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Abstract

INTRODUCTION: Detecting and identifying patterns in chest X-ray images of Covid-19 patients are
important tasks for understanding the disease and for making differential diagnosis.
OBJECTIVES: The purpose of this work is to develop a technique for detecting biomarkers of four possible
conditions in chest X-rays, and study the patterns arising from the location of biomarkers.
METHODS: We use transfer learning applied to a pretrained VGG19 neural network to build a model capable
of detecting the four conditions in chest X-rays. For biomarkers detection we use Grad-CAM. Patterns in the
biomarkers are found by using classical eigenfaces approach.
RESULTS: The discovered patterns are consistent across images from a given class of disease, and they are
robust with respect to changes in dataset.
CONCLUSION: The identified patterns can serve as biomarkers for a given disease in chest X-ray images, and
constitute explanations of how the deep learning model makes classification decisions.
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1. Introduction
Covid-19 is a new acute disease that can be deadly, with
an estimated 2% case fatality rate [20]. Early diagnosis
may be beneficial for timely decisions about the course
of action to take in each case. Medical imaging plays an
important role in the process of detection and diagnosis.
Computer-aided Diagnosis (CAD) systems may serve
as a second opinion in complementing a physician’s
assessment [10].

Artificial Intelligence (AI) algorithms have shown
great progress in pattern recognition tasks, and in
particular for medical image analysis. During the last
few years there has been a fast development of deep
learning models for classification of images. These
models have been embedded in state-of-the-art systems
to detect Covid-19 from medical images, particularly
chest X-rays. However, even these CAD systems present
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high prediction performance, many of them lack the
transparency of showing how the results were produced
and thus, they deepen the physicians’ lack of trust in
CAD [11]. Therefore, some kind of explanation of what
the prediction is based on may allow the physicians
to confirm, using their advanced domain knowledge,
whether the prediction is likely to be correct. For
example, for medical imaging, an explanation can come
in the form of showing what area of the image has the
largest impact in the outcome of the model.

Given that the Covid-19 pandemic appeared very
recently, the available data from Covid-19 patients is
limited compared to that of other diseases. A useful
technique to develop models that work with small
datasets is transfer learning. This technique consists of
first training a model to classify samples from a large
dataset. At the end of the initial training the model is
assumed to have captured in its first layers the low-level
features of the samples in the dataset, while high-level
features leading to the final classification are captured
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in layers closer to its output. By freezing the first layers
of the model and retraining only its last layers on the
new, possibly smaller dataset, it is expected that the
model will be able to capture the high-level features
needed to perform classification of the samples of the
new dataset.

Here we propose a transfer learning technique to
develop a model able of detecting four possible condi-
tions from chest X-ray images: normal (healthy), bacte-
ria, virus (not Covid-19), and Covid-19. Furthermore,
we work in the problem of explainability, i.e., how the
model has arrived at the prediction. To that end we
use the state-of-the-art Gradient Class Activation Map
(Grad-CAM) technique described in [16] to identify the
location of biomarkers, i.e, measurable indicators of
the medical condition. Grad-CAM is able to determine
which areas of an input image have the largest impact
in each of the possible outputs of the network.

Grad-CAM and related techniques have been used
extensively to locate which areas of an image contain
some detected elements; for instance, in an image
containing a dog and a cat, Grad-CAM is able to
highlight the areas of the image where each of them
appear. In the case of Chest X-rays used to detect a
disease such as “Covid-19” the biomarkers may be
clearly located (e.g. small lesions in an area of the
lung), or may consist of general characteristics of the
image that occupy large areas of the image (e.g. general
transparency of the lung area). In this case the question
remains to what extent the areas with the largest impact
in the classification performed by the network depend
on the particular image input, or whether those areas
are relatively consistent across images of Chest X-rays
for the same condition. We approach this question
using principal component analysis and generate eigen-
heatmaps, the analogue of eigenfaces introduced by
Turk et al. [19].

The rest of the paper is organized as follows. In
Section 2 we discuss related work. Sections 3 and
4 present our methodology and results, respectively.
Conclusions and future work are summarized in
Section 5.

2. Related work
Computer-Aided Diagnosis (CAD) research has been
successful in developing systems that can be used as
second readers without increasing the demands on
trained observers.

Although there is extensive work done on the algo-
rithmic approaches for building the prediction mod-
els, often these CAD systems make a prediction with-
out offering an explanation of how their predictions
are made. Our hypothesis is that, when the diagnosis
depends on interpretation of medical images, explana-
tions can be provided by showing what areas of the

image have the largest impact in the output of the CAD
system. The expectations are that these regions might
contain disease biomarkers that will lead to better
medical image interpretation. Here we discuss recent
research studies performed for detection of Covid-19 in
Chest X-ray images (CXRs).

Apostolopoulos et al. (2020) [1] evaluated five dif-
ferent models, namely VGG19, Mobile Net, Inception,
Xception, and Inception ResNet V2, pretrained with
ImageNet followed with fine tuning, to predict if an
image is from a COVID19 patient. While the accuracy
of their final models for predicting Covid-19 was high
(98.75% for VGG19, and 97.40% Mobile Net), the out-
come of the network did not provide any explanations
on what image content helped to determine one class
versus another (e.g. bacteria versus Covid-19).

Basu et al. (2020) [2] acknowledged the limitations of
transfer learning when the source and target domains
are very dissimilar in nature, such as in natural images
(like ImageNet) and medical images. Consequently,
they used a large dataset of Chest X-ray images as the
source domain. Overall their dataset consisted of 225
Covid-19 images from three open source databases, and
108,948 of Chest X-ray Images (not Covid-19). They
arranged the samples into two datasets. Dataset A has
two classes: normal, and disease. Dataset B has four
classes: normal, other_disease, pneumonia, and Covid-
19. Using a transfer learning technique, first training
a convolutional neural network model was built from
scratch on Dataset A. Next, they replaced and trained
the last layer of their model to classify the four classes
of Dataset B. The overall accuracy was measured as
95.3% ± 0.02, with 100% of the Covid-19 and normal
cases being correctly classified using 5-fold cross
validation. There was some misclassification between
pneumonia and other disease classes. Furthermore, the
authors used Grad-CAM to detect the region where the
model paid more attention during the classification.

Li et al. (2020) [14] went a step further by combining
transfer learning and knowledge distillation [9] to
produce a lightweight model that could be installed as
a mobile application. After using a transfer learning
technique, similar to the one used in [2], the authors
used the retrained network, a DenseNet-121, to guide
the training of a smaller network (MobileNetV2). In the
last step MobileNetV2 was trained using a combination
of loss functions based on the target predictions, and
the KL-divergence with the soft outputs of the retrained
DenseNet-121. The authors used further Grad-CAM
to indicate that in fact their results show presence of
Covid-19.

Karim et al (2020) [12] trained DenseNet-161,
ResNet-18, and VGGNet-19 architectures several times
each in a transfer learning setting, creating model
snapshots. These architectures were incorporated into
an ensemble, using Softmax class posterior averaging

2 EAI Endorsed Transactions on 
Bioengineering and Bioinformatics 

02 2021 - 03 2021 | Volume 1 | Issue 2 | e4



Robust Heatmap Template Generation for COVID-19 Biomarker Detection

and prediction maximization for the best performing
models. Their dataset consisted of 16939 CXR images
from 3 classes: normal (8066), pneumonia (8614), and
Covid-19 (259). Heatmaps for all the test samples were
generated based on the trained models, which indicated
the relevance of each classification decision. Heatmaps
are computed with three different techniques: Grad-
CAM [16], Grad-CAM++ [6], and LPR (layer-wise
relevance propagation) [4]. The heatmap depends on
the model used to produce it and thus, the authors
recommended to select the single best model as a basis
to produce the heatmap.

Given the CAD research advances and the recent
progress made in providing visual explanations based
on techniques like Grad-CAM. we are proposing to
analyze further the patterns present in the Grad-CAM
heatmaps to determine if these patterns are consistent
among CXR images of Covid-19 and thus, can be used
to identify Covid-19 biomarkers.

3. Methodology
3.1. Dataset
We use the CoronaHack Chest X-ray dataset [8] that
contains publicly available chest X-rays of Covid-19
patients. It consists of 5910 CXR images collected
from various public sources, and divided into seven
classes: normal (1576 images), bacteria (2772 images),
virus different from Covid-19 (1493 images), Covid-
19 (58 images), ARDS (2 images), SARS (4 images),
Streptococcus (5 images). For this study, we removed
the last three classes because they contained a very
small number of images, so we worked with the
following four classes only: normal, bacteria, virus, and
Covid-19. Figure 1 shows a few sample images from the
dataset. We will call it Dataset 1.

Figure 1. Sample CRXs

In order to study the robustness of the results we
use a second dataset consisting of the same images
used above plus additional Covid-19 X-ray images from
the repository maintained by Cohen et al [7]. Not all
images from that repository were adequate for use in

our work. Some of them were CT-scans rather than X-
ray images, and many contained extraneous elements
such as annotations and medical instruments inside
the image—some of the discarded images are shown
in Fig. 2. After careful selection we managed to add
to our dataset 116 new chest X-ray images of patients
diagnosed with Covid-19. Dataset 1 plus the new 116
new chest X-ray images will be called Dataset 2.

Figure 2. Some images discarded from the second dataset. The
one on the center bottom is a CT-scan. The ones in center top
and right bottom contain added annotation blocking parts of the
image. The images in the top right and bottom left contained
medical instruments.

3.2. Covid-19 Modeling
For the classification task, we use transfer learning
[3]. To that end we use the pretrained VGG19 neural
network trained on ImageNet [17]. This network
contains 16 convolutional layers, 5 maxpooling layers,
and 3 fully connected layers followed by softmax. The
image input has size 224 × 224, and its final layer
consists of 1,000 output units (Figure 4 (a)).

This model belongs to a collection of convolutional
networks that have attained good performance in large
scale image and video recognition, and can easily be
imported for applications of transfer learning. The
original VGG19 model can recognize one thousand
classes of images, but our dataset has only four classes,
so we decided to reduce the complexity of the top
section of the network from three fully connected
layers to just one global average layer followed by a
single connected layer with only four outputs (one
per class). Our training applies only to weights of the
last convolutional layer and the added fully connected
network (Figure 4 (b)). We also experimented with
training on additional convolutional layers below the
last one, but that did not have a significant impact in
the final results. After training on Dataset 1 we call it
Model 1.

For the robustness study we did first a preliminary
experiment using our original Model 1 to generate
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Figure 3. Top: Comparing the 58 Covid-19 heatmaps from
Dataset 1 and the heatmaps of the added 116 Covid-19 images.
Both sets of heatmaps produced with Model 1. Bottom: Comparing
the Covid-19 heatmaps produced with Model 1 and Model 2.

heatmaps for Covid-19 images alone (Fig. 3, top). At
this point we had two sets of heatmaps from Covid-
19 images, let’s call them Horig and Hnew. The set
of heatmaps Horig is generated using Model 1 on our
original 58 Covid-19 images from Dataset 1, Hnew is the
set of heatmaps generated using Model 1 on the 116
added Covid-19 images. After performing PCA onHnew
we got new average and principal components for the
heatmap space. Then, we compared them to the ones
we obtained for Horig—the workflow is shown in to top
part of Fig. 3.

The model obtained by training this network
architecture with Dataset 2 will be called Model 2. One
natural question was, what impact this change would
have in the rest of the work, that is, the performance of
the network as a classifier, and the heatmaps generated.

3.3. Biomarkers Detection
Biomarkers are measurable indicators of a medical
condition. In the case of lung conditions, we are
interested in visible lung lesions. For biomarkers
detection, we use the state-of-the-art Grad-CAM
technique [16]. This technique computes the gradients
of the activation function of each class output with
respect to the activations of the last convolutional layer,
and combine the results to obtain a coarse heatmap with
information on the relevance of each area of the input
image that contributes to the output of the selected
class output of the network. More specifically, given a
convolutional layer (typically the last one) of size Z =
u × v (here u and v represent the first two dimensions
of the layer, i.e., height and width respectively, the third
dimension is its number of channels or feature maps—
these two terms are synonyms in this context) in a
neural network, and a class c, the Grad-CAM technique

consists of computing the gradient of the score for yc

(before the softmax) for that class with respect to the
activations Akij of the feature maps of the convolutional

layer, i.e. ∂yc

∂Akij
(computed via the backpropagation

algorithm). Here k indexes the feature map (channel)
of the chosen convolutional layer, and i, j vary along the
width and height dimensions of the layer. The gradients
are global-averaged-pooled over the width and height
dimensions to obtain the importance weights αck of each
channel of the chosen convolutional layer:

αck =

global average pooling︷     ︸︸     ︷
1
Z

∑
i

∑
j

∂yc

Akij︸︷︷︸
gradients via backprop

(1)

Then a weighted combination of forward activation
maps is performed and a rectified linear unit (ReLU)
[15] is applied to the result to take into account only
the features that have a positive effect on the class of
interest:

LcGrad-CAM = ReLU

∑
k

αckA
k

 (2)

The u × v matrix LcGrad-CAM obtained can be interpreted
as a coarse heatmap of the same size as the
convolutional layer picked. The heatmap can be resized
to the size of the input image for comparison;
Figure 5 shows an example of a CXR image and its
combination with its heatmap obtained using the Grad-
CAM technique.

3.4. Average Heatmaps, and Eigen-Heatmaps
After generating Grad-CAM heatmaps for various
images of CXRs we observe that there are areas of
the image that consistently have larger impact for a
given class output, for instance the upper central area
of the image has a larger contribution to an output
of "normal" than to "bacteria", "virus", or "Covid-19".
Our hypothesis is that in fact the network pays special
attention to certain areas when deciding whether a
sample image belongs to a given class.

In order to determine the areas of an image that
most contribute to each class output we start by
computing the average heatmap for each class along
the images that belong to a given class. That way, for
each class we obtain average heatmaps for the four
classes (Figure 6). This produces a total of 4 × 4 = 16
average heatmaps corresponding to all possible pairs:
{image class, heatmap class}. We expect to see that the
average heatmap corresponding to each class (say the
average heatmap of “virus” computed for the images in
the “virus” class) will have pixel values larger than the
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Figure 4. VGG19 and Our Network

Figure 5. Sample original X-ray and overlaid heatmap

heatmaps computed for the other classes (heatmaps of
“normal”, “bacteria” and “Covid-19” for images within
the “virus” class).

Next, interpreting each heatmap as a vector in a 224 ×
224 = 50176 dimensional space, we perform a PCA
analysis to determine the variability of the heatmaps for
images of each class (say heatmaps of “virus” within the
“virus” class), a technique that mimics the “eigenfaces”
technique used by Turk et al. (1991) for face recognition
[19]. The main difference with the eingefaces technique
is that our heatmaps are not images, but raw heatmaps
as computed by the Grad-CAM algorithm before they
are normalized using min-max normalization. The
algorithm always produces non-negative pixel values
for the (raw) heatmaps due to the use of the ReLU
activation function, but in principle there is no upper
limit for the possible pixel values computed.
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Figure 6. Illustration of how average heatmaps are calculated for
each class of images—virus in this case (1493 images). For each
image in the class we use Grad-CAM to generate heatmaps for
each of the four classes (normal, bacteria, virus, Covid-19). Then
we average the heatmaps generated for each class.

4. Experiments and Results
We show first the results obtained using Model 1 on
Dataset 1. Then, in a final subsection about robustness,
we proceed with the results obtained using Model 1 on
Dataset 2, and finally the results of using Model 2 on
Dataset 2.

4.1. Training
For training the network we split the dataset into 80%
training and 20% validation using stratified sampling
as shown in Table 1.

Table 1. Dataset Split

Training Validation Total
normal 1260 316 1576
bacteria 2217 555 2772
virus 1194 299 1493
Covid-19 46 12 58

The loss function used was sparse categorical cross-
entropy, and the training algorithm was RMSprop [18]
with a learning rate of 0.0001 for 20 epochs. The
progress of the training is shown in Figure 7. We
observed that the learning metrics improved slowly, but
using longer training led to overfitting and decided to
stop it at the 20 epochs mark.

4.2. Multiclass Classifier
After finishing the training of the network, we tested it
as a multiclass classifier. Its performance was measured
using a confusion matrix (Table 2), classification
report (Table 3), and “one vs the rest” receiver

Figure 7. The top plot shows the training and validation
accuracy. The bottom plot shows the training and validation cross
entropy loss.

operator characteristic curves (ROC) (Figure 8). In the
classification report, precision, recall, and F1-score are
reported. The macro average is the arithmetic mean of
the values of a statistical measure across the classes; in
Table 3 the macro average was calculated for precision,
recall and F1-score. The weighted average is the same
but weighted by the number of elements of each
class; similarly, the weighted average was calculated
for precision, recall and F1-score. The support is the
number of elements in each class.

Table 2. Confusion matrix of classifier

A
ct
u
al

Predicted
normal bacteria virus Covid-19

normal 299 0 17 0
bacteria 7 436 112 0
virus 10 75 214 0
Covid-19 2 0 0 10

The results are reasonably good, particularly for
prediction of Covid-19, with an area under the curve
(AUC) almost 1. Given the good performance in
detecting Covid-19 we decided to test the use of the
network as a binary classifier, as explained next.

4.3. Binary Classifier for Covid-19
Based on the Covid-19 ROC curve we can design a
binary classifier to detect the presence or absence of the
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Table 3. Classification report

precision recall f1-score support
normal 0.94 0.95 0.94 316
bacteria 0.85 0.79 0.82 555
virus 0.62 0.72 0.67 299
Covid-19 1.00 0.83 0.91 12
accuracy 0.81 1182
macro avg 0.85 0.82 0.83 1182
weighted avg 0.82 0.81 0.81 1182

Figure 8. One versus all Receiving Operating Curves for normal,
bacteria, virus, and Covid-19. Note the large values of the area
under the curve for all the classes.

disease using a threshold for the predicted probability.
In our model, we found that a threshold of 0.051 was the
best one producing no false negatives and a minimum
amount of false positives. In other words, if ppred is the
probability of Covid-19 predicted by the network, then
our binary classifier will classify CXR image as follows:

Covid-19? =

YES if ppred ≥ threshold
NO if ppred < threshold

(3)

The threshold may vary if the network is retrained,
but in all of our experiments the optimal threshold
ended up being very close to the one shown here.

The confusion matrix and classification report on the
test set are in Tables 4 and 5 respectively.

4.4. Biomarkers Location - Grad-CAM Heatmaps.
Next, we apply the Grad-CAM technique to locate
areas of each CXR image that have relevance in the
output of each class. The convolutional layer picked

Table 4. Confusion matrix of Covid-19 binary classifier

pred. negatives pred. positives
actual negatives 1164 6
actual positives 0 12

Table 5. Classification report for Covid-19 binary classifier

precision recall f1-score support
not Covid-19 1.00 0.99 1.00 1170
Covid-19 0.67 1.00 0.80 12
accuracy 0.99 1182
macro avg 0.83 1.00 0.90 1182
weighted avg 1.00 0.99 1.00 1182

for building the heatmap is the last 7 × 7 maxpooling
(block5_pool), right before the last global average and
final dense layer. Figure 9 shows an example of CXR
image with its heatmap generated using the Grad-
CAM technique. The original image is shown to the
left, and its combination with a heatmap to the right.
To make it more visible a colormap has been used
for the heatmap, with lower values represented with
darker tones, medium values are red, and larger values
are yellow to white. In the discussion that follows,
the heatmaps will be represented in grayscale for
simplicity.

Figure 9. Original X-ray and overlaid heatmap

The Grad-CAM technique generates different
heatmaps for different images, but we found them to
be relatively consistent along images of each class. By
averaging the values of the raw heatmap across each
class we get the results shown in Figure 10.

We observe that ’virus’ and ’Covid-19’ have similar
heatmaps, showing that the area with largest impact in
the output of the network is located on the left bottom
area of the image, although for Covid-19 the maximum
is a little higher up, and also it has some area around the
upper right corner not present in the heatmap for virus.
The heatmap for ’bacteria’ covers mainly two vertical
almost symmetrically placed bands at both sides of
the image. The biomarkers for ’normal’ are shown as
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Figure 10. Average Heatmaps for each class. In parenthesis the
number of elements in each class.

Figure 11. Four color representation of the model response for
normal, bacteria, virus, and Covid-19. The image is a combination
of the average heatmaps, after min-max normalization, and
assigning to each pixel the color corresponding to the class with
maximum intensity at that pixel.

covering two approximately horizontal bands on top
and bottom of the heatmap. Given that we expect the
biomarker to coincide with some sort of lung lesion,
in the case of ’normal’, i.e., no disease, the heatmap
should have darker areas in the places where lesions
are present in case of disease. While this is somehow
true when comparing the heatmap for normal with the

one for bacteria, we see noticeable overlapping in the
lower area of the heatmaps for normal, virus and Covid-
19. Note however that the last convolutional layer of
the network contains a large number of channels (512
channels to be precise), each capturing some different
feature from the image, and it is perfectly conceivable
that although different, those features may partially
overlap in the image.

Note that in order to represent the heatmaps
as images we had to adjust their grayscales so
that the minimum value represented ’black’, and
the maximum was ’white’ (min-max normalization).
Consequently, there is some information loss in the
graphic representation given by Figure 10. In order
to provide some additional information about the
distribution of actual (raw) values for the average
heatmap of each class we plotted their whisker-
plots the five-number summary of the pixel value
distributions (maximum, minimum, median, and the
upper and lower quartiles), as shown in Figure 12.
We observe that for each class, the whisker-plot of
the average heatmap of that class dominates over the
rest. This is particularly evident in the boxplot for
Covid-19, where the whisker-plot for Covid-19 shows
larger values than the corresponding whisker-plots for
normal, bacteria, and virus. Only in the class ’virus’ we
see an overlapping of the whisker-plots for ’virus’ and
bacteria’.

Figure 12. Box plots distributions of pixel values of average
heatmaps for each class.
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4.5. Eigen-Heatmaps
Although the average heatmaps provide potentially
useful information about what areas of an image have
the largest impact in the network predictions for each
class, at this point we do not yet have much information
about how the heatmaps vary across each class of CXR
images. Our next step is to answer this question by
using a technique inspired in Turk at al’s eigenfaces [19].
The idea consists of interpreting each heatmap as a
real vector in a linear space of dimension equal to the
number of pixels (224 × 224 = 50176 in our case), and
perform dimensionality reduction using PCA.

For each class, we apply PCA analysis and retain the
principal components that explain 95% of the variance.
Figure 13 shows (as images) the first three principal
components for class Covid-19. Note how similar the
first principal component is to the average heatmap for
Covid-19. The same happens with the other classes too,
i.e., the first principal component of each class is very
similar to the average heatmap for that class. We discuss
this below.

Figure 13. First three PCA components for class Covid-19.

Table 6. Variance explained by each principal component

p
ri
n
ci
p
al

co
m
p
on

en
t

class
normal bacteria virus Covid-19

PC1 0.92 0.91 0.78 0.88
PC2 0.02 0.02 0.05 0.03
PC3 0.01 0.01 0.03 0.02
PC4 0.03 0.02
PC5 0.02 0.01

Figure 14 shows an example of reconstruction of a
Covid-19 heatmap using the average heatmap and the
first principal components. Original heatmap is at the
center top. The images in the 2 × 3 grid from left to
right and top to bottom are the average heatmap, and
the successive reconstructions of the original heatmap.
The image at the top left is the average heatmap for
Covid-19. The next image is the average heatmap plus
a multiple of the first principal component (PC1), and
so on. We see how the image on the right bottom closely
resembles the original heatmap.

We notice that the dimensionality reduction is very
sharp—see proportion of variance explained by each

Figure 14. Heatmap reconstruction of a Covid-19 heatmap using
the average heatmap and the first principal components. Original
heatmap is at the center top. The images in the 2 × 3 grid from
left to right and top to bottom are the average heatmap, and
the successive reconstructions of the original heatmap. The image
at the top left is the average heatmap for Covid-19. The next
image is the average heatmap plus a multiple of the first principal
component (PC1), and so on. We see how the image on the right
bottom closely resembles the original heatmap.

Table 7. Correlation between average heatmaps and first
principal component of each class

normal AVG normal PC1 bacteria AVG bacteria PC1
normal AVG 1.00 0.99 -0.31 -0.26
normal PC1 0.99 1.00 -0.30 -0.26
bacteria AVG -0.31 -0.30 1.00 0.95
bacteria PC1 -0.26 -0.25 0.95 1.00
virus AVG 0.52 0.55 -0.26 -0.12
virus PC1 0.35 0.39 -0.18 -0.04
Covid-19 AVG 0.66 0.68 0.034 0.08
Covid-19 PC1 0.63 0.64 0.036 0.08

virus AVG virus PC1 Covid-19 AVG Covid-19 PC1
normal AVG 0.52 0.35 0.66 0.63
normal PC1 0.55 0.39 0.68 0.64
bacteria AVG -0.26 -0.18 0.034 0.04
bacteria PC1 -0.12 -0.04 0.08 0.08
virus AVG 1.00 0.97 0.58 0.55
virus PC1 0.97 1.00 0.53 0.50
Covid-19 AVG 0.58 0.53 1.00 0.99
Covid-19 PC1 0.55 0.50 0.99 1.00

principal component in Table 6. Furthermore, just the
first principal component explains most of the variance,
with very little contribution from any of the following
components.

Also, we note that the Pearson correlation of
each average heatmap with respect to its first PCA
component is close to 1 (see Table 7, correlations
between each average heatmap and first principal
component are in bold).
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Note that in this study we are using raw heatmaps
as computed by the Grad-CAM algorithm without
the min-max normalization that will allow later
to show them as images. The fact that the first
principal component has such high correlation with
the average heatmap is an indication that the main
source of variability in the heatmaps across each class
is approximately given by an affine transformation of
the average heatmap, i.e., changing the scale of the
pixel values of the (raw) average heatmap and adding
a constant. Only after the min-max normalization used
to show them as images their small differences become
more pronounced.

4.6. Robustness study
As indicated in the methodology section, in our first
experiment we used our original Model 1 to generate
heatmaps for all Covid-19 images. The results of
the correlation analysis of those heatmaps are shown
in Table 8. The high correlations indicate that the
heatmaps generated by Grad-CAM on our Model 1,
using new never seen Covid-19 images, are very similar
to the ones obtained for the images that we used to
train the network. For instance, the correlation between
average heatmaps of Horig and Hnew is 0.97.

Table 8. Correlation between average heatmaps and first
principal component of Covid-19 images, original and new dataset

original AVG original PC1 new AVG new PC1
original AVG 1.00 0.99 0.97 0.97
original PC1 0.99 1.00 0.96 0.95
new AVG 0.97 0.96 1.00 0.99
new PC1 0.97 0.95 0.99 1.00

In the robustness study, the Dataset 2 used for
training and validation contains the additional 116
Covid-19 images, split as shown in Table 9.

Table 9. New Dataset Split

Training Validation Total
normal 1260 316 1576
bacteria 2217 555 2772
virus 1194 299 1493
Covid-19 139 35 174

For training Model 2 we used the same hyperparam-
eters as in the original Model 1. Working as a multiclass
classifier the results were very similar to those obtained
for Model 1, as shown in the new confusion matrix
(Table 10), classification report (Table 11), and ROC
curves (Fig. 15).

Following the steps we performed with the original
Model 1, we generate heatmaps for all images, and the
average heatmaps across the elements of each class are
shown in Fig. 16.

Table 10. New confusion matrix of classifier

A
ct
u
al

Predicted
normal bacteria virus Covid-19

normal 293 4 18 1
bacteria 11 411 133 0
virus 13 53 234 0
Covid-19 1 0 3 31

Table 11. New classification report

precision recall f1-score support
normal 0.92 0.93 0.92 316
bacteria 0.88 0.74 0.80 555
virus 0.60 0.78 0.68 300
Covid-19 0.97 0.87 0.93 35
accuracy 0.80 1206
macro avg 0.84 0.83 0.83 1206
weighted avg 0.82 0.80 0.81 1206

Figure 15. New one versus all Receiving Operating Curves for
normal, bacteria, virus, and Covid-19.

The whisker-plots of the average heatmaps produced
with Model 2 are also shown in Fig. 17. The whisker-
plots are very similar to the ones obtained with the
Model 1, except for the class “virus,” where the whisker-
plots for virus now appears above the one for bacteria,
which is consistent with the desired classification
ability of the model.

The Pearson correlation between average heatmaps
and first PCA components for each class (Table. 12)
are also similar to the results obtained using Model 1,
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Figure 16. New Average Heatmaps for each class. In parenthesis
the number of elements in each class.

Figure 17. Box plots distributions of pixel values of average
heatmaps for each class.

so each PC1 is still highly correlated to the average
heatmap of the same class.

Finally, we computed the correlations between the
average heatmaps and PC1 components of Covid-
19 images obtained using Model 1 and Model 2. This
provides information about how much the heatmaps
change after changing the model. As shown in Table 13,

Table 12. New correlations between average heatmaps and first
principal component of each class

normal AVG normal PC1 bacteria AVG bacteria PC1
normal AVG 1.00 0.99 -0.25 -0.20
normal PC1 0.99 1.00 -0.25 -0.20
bacteria AVG -0.25 -0.25 1.00 0.96
bacteria PC1 -0.20 -0.20 0.95 1.00
virus AVG 0.47 0.48 -0.43 -0.26
virus PC1 0.19 0.21 -0.29 -0.08
Covid-19 AVG 0.36 0.30 0.055 0.08
Covid-19 PC1 0.26 0.19 0.016 0.04

virus AVG virus PC1 Covid-19 AVG Covid-19 PC1
normal AVG 0.47 0.19 0.36 0.26
normal PC1 0.48 0.21 0.30 0.19
bacteria AVG -0.43 -0.29 0.055 0.017
bacteria PC1 -0.27 -0.08 0.082 0.04
virus AVG 1.00 0.89 0.36 0.30
virus PC1 0.89 1.00 0.19 0.15
Covid-19 AVG 0.36 0.19 1.00 0.98
Covid-19 PC1 0.30 0.15 0.98 1.00

the correlations are still high (larger than 0.85), hence
the heatmaps for Covid-19 images do not change much
after modifying the model.

Table 13. Correlation between average heatmaps and first
principal component of Covid-19 images, original and new model

original AVG original PC1 new AVG new PC1
original AVG 1.00 0.99 0.89 0.85
original PC1 0.99 1.00 0.89 0.87
new AVG 0.89 0.89 1.00 0.98
new PC1 0.85 0.87 0.98 1.00

5. Conclusions and future work
We have used a transfer learning technique to develop
a neural network capable of detecting four different
conditions from chest X-ray images, one of them the
novel Covid-19. The results are good despite the small
size of the dataset used for training. The Covid-
19 condition is particularly well detected, and the
multiclass classifier can easily be transformed into a
binary classifier capable of detecting Covid-19 with
almost 100% accuracy. Furthermore, we used the state-
of-the-art Grad-CAM technique for the location of
biomarkers of the conditions in the X-ray images. A
significant contribution of this work is the observation
that there are some regions of the CRX images that
have a larger impact on the classification of each
of the medical conditions. Furthermore, those areas
are relatively consistent across the images of each
class. Their consistency in location and appearance
makes them good candidates for becoming “templates”
indicating where and for what structures to pay special
attention when looking for a particular disease.

Given that one of the conditions, namely Covid-19,
is new, the available data is still limited compared
to the other conditions. By adding new images of
Covid-19 X-rays and slightly modifying the architecture
of the model, we showed that the heatmap patterns

11 EAI Endorsed Transactions on 
Bioengineering and Bioinformatics 

02 2021 - 03 2021 | Volume 1 | Issue 2 | e4



M. Lucas et al.

obtained remain stable, but more work may be needed
as additional data becomes available.

We are aware that the heatmaps were generated at
the level of the last layer, of size 7 × 7. Therefore, we
believe heatmaps generated using layers further below
the output of the network would have higher resolution,
and may reveal finer details in the area that contributes
to the network output.
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