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Abstract: In the field of industrial quality control, when monitoring continuous data is
mainly considered, it is also necessary to monitor discrete data, among which high-
dimensional Poisson distribution data is very common in modern manufacturing. At
present, a large number of the literature proposed to use of statistical process technology
to monitor high-dimensional data, but the scheme for monitoring high-dimensional
Poisson data in the existing literature is rare, and the few proposed methods for high-
dimensional Poisson data to monitor the false discovery rate (FDR) of data were given,
which is popular statistic for constructing the control chart. In order to effectively monitor
the high-dimensional Poisson data, this paper extended the methodology of (Li, 2018)
proposes a two-stage monitoring algorithm, which uses the CUSUM control chart to
control the in-control (IC) average run length (ARL) in the first stage, and uses pointwise
FDR to control the Type-I error rate in the second stage. In this paper, numerical simulation
is used to realize the monitoring process and the performance demonstrates the efficiency
and robustness of the proposed procedure.
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1 INTRODUCTION

In recent years, due to the continuous emergence of "big data", the formation of data collection
and computing technology has been promoted, and high-dimensional data monitoring has also
become a highly desired topic in the field of statistical process control (SPC). The complexity
of product technology and quality monitoring is increasing with the emergency of revolutionary
procedures, which are totally different from the conventional one, and discrete enterprises such
as machinery, automobiles, home appliances, clothing, and so on need to process various parts
provided by different suppliers, and the process will produce a large number of high-
dimensional discrete data. For example, in the aerospace manufacturing industry, it is necessary
to monitor the number of defects in a space part, and if the process cannot be effectively
monitored and defects are found in time, it will cause huge losses and reputational impact on
the enterprise. Moreover, at present, discrete enterprises have a huge workload of data collection,
inspection and maintenance, and labor requires a lot of time to make judgments, which increases
production costs. At this point, statistical process control chart is considered as an effective tool
to monitor high-dimensional discrete data in the realistic scenarios.

When people monitor this discrete data, they assume that the numbers of product defects or
nonconformities follow the Poisson distribution, which is one of the most important discrete
distributions to describe the quantity of defects of product. The most common method of
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monitoring Poisson distribution data is to use the C-chart and U-chart from the Shewhart chart.
Use the C-chart when the sample size is the same; when the sample size is different, the U-chart
is used. But the downside is that when the quantity changes more than expected, there is an
over-discretization phenomenon, making it uncontrolled. In addition that the Shewhart chart has
the defect of insensitive detection of small deviations in the process. To compensate for this
shortcoming, Page designed the CUSUM chart in 1954. The CUSUM chart is a quality
monitoring process that calculates the cumulative sum of deviations between each sample value
and the target value, which solves for small shifts in the process.

In the industrial production process, it is generally necessary to monitor multiple attributes of a
product at the same time, so multiple control charts are required. For CUSUM charts, the control
limit is determined by fixing the average run length (ARL) of the population in the in-control
(IC) state. IC ARL refers to the average number of samples taken from the start of the detection
to the time it stops when the production process is in the IC state, that is, the frequency at which
the monitor wants false alarms to occur when the process is in the IC state. But when the number
of charts is large, the capabilities of such a scheme are quite low.

In this paper, we mainly focus on the discrete data with Poisson distribution. In order to monitor
Poisson distribution data, [9](Suvimol and Chananet, 2022) proposed a display formula based on
the generalized Poisson distribution (MAGP) moving average chart and performed performance
testing of the MAGP chart. The results show that the MAGP chart is superior to the Shewhart
control chart (CGP) chart based on the generalized Poisson distribution in detecting small shifts.
[11](Xiao and Zi, 2021) propose to monitor multivariate Poisson distribution data using a
multivariate exponentially weighted moving average (MEWMA) control chart. The results
show that the MEWMA chart can be well controlled for the multivariate Poisson data with
different parameter shifts. [10](Alevizakos et al., 2021) propose a three-exponentially weighted
moving average control chart (PTEWMA chart) for monitoring the Poisson process, which is
compared with the existing PEWMA and PDEWMA charts. The results show that the detection
ability of the PTEWMA plot becomes stronger and stronger as the value increases.

False discovery rate (FDR) is widely used in control charts. [1](Benjamini and Hochberg, 1995)
proposed a FDR control method to control the local false alarm rate. FDR is the expected value
of the proportion of all hypothesis null but rejected as a proportion of all rejected hypotheses in
all hypothesis tests. It is also the number of false alarms that monitors can tolerate when OC
data is identified. This paper theoretically demonstrated that controlling FDR is equivalent to
controlling the Type-I error rate when all null hypotheses are true. At present, FDR has been
widely used in most fields. For example, for change point detection of faults or fault elimination
in multi-stream data monitoring, see [7](Sehgal et al., 2010) and for literature considering
multiple hypothesis testing problems and microarray studies, see [5](Li and Tung, 2009). The
inadequacy is that this monitoring methods does not make use of global information. Even if
the local false alarm rate can be well controlled on each data stream, but when the number of
data streams is large, the global false alarm rate may be serious, resulting in large detection
delays and increasing production.

In order to effectively monitor the high-dimensional Poisson data streams, we propose a two-
stage monitoring algorithm based on [4](Li, 2018) combining CUSUM control chart with FDR.
The first stage determines whether there is an anomalous data stream by monitoring the global
FDR. If the first stage determines that there is at least one out-of-control (OC) data stream, the
local FDR of the OC data streams is monitored and the locations of the OC data streams are
determined in the second stage. In the product production process, the two-stage monitoring



algorithm proposed in this paper can not only satisfy the frequency of false alarms expected by
the monitor when the process is IC, but also satisfy the number of false alarms that the monitor
can tolerate when the OC data is identified. The article is organized as follows. Section II, a
two-stage monitoring algorithm for high-dimensional Poisson data is proposed. Section III gives
a numerical simulation to illustrate. Section IV gives a summary and concluding remarks.

2 MATERIALS AND METHODS

When monitoring high-dimensional data streams, there are generally two single-stage
monitoring methods. The first is to identify the location of the OC data stream through the
control point FDR. The application of the point FDR to different locations indicates that there
are different problems in the system. Therefore, different discriminant rules are needed, see [5](Li
and Tsung, 2009). The second is to identify the location of the OC data streams by controlling
the global FDR, which is suitable that where different OC data streams indicate that only one
problem will occur in the entire system. Therefore, the discrimination rules are the same and
there is no need to identify the existence of OC data stream, see [12](Zou et al., 2015). These two
methods have not been combined in the past research literature, and cannot satisfy the flexibility
of selecting a single-point FDR at user level. In order to solve these limitations, [4](Li, 2018)
proposed a two-stage monitoring procedure, which links two single-stage monitoring methods.
This method is based on high-dimensional normal data streams. Select the global monitoring
statistic proposed by [12](Zou et al., 2015) as the first stage statistic. According to the p-value
formula based on normal distribution CUSUM statistic proposed by [3](Grigg and Spiegelhalter,
2008), the hypothesis test and monitoring of global FDR are carried out. If there is at least one
OC data stream in the first stage, move to the second stage. In the second stage, the standardized
CUSUM statistic of the OC data stream is the statistic of the second stage, and the location of
the OC data stream is identified by the control point FDR. This article extends this idea to high-
dimensional Poisson data streams. The normal distribution is continuous but the Poisson
distribution is discrete, so it cannot be directly adopted. Therefore, it is necessary to transform
the Poisson data to approximately satisfy the normal properties approaches. In this paper, a
proximity method is proposed to calculate the p-value of the Poisson distribution CUSUM
statistic.

To begin with, denote the numbers of IC data streams at time t by 0,tm and 1, 0,t tm m m= -

represent the number of OC data streams, both of which are unknown. Let tR be the number of

rejections of the null hypothesis, tm R- be the number of null hypotheses accepted, tV be the

number of false findings of Type-I errors, 0,t tm V- be the number of accepted null hypotheses

true, tS be the number of correctly rejected hypotheses, and 1,t tm S- be the number of Type-

II errors, which are unknown. Then the pointwise FDR at time t is symbolized by if 0tR > ,
then
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The overall FDR is the sum of the point FDR. It can be written as
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. If the point FDR is controlled at the level of / Ta , then the global

FDR is controlled at the level ofa for every t.

To monitor the global FDR and the point FDR, the monitoring problem is transformed into a
two-stage hypothesis testing problem. There are m dimensional data streams in the process,
where the ith data stream observed at time t by ,i tX , 1, 2,i m= L and 1, 2,t = L . Without

loss of generality, it is assumed that ,i tX are independent of each other. When the process is IC,

the distribution of { }1, 2,, .t tX X L  follows the Poisson distribution, denoted by ,0iF  ,

1, ,i m= L . When the process becomes OC from a certain point [ ], 1,i i tt t Î , the distribution

of{ }1,1 ,2 ,,
ii i iX X X t -

L， ， follows ,0iF , the distribution of{ }, ,, ,
ii i tX Xt L follows ,1iF . Then

multiple hypothesis tests can be established for 1, ,i m= L , as follows:

0, ,i tH : ,1 ,2 ,t, , ,i i iX X XL ~ ,0iF ,

versus

1, ,i tH : [ ]1,i tt$ Î such that

1,1 ,2 , ,0, ~
ii i i iX X X Ft -

L， ， and

, , ,1, , ~
ii i t iX X Ft L (1)

where ,0iF is the IC distribution, ,1iF is the OC distribution, and it is the change point of the ith
data stream.

If 0, ,i tH is accepted, it indicates that all data streams are IC. If 0, ,i tH is rejected, it indicates that
some data streams are OC at time t. In this case, move to the second stage to identify where data
streams are OC.

The existing method is to test the data streams over time, but this single method cannot quickly
determine whether there is OC data stream and where OC data stream is located. In order to
break this limitation, this paper proposes a two-stage monitoring algorithm based on [4](Li, 2018).
Since this paper is aimed at high-dimensional discrete Poisson data streams, and the p-value
calculation method proposed by [3](Grigg and Spiegelhalter, 2008) is applicable to continuous
normally distributed CUSUM data, it cannot be directly adopted. In the second II, a proximity



method is proposed to calculate the p-value of high-dimensional Poisson CUSUM statistic. The
components of the two-stage algorithm are as follows: global information is extracted from all
data streams for global FDR monitoring and hypothesis testing in the first stage. If Eq. (1) is
true, there is no OC data stream. If Eq. (1) is rejected, then the second stage is entered. In the
second stage, construct local statistics and test data streams that occur when Eq. (1) is rejected
to determine the location of OC data streams.

The two-stage monitoring algorithm proposed in this paper uses the control limit of each stage
to make the algorithm satisfy the user’s requirements for IC ARL and Type-I error rate.
Therefore, the algorithm can satisfy the frequency of false positives expected by the user when
the process is IC and the number of false positives that the user can tolerate when identifying
OC data.

2.1 Monitoring The Global FDR

(Rossi et al., 1999)[6] proposed a standardized CUSUM chart based on the Poisson distribution
and compared three methods for converting Poisson data to approximately normal data. The
first transformation is

0
1,

0

, 1,2,i i
i

i

X nZ i
n

l
l

-
= = L

This conversion is based on the asymptotic normality of the observed number iX , with an

approximate control mean 0in l   and an approximate standard error 0in l  . The second
transformation is called the square root transformation,
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It has an approximate control mean 0in l   and an approximate standard error 1 2  .The
second transformation uses a normalized transformation, which stabilizes the variance. The third
transformation is the average transformation of the first two transformations, the half-sum
transformation, and the expression is
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The control mean of this transformation results is approximately equal to 0, and the standard
error is approximately equal to 1.

(Rossi et al., 1999)[6] used a table by (Ewan and Kemp, 1960) summarizing the performance of
CUSUM charts of Poisson variables as a criterion for comparing three transformations. They
found that the ARL values produced by the half-sum transformation were closest to those
calculated by [2](Ewan and Kemp, 1960).

Therefore, the third transformation is the most efficient transformation. In construction, a half-
sum transformation is taken to approximate Poisson data into standard normal data.

In the first stage, Poisson distribution data is generated and approximated as standard normal



distribution data using the half-sum transformation method proposed by [6](Rossi et al., 1999),
is defined as
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The mean of the OC data at 1l l= is approximated
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Under the assumption of Poisson distribution, the most suitable global statistic for each data
stream is the CUSUM statistic, which is defined as
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(Zou et al., 2015)[12] proposed a global statistic that performs well in identifying OC data streams
and does not require a prior knowledge of the number of OC data streams. Hence, the statistic
proposed (Zou et al., 2015)[12] is defined as the global statistic of the first stage
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where { }AI represents the indicator function, taking 1 if A is true and 0 otherwise.

For calculating p-value quickly, (Grigg and Spiegelhalter, 2008)[3] proposed a close-form
formula to approximate the steady-state p-value which the CUSUM statistic is generated from
normal data, but this formula does not apply to calculate p-value of the CUSUM statistic
generated from Poisson data. So this paper propose a proximity value method. The proximity
value method means that the CUSUM statistic is generated from the normal distribution each
time and arranged from small to large, denoted by ,i tc . The corresponding p-value is calculated

according to (Grigg and Spiegelhalter, 2008).[3] Denote the p-value of by ,i tP . ,i tc and ,i tP is used

as the standard value. Then regenerate CUSUM statistic by 3,iZ , differing from to choose which
is the closest, and take the corresponding p-value as the Poisson distribution CUSUM statistic,
denoted by ,i tp .

The CUSUM statistic generated over time is hypothesis tested according to Eq. (1). When all
data streams are IC, the user’s expected false alarm rate is the control limit h of the first stage,
where h can be calculate by Monte Carlo simulation to meet IC ARL. If tG h> , there is at least



one OC data stream and moves to the second stage. Otherwise, all data streams are IC.

2.2 Monitoring The Local FDR

Represents ,i tW the local statistic of the second stage, which is equal to tG standardized value in

the case of tG h> in Eq. (1).

First, calculate the control limit of the second stage hc to satisfy the Type-I error rate, the steps
are as follows:

Step 1: Given hc  , use tG  to calculate the proportion of ,i t hW c>  in the case of tG h>  and

express it by p̂ ;

Step 2: Repeat the first step enough times (e.g. 2000 times), record p̂ each time and average
value;

Step 3: Record the value obtained in Step 2 as hc .

If ,i t hW c> , so the ith data is out of control. Otherwise, there are no OC data streams.

The first stage of monitoring flow chart is shown in Figure 1.

Figure 1: The first stage of monitoring flow chart

The second stage of monitoring flow chart is shown in Figure 2.

Figure 2: The second stage of monitoring flow chart

3 RESULTS & DISCUSSION

In the simulation, we assume that when the process finds that an OC data stream exists, it will
not stop monitoring. The process stops monitoring only when all OC data streams are detected.

Simulations have developed different combinations of 0l and 1l . This is shown in Table 1.



Table 1: Different combinations of 0l and 1l .

0l 1l
6 7
6 8
6 9
10 12
10 14
10 18
10 20

In the two-stage monitoring numerical simulation, we take 0 110, 12l l= =  as an example,
and other combinations have obtained similar conclusions. We choose the number of normal
data to 200, the number of Poisson distributions to 100. The required IC ARL is set to 200, 500,
1000, and 10000. In addition to the above settings, PCER is divided into three cases: PCER=0.01,
0.03, and 0.05. Then the control limit h of the first stage and the control limit hc of the second
stage are given in Table 2.

Table 2：The control limits used in the two-stage procedure when m=100.

IC
ARL h FDR hc IC ARL h FDR hc

200 12.20215 0.01 0.9999559 500 15.36047 0.01 0.9999117
0.03 0.9998393 0.03 0.9996948
0.05 0.9996948 0.05 0.9997559

1000 19.00718 0.01 0.9998779 10000 21.48418 0.01 0.999939
0.03 0.9995079 0.03 0.9999087
0.05 0.9995422 0.05 0.9997416

By observing Table 2, we can see that when IC ARl is 200, the control limit h of the first stage
is 12.20215. On this basis, when FDR is 0.01, the control limit hc  of the second stage is

0.9999559. When FDR is 0.03, the control limit hc of the second stage is 0.9998393. When FDR

is 0.05, the control limit hc of the second stage is 0.9996948. When the IC ARL is unchanged,

hc decreases as the FDR decreases, which indicates that the control chart can find the OC data

streams in time. When the IC ARL decreases, h and hc both decrease, which indicate that the

maximum range of alerts that a control chart can tolerate is increasing. With the increase of hc ,
and the monitoring speed increases, the monitoring speed is getting faster and faster, and the
effect is getting better and better.



4 CONCLUSIONS

This paper presents a two-stage monitoring procedure for high-dimensional Poisson distribution
data. The algorithm satisfies the user’s IC ARL and Type-I error rates. In the first stage, the
detection delay is greatly reduced by monitoring the global FDR, and the second stage is to
quickly find OC data streams by monitoring the local FDR. The algorithm effectively improves
the monitoring degree of high-dimensional Poisson distribution data.

In the two-stage monitoring scheme proposed in this paper, the main reason for choosing local
FDR as Type-I error rate when identifying OC data streams in the second stage is that global
FDR can be easily controlled by controlling local FDR. In some monitoring programs, it may
be acceptable to control the Type-I error rate point-by-point when identifying OC data streams.
But controlling FDR may be a better choice than controlling the Type-I error rate point-by-point.
However, in order to apply the existing FDR control procedure in the second stage, the following
p-values, denoted by *

,i tp , essentially need to be calculated based on tG h> ,

( )
0, ,

*
, , , |

i ti t H i t i t tp P W w G h= > > ,

where ,i tw  is the observed values of ,i tW .

The calculation of this conditional probability is too cumbersome, so the FDR control procedure
cannot be directly applied in the second stage. In future studies, the FDR control procedure
proposed by (Storey, 2002)[8] can be applied to the second stage of monitoring.
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