𝑖𝜖𝑁  

||𝑑𝑖 −𝑑𝑖 
∗ ||2

|𝑑𝑖 
∗ |

                                                       (4) 

• Accuracies = % of 𝑑𝑖  s.t. max( 
𝑑𝑖 

𝑑𝑖 
∗  , 

𝑑𝑖 
∗

𝑑𝑖
) = δ < thr                     (5) 

“ 𝑑𝑖 represents the predicted depth value of pixel i, and 𝑑𝑖 
∗  is the ground truth of 

depth, N represents the total number of real-depth pixels, and thr represents the 

threshold of depth.” 
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All of the strategies depicted above were tried on the NYU-v2 or KITTI datasets. 

Comparing pre-trained models on both datasets has the advantage of allowing you 

to calculate the networks' overall performance over a large number of test sets. 

4. Techniques for Monocular Depth Estimation on Deep Learning  

Deep learning techniques for MDE refer to a range of methods that employ artificial 

neural networks with multiple layers to learn features and extract depth information 

from a single image. These techniques leverage the ability of deep neural networks 

to learn complex relationships between image features and depth cues to produce 

accurate depth maps from 2D images. 

Users can use historical global data to anticipate the depth information contained in 

a single image. As a result of this, earlier works have achieved a single depth 

calculation by consolidating certain earlier data, analogous to the relationship 

between some geometric features such as the sky and ground structures [19]. With 

its superior image processing performance, Convolutional neural networks have 

also established a robust capability to properly determine dense maps from 

monocular pictures. 

Deep neural networks use supervised signals to obtain structural information for 

depth inference [1]. The necessity for large datasets with expensive ground truth is 

the primary challenge with deep learning. This section examines methods of depth 

estimation through monocular vision using ground truth and a range of machine 

learning strategies, including supervised, semi-supervised, and unsupervised 

approaches. For training, supervised approaches recognise a single image and its 

associated depth information. In this situation, trained data is required to summarise 

all use cases, which is challenging. 

The problem of obtaining high resolution depth estimate data as seed data has been 

solved by a number of semi-supervised techniques [19]. Semi-supervised 

algorithms are designed to train on a limited amount of labelled data alongside a 

larger quantity of unlabelled data. One limitation of these methods is that they rely 

on external information, such as camera focal length and sensor data, to make 

accurate predictions. In contrast, a depth network that has been trained can produce 

depth maps from individual images, which is a significant advantage over semi-

supervised and unsupervised methods that typically require monocular sequences 

or stereo image pairs for training. Table 2 summarizes the relevant methods, training 

data, and contributions. In addition, Table 3 and Table 4 contain the quantitative 

results of the semi-supervised and unsupervised algorithms calculated using the 

KITTI dataset and the NYU Depth v2 dataset, respectively, with Graph 1 and Graph 

2 displaying the graphical representation of the results. 

4.1. Supervised MDE: The supervisory signal of a supervised approach is obtained 

from depth maps, making MDE a regressive problem [1]. Deep neural networks use 

individual images to predict depth maps. During the training process, the network's 

development is monitored using the disparities between predicted and real depth 
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maps. Depth networks calculate scene depth information by approximating the 

ground truth [7] [15].  

4.2. Unsupervised MDE: Unsupervised methods rely on geometric constraints 

between frames as a means of training, as opposed to ground truth data, which can 

be challenging to obtain.  

The unsupervised algorithms are trained on monocular picture sequences with 

geometric constraints based on the distance between neighbouring frames, such as 

“ (pn−1 ∼ KTn→n−1Dn(pn)K −1 ) ,” where “pn ” is a pixel on image “ In ” and  “pn−1” is 

a matching pixel of “pn ” on image “In−1”. The camera intrinsics matrix is denoted 

by “K”. “Tn→n−1 ” measures the transformation between “ In ” and “In−1”, while 

“Dn(pn)” measures the depth at pixel “pn”. It is possible to establish the correlation 

between distinct pictures (In and In1) by applying projection functions to pixels on 

separate images (In and In1). 

4.3. Semi-supervised MDE: Due to the lack of ground truth during training, 

unsupervised methods lag substantially behind supervised approaches. 

Unsupervised approaches are also prone to scale inconsistencies and ambiguity. 

Semi-supervised approaches are presented to achieve improved estimation accuracy 

while reducing the need on costly ground truth. The scale information can also be 

obtained from the semi-supervised signals. The fundamental distinction between 

stereo picture pairs and monocular recordings is the shift in frame order between 

each frame (front-back images vs. left-right images). As a result, some research 

label stereo image-based frameworks as unsupervised [6], while others call them 

semi-supervised [25]. The left-right positions between images represent the 

supervised signals during training, and these approaches are reviewed as semi-

supervised methods [26]. 

Inverse depth maps (disparity maps) can be produced using semi-supervised 

algorithms learned on stereo image pairs. To synthesise the left picture from the 

right image, inverse warping is used to compute the disparity map Dis from 

predicted inverse depth. The distinction between synthetic images (Iw) and  genuine 

visuals (Il) when employing supervised methods, it serves as both a signal and a 

constraint for the training process: 

 

“Lrecons = ∑ p ||Il(p)−Iw(p)||2 ”                                                                      (6) 

           = ∑ p ||Il(p)−Ir(p+Dis(p))||2                                                              (7) 

Table 2. Summarizing MDE Using Deep Learning 

Researcher Year Training set Method Main contribution 
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Ibraheem et al. 2018 RGB & Depth Supervised CNNS 

CNNS 

Stereo Framework 

Left-right 

consistency loss 

Stereo matching 

Eigen et al. 2014 RGB & Depth Supervised 

Garg et al. 2016 Stereo Images Semi-Supervised 

Godard et al. 2017 Stereo Images Semi-Supervised 

Chen et al. 2019 Stereo Images Semi-Supervised 

Chen et al. 2019 Monosequences Unsupervised Camera intrinsic 

prediction 

Godard et al. 2019 Monosequences Unsupervised Camera intrinsic 

prediction 

 

The image on the right is denoted as Ir and its depth map d is calculated using the 

formula d = f B/D from the projected disparity map, where f is the local camera 

length and B is the distance between the left and right cameras. 

The semi-supervised methods are more precise than unsupervised methods because 

they utilize scale information obtained from semi-supervised signals. However, to 

ensure accuracy, it is crucial to evaluate the performance of these methods on 

ground truth data such as pose and LIDAR data. Despite being a more affordable 

alternative to dense depth maps, obtaining such data can be challenging. 

 

Table 3. Results of MDE on the KITTI Dataset 

                         (Lower value is preferred)                                    (Higher value is preferred) 

Method Abs Rel Sq Rel RMSE RMSE  

log 

δ1 δ2 δ3 

Chen et al. 0.118 0.905 5.096 0.211 0.839 0.945 0.977 

Godard et al. 0.127 1.031 5.266 0.221 0.861 0.943 0.974 

Eigen et al. 0.190 1.515 7.156 0.270 0.692 0.899 0.967 

Ibraheem et al. 0.093 0.589 4.170 0.171 0.886 0.965 0.986 
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Table 4. Results of MDE on the NYU Depth v2 Dataset 

Method Rel RMSE RMSE log δ1 δ2 δ3  

Eigen et al. 0.158 0.641 - 0.769 0.950 0.988  

Ibraheem et al. 0.123 0.465 0.053 0.846 0.974 0.994  

 

0,839

0,861

0,692

0,886

0,945

0,943

0,899

0,965

0,977

0,974

0,967

0,986

0 0,2 0,4 0,6 0,8 1 1,2

Chen et al.

Godard et
al.

Eigen et al.

Ibraheem et
al.

Graph 1. Results of MDE on the KITTI Dataset

δ3 δ2 δ1
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5. Challenges 

 

• Ambiguity and Uncertainty: The problem of DE from 2D images is 

challenging due to the limited information available in the 2D images, 

leading to inherent ambiguity in the depth perception. Even with a large 

dataset, it can be difficult to accurately determine the depth information 

from a single 2D image. Moreover, factors such as lighting conditions, 

occlusions, and reflections can further complicate DE, contributing to the 

uncertainty in the process. 

• Computational Complexity: DE using deep learning techniques can be 

computationally intensive, especially for real-time applications. This 

requires efficient hardware and software solutions to ensure fast and 

reliable performance. 

• Transferability: DE models trained on one dataset or environment may not 

perform well in different settings. It is essential to develop depth 

estimation models that can generalize well across different environments 

and scenarios. 

• Interpretability: Deep learning models used in DE can be difficult to 

interpret, making it challenging to understand what features are used in the 

estimation. This can be a challenge for debugging and optimizing the 

model's performance. 

0,769

0,846

0,95

0,974

0,988

0,994

0 0,2 0,4 0,6 0,8 1 1,2

Eigen et al.

Ibraheem et al.

Graph 2. MDE Results on the NYU Depth v2 dataset.

δ3 δ2 δ1
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6.  Conclusion  

Our primary motive is to augment research towards the MDE using deep learning 

techniques. The paper provides a comprehensive overview of various techniques 

used for MDE, covering aspects such as training methodologies and datasets 

utilized. The challenges are also discussed in separate section. Depth estimate is 

critical in MDE because of the uncertainties that can be reduced using good deep 

learning techniques. In image processing systems, estimating depth information is 

critical, hence deep learning approaches require a lot of image data.The efficient 

and reliable DE technique can improve the system's transferability, accuracy, real-

time performance, and hence the need of an hour is the efficient DE technique. 
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