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Abstract: Safety inspection work often determines the probability of accidents in 
construction, but also affects the production cost of work, to improve the quality 
and efficiency of construction safety inspection work, it is very important to pro-
pose a patrol inspection strategy.By comprehensively considering risk factors, a 
safety inspection path is formed. The objective function is constructed the RP-ACO 
(Risk Probability-ACO) algorithm is proposed, and based on the original ACO algorithm, 
the segmentation function is introduced to adjust the pheromone strength by changing the 
state transition rule Simulation results show that when only the risk probability value is 
considered, the average objective function of the RP-ACO algorithm is 20.0573, and the 
average number of convergences is 110.6 times, which has great advantages over the 
20.0639 and 232.2 In the oliver30 test case, the minimum value of the RP-ACO algorithm 
is 423.9117, and the average value is 425.8249, which has obvious advantages over the 
original ACO algorithm, It can be seen that with the increase of emission reduction 
measures and the increase of spacing, the superiority of the RP-ACO algorithm is more 
than that of the original ACO algorithm, which has obvious advantages over the original 
ACO of 425.8201 and 429.0233. It can be seen that with the increase of emission reduction 
measures and the increase of spacing, the superiority of the RP-ACO algorithm is more 
obvious. Taking the safety inspection work of a construction site as an example, the in-
spection workload and inspection time under different paths were analyzed, and the cor-
rectness and effectiveness of the proposed safety inspection The results show that 
the inspection path formulated according to the construction safety risk can The 
results show that the inspection path formulated according to the construction 
safety risk can effectively reduce the inspection workload. At the same time, the 
inspection path optimization algorithm designed by the RP-ACO algorithm is used. At 
the same time, the inspection path optimization algorithm designed by the RP-
ACO algorithm is used to realize the optimization of inspection.  

Key words: Safety patrol; Risk probability value; Path optimization; RP-ACO algorithm; 
Risk perspective 

1. Introduction 

On construction sites, safety inspections are especially important as they are loaded with the 
safety of workers and production costs. In the previous inspection process, safety officers 
often decided the inspection order according to their preferences. Nowadays, with the devel-
opment of intelligent construction sites, inspection efficiency will be improved by introducing 
intelligence into the preparation of inspection paths. The construction site in the regional con-
ditions are different, and its risk probability value is also different if combined with the risk 
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probability value for inspection. 

In the problem of path optimization, algorithms such as Guo[1] 2021 adopted swarm, Bai[7] 
2021 adopted simulated annealing, Zhu[16] 2020 adopted neural network, Wang[13] 2020 
adopted genetic and 2021Chen[2] adopted A* are widely used. However, these algorithms also 
have some drawbacks, such as poor robustness, local miniaturization, and insufficient adapt-
ability. Colorni[3] 1991,2000 Dorigo[4] Dorigo[5] 2002,Khaled[10] 2018 , Ye[16] 2020 put forward 
The robustness of the ant colony algorithm has some advantages over other algorithms, with 
the features of positive feedback, high robustness and parallelism, and strong intelligent 
search capability, so the ant colony algorithm is the preferred to solve the path optimization 
problem. However, the ant colony algorithm also has defects, and it is easy to fall into the 
dilemma of local optimum and slow convergence speed. In this paper, we make improvements 
to the traditional ant colony algorithm according to  He[8] 2021, Zhang[17] 2017, Ma[12] 2021, 
Liu[11] 2004, which improves the convergence speed and the optimal searchability of the ant 
colony. 

For the construction site safety inspection path optimization problem, firstly, the scoring 
method is used to construct a risk probability model for each area of construction, Secondly, 
the risk probability model is combined with the path shortest model, again the traditional ant 
colony algorithm is improved, and finally. 20 areas of a construction site are used as a model 
for simulation to confirm the feasibility of the study. 

2. Problem description and model 

The safety inspection problem is similar to the TSP problem, where the safety officer does 
not repeat the point inspection of the equipment during the inspection. Specific description: 
A safety officer, with a set of areas N, starts from the first area and inspects the remaining 
areas of N-1 until the inspection is completed. Correspondingly and at the same time to meet 
the constraints: the safety officer can only be inspected within the scope of the site, that is, 
within the specified scope, and only once for each area. 

The safety officer can check the area based on the path length and the magnitude of the risk 
probability value. The first two optimization objectives are to determine the path length opti-
mization and the risk probability value. 

① Optimal path: 
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② The probabilistic model of risk probability is specified as follows. 
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In Eq. 2: i, j are regions. 

(iii) The above two objectives are dimensionless by normalization, and the function Fij is 



 

 

formed by adding the weight coefficients ω1 and ω2. 
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In equation (3): Fi,j is the objective function; N is the number of inspection regions, Li,j is the 
distance between 2 regions i,j in the inspection process, PRi, PRj refers to the risk probability 
value of region i, region j respectively; ω1 and ω2 are the weighting coefficients, if the priority 
path is the shortest, then increase the value of ω1; if the priority risk probability value is large, 
then increase the value of ω2. 

Constraints in the mathematical model. 

1) Xi,j is 1 means the inspector walks from area i to area j, otherwise, it is 0. 

2) Only one inspection per region. 
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3) The safety officer will look for the next area after completing the inspection of one area. 
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3. Site risk probability value model 

3.1 Construction site safety risk classification. 

1) Weather factor: The weather conditions on the day of inspection by the safety officer are 
different. 2) Equipment factor: The equipment used is different. 3) Personnel factor: The abil-
ity of construction personnel to pay attention to safety is different. 4) Environmental factor: 
The environment in which the construction is carried out is different. 5) Management factor: 
The system of the company regarding safety. 

In summary, Wang[14] 2020, Fang[6] 2020 the probability of construction safety risks is mainly 
influenced by environmental, equipment, management, weather, and human factors. 

3.2 Site construction safety risk probability model 

In classifying the site construction safety risks, the above influencing factors are represented 
by D1-D5. The values in the initial decision table are the scores (scores are integers of (0, 10]) 
scored by the project team according to the actual situation in each area. 

For the weight assignment of D1-D5, industry experts discussed and finally determined the 
weights of D1-D5 as 10%, 20%, 30%, 30%, and 10%, respectively. The mathematical ex-
pression of the probability of construction safety risk is 
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In equation (8): D is the total score and Pf is the risk probability. 

Table 1 Initial Decision Table 

D1 D2 D3 D4 D5 

8 9 9 9 8 

7 8 6 7 5 

... ... ... ... ... 

8 9 6 6 4 

 
In Table 1: D1 is the weather factor; D2 is the equipment factor; D3 is the personnel factor; 
D4 is the environmental factor; and D5 is the management factor. 

4. RP-ACO algorithm 

For the inspection path optimization problem considering the probability value of security 
risk, the optimization method of the improved ant colony is selected. The improvement points 
are mainly divided into two aspects: one is to improve the state transfer rule to increase the 
randomness of the search path; the second is to introduce the segmentation function to adjust 
the pheromone intensity to achieve the optimization of the point inspection path. 

4.1 Improvements to the transfer probability 

The traditional transfer idea of ant the long algorithm is to first determine all feasible points 
in the next step and then select a point from the feasible points as the next path point by the 
roulette principle according to the calculated transfer probability Zhu[9] 2021. The mathemat-
ical expression for the transfer probability of feasible points is 
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In equation (9): Pij k denotes the probability of ant k moving from I to j; τij (t) denotes the 
pheromone concentration from I to j, ηij (t) denotes the inverse of the distance between two 
path points I,j i.e. 1/dij , also denotes the visibility of ants from I to j; allow is the set of nodes 
that have not been visited yet, α is the pheromone factor, which takes values usually between 
[1,4]; β is the heuristic function factor, which takes values range is usually between [0,5]. 

The roulette wheel path selection method has a small probability of selecting the optimal path 
when the weighted product of pheromones and heuristic information is not large. The pseudo-
random distribution transfer rule makes the ant colony more inclined to choose the path with 



 

 

more pheromones and thus the optimal path. The specific expressions are as follows. 
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In equation (10): q is a random number uniformly distributed in the interval [0,1], which is 
used to regulate the random search ability of the algorithm for new paths, such that q0 = 0.1. 
When the point inspector selects the device, a random number q is first generated, and later 
the transfer method is determined by comparing the magnitude of q and q0  

4.2 Adjustment of pheromone intensity Q 

Pheromones are divided into global updates and local updates. 

① Pheromone global update expressions. 
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② Pheromone local update expressions: 
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In Eqs. (11-13): τij (t+1) denotes the pheromone concentration on the device i to j at t+1 cycles; 
ρ denotes the pheromone volatility factor; ∆τij denotes the pheromone increment of ant k 
through device i to j; Q is a constant; and Fk denotes the path of ant k. The ability of the ant 
colony algorithm to search for paths can be changed by varying ∆τij in the global update 
formula of pheromone. 

To enable the ant colony to choose the optimal path effectively when the pheromone on the 
path changes, the pheromone constant Q is transformed into a segmentation function Qt, and 
different values are taken at different iterations. The pheromone can be set to a smaller value 
at the early stage of ant colony action, which is used to enhance the searchability of the algo-
rithm; in the middle stage, it is necessary to speed up the search speed of the algorithm for 
new paths and avoid the pheromone being too small to fall into a chaotic state, so the Q value 
should be set larger in the middle stage. At the later stage, the optimal path has been found, 
so the Q value is set to the maximum, to converge to the optimal path quickly. The mathemat-
ical expression of the pheromone segmentation function is 
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4.3 Parameter setting 

The setting of parameters affects the performance of the ant colony algorithm to some extent, 
so reasonable parameters need to be set. The values of two parameters are set as quantitative, 
and the test is performed by changing another variable. The initial default parameters were 
set as α=1, β=1, ρ=0.1, m=70, the number of iterations was 200, and the determination was 
performed on the probability of risk value model (ω1=0, ω2=1) with ten determinations. 

The values of ①ρ are shown in Table 2. 

Table 2 Value of ρ 

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Max 20.1406 20.1249 20.132 20.1231 20.1307 20.1256 20.13 20.1247 20.1433 

Avg 20.1126 20.1085 20.1080 20.1080 20.115 20.113 20.1078 20.1127 20.1140 

Min 20.0879 20.0815 20.0838 20.0925 20.0984 20.1073 20.0756 20.0951 20.0914 

From the data in Table 2, it can be seen that when ρ = 0.7, its three worthy data are better than 
other values. 

② The values of the number of iterations (α=1, β=1, ρ=0.7) are shown in Table 3. 

Table 3 Value of t 

t 100 200 300 

Max 20.1434 20.13 20.1266 

Avg 20.1252 20.1078 20.1013 

Min 20.1009 20.0756 20.0758 

From the data in Table 3, it can be seen that when the number of iterations is 300, its objective 
function value is at a clear advantage. 

③ The values of α (β=1,ρ=0.7,t=300) were taken as shown in Table 4. 

Table 4 Value of α 

α 1 2 3 

Max 20.1266 20.2399 20.2528 

Avg 20.1013 20.1821 20.2138 

Min 20.0758 20.1504 20.1751 

From the data in Table 4, it is clear that when α = 1, its objective function value is a clear 
advantage. 

④ The values of β (α = 1, ρ = 0.7, t = 300) are shown in Table 5. 



 

 

Table 5 Value of β 

β 1 2 3 4 

Max 20.1266 20.0928 20.0852 20.0654 

Avg 20.1013 20.0845 20.0711 20.0589 

Min 20.0758 20.0703 20.0564 20.0522 

 
From the data in Table 5, it is clear that when β = 4, its objective function value is a clear 
advantage. 

In summary, the final parameters are set as α=1, β=4, ρ=0.7, m=70, and the number of itera-
tions is 300. 

4.4 Improved algorithm flow 

 

4.5 Algorithm Time Complexity Analysis 

Zhu[9] 2021 Algorithm complexity analysis of RP-ACO: It is known that N is the number of 
devices, m is the number of ants, and T is the number of iterations. In each iteration, the 
complex consists of the complexity of population initialization O(m*N), the complexity of 
generating ant paths using transfer probability rules O(m*N2 ), the complexity of recording 
the optimal paths of m ant iterations O(m*(N-1)), and the complexity of updating the phero-
mone values O(m*(N-1)) as O(m*N )2. 

Thus the complexity of the RP-ACO algorithm is TRP-ACO = O(T*(m*N2 )). 



 

 

5. Experimental case study 

5.1 Experimental cases 

In this case, a construction site is selected as a sample for a safety inspection, and Figure 1 
shows the manual inspection roadmap. Table 6 shows the coordinate values and risk proba-
bility values of the area facilities. 

Table 6 Motor coordinate value and its risk probability value 

X 1 1 1 1 3 3 3 3 5 5 

Y 10 8 5 3 9 7 4 2 10 9 
Risk proba-
bility value 

0.88 0.68 0.85 0.56 0.84 0.63 0.92 0.63 0.65 0.78 

X 5 5 5 5 6 6 7 7 8 8 

Y 8 5 4 3 7 6 7 6 7 6 
Risk proba-
bility value 

0.89 0.68 0.76 0.96 0.76 0.94 0.82 0.85 0.71 0.66 

5.2 Selection of weights 

The respective optimal paths are selected for weights ω1=1, ω2=0; ω1=0,ω2=1. 

①When ω1=1,ω2=0, i.e., when only the shortest path is considered. 

The shortest distance of the route is 31.8372; the route through the line is 

13➝14➝8➝7➝4➝3➝6➝2➝1➝5 ➝9➝10➝11➝15➝17➝9➝20➝18 ➝16➝12. 

② When ω1=0,ω2=1, i.e., when only the probability of risk value is considered. 

The shortest distance of the path is 20.0463; the path line is 

9➝19➝15➝3➝5➝11➝7➝14➝16 ➝1➝18➝17➝10➝13➝2➝12➝20 ➝6➝8➝4. 

Table 7 Comparison of ACO and RP-ACO algorithms 

Algo-

rithm 

 

Weights 

Coeffi-

cient 

ACO RP-ACO 

ω1 ω2 Mini-

mum 

value 

Aver-

age 

value 

Maxi-

mum 

value 

The average 

number of 

convergence 

Mini-

mum 

value 

Aver-

age 

value 

Maxi-

mum 

value 

The average 

number of 

convergence 

0 1 20.057

9 

20.063

9 

20.073

2 

232.3 20.046

3 

20.057

3 

20.0654 110.6 

1 0 31.837

2 

31.837

2 

31.837

2 

4 31.837

2 

31.837

2 

31.8372 3.8 



 

 

From the data in Table 7, it can be concluded that by comparing the results of the two algo-
rithms run ten times longitudinally and horizontally as well as analyzing them in many aspects, 
RP-ACO has better values and convergence speed than the traditional algorithm when only 
the risk probability value is considered; the optimal value of both algorithms is 31.8372 when 
only the distance is considered, due to the limitation of the process flow and production layout 
in practice, so the equipment between The distance is close and the number is limited, which 
leads to a small difference between the two algorithms in this respect. 

To further verify the superiority of the RP-ACO algorithm, oliver30 was selected as a test 
case from TSPLIB and compared with PSO, GA, and ACO algorithms for 20 TSP problem 
experiments, and the results are shown in Table 8. 

Table 8 Comparison table of each algorithm on the TSP problem 

Algorithm Minimum value Average value Maximum value 

PSO 471.671 525.6646 569.6497 

GA 424.9003 460.51573 541.1829 

ACO 425.8201 429.0233 432.9609 

RP-ACO 423.9117 425.8249 427.1752 

 
From the experimental results in Table 8, it is clear that the RP-ACO algorithm holds a clear 
advantage. 

5.3 Setting of ω1, ω2 weighting coefficients 

The problem to be solved is an inspection path optimization problem considering the risk 
probability value, so both weights must be considered. From the above two sets of data, it can 
be concluded that the optimization result obtained by considering only the distance is 1.59 
times of the optimization result by considering only the risk probability value, which also 
means that the influence of the distance factor on the objective function is 1.59 times of the 
risk factor, so the weight ω2 is 1.59 times of the weight ω1, that is, ω1=0.38,ω2=0.62. 

When ω1=0.38,ω2=0.62, the shortest route and shortest distance are shown in Figure 1:7➝
14➝13➝12➝16➝18➝20 ➝19➝17➝15➝11➝10➝9➝5➝1➝ 2➝6➝3➝4➝8 



 

 

 

Fig.1 Optimal path graph at ω 1=0.38, ω2 = 0.62 

In the figure: the horizontal axis is the x-axis coordinate of the device, and the vertical axis is 
the y-axis coordinate of the device. From Figure 2, the shortest distance is 25.1927 (in hun-
dred meters), the blue line is the walking path, and the red line is the connection line between 
the starting point and the endpoint. 

However, it can be found from Figure 1 that it is a complete Hamiltonian circle diagram, and 
it is obvious that the consideration of the probability of risk values is not thorough enough, 
so the weight coefficients of both need to be adjusted. 

5.4 Adjustment of ω1, ω2 weighting coefficients 

It is clear from Figures 2 and 3 that when ω1 = 0.06, the path diagram is no longer a clear 
Hamiltonian circle diagram, but is influenced by the probability-at-risk value, resulting in a 
change in the path. 

And when ω1=0.07, its path diagram begins to gradually approach the Hamiltonian circle, 
which can also be seen that its consideration of the weight of the path distance dominates the 
position. Therefore, with ω1=0.06 and ω1=0 as two bounds, the compromise position is taken. 
That is, the weighting coefficient ω1 is set to 0.03, and ω2 is set to 0.97. Its path diagram is 
shown in Figure 4. The specific path lines are:12➝13➝14➝7➝3➝1➝5➝11➝16 ➝18➝
17➝19➝20➝15➝10➝9➝6 ➝2➝4➝8. Compared to ω1=1, the path line changes consid-
erably when ω2=0. This also indicates that the risk probability value of the equipment has 
been taken into account in the path planning of the inspection through this adjustment of the 
weighting factor. 

 



 

 

 

Fig.2 ω 1=0.07, ω 2 = 0.93 

 

Fig.3 ω1 = 0.06, ω2 = 0.94 

 

Fig.4 ω1 = 0.03, ω2 = 0.97 

 



 

 

5.5 Inspection path optimization verification 

The path diagram prepared using the algorithm is compared with a manual drawing to illus-
trate the feasibility of its optimization. 

1) Manual experience to determine the inspection path  

The inspection route previously used at the site was based on the habits of the safety officer, 
with a path of [1-2-3-4-5-6-7--20], a distance of 4550m, and a time of about 2 h.  

2）Inspection path with the shortest path as the goal  

When only the shortest path is considered, the planned path is [13➝14➝8➝7➝4➝3➝6➝2
➝ 1➝5➝9➝10➝11➝15➝17➝9➝20 ➝18➝16➝12.], the distance is 3183 m, and the 
time taken is about 1.4 h.  

3) Consider both path shortest and risk probability 

After adjusting the weights for it, this shortest path is [12➝13➝14➝7➝3➝1➝5➝11 ➝16
➝18➝17➝19➝20➝15➝10➝9 ➝6➝2➝4➝8], a distance of 2084 m, and a time of about 
1.1 h. 

The comparison of different inspection paths is shown in Table 9, and the results show that the 
inspection efficiency is significantly improved. 

Table 9 Comparison of different inspection paths 

Strategies Total inspection distance/m Total time consumption/h 

1 4550 2 

2 3183 1.4 

3 2084 1.1 

6. Conclusion 

The improved ant colony algorithm RP-ACO is used to plan the inspection path based on the 
risk probability value, and the global search capability of the algorithm is enhanced by chang-
ing the state transfer rules and introducing segmentation functions to change the pheromone 
constants. 

(1) The inspection path optimization algorithm generated by the RP-ACO algorithm was 
adopted to achieve the optimization of the inspection path by combining it with the risk proba-
bility. 

(2) The safety inspection path optimization algorithm based on risk probability values can 
provide a useful reference for practical work. 

(3) The optimization method proposed in this paper improves the efficiency of site safety in-
spection by human influence, uneven inspection quality, and low efficiency in site safety in-
spection, and provides a reference for site intelligence. 
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