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Abstract.  Sumatra is among 11 regions in the world that significantly contribute to 

global deforestation. In the period 2001-2020, deforestation in Sumatra has reached more 
than three million hectares. This has made hydrometeorological disasters a reality in 

Sumatra due to the loss of rainwater catchment. One of them is landslides that often 

occur and have endangered residents and productive areas in Sumatra. The development 

of ecosystem-based mitigation can be done to reduce risks and losses that may occur. 
However, it is necessary to conduct preliminary studies to assess the likelihood of future 

hazards. This can be done by utilizing remote sensing technology and geographic 

information systems using various geospatial data. Supported by a machine learning 

approach, it can improve the quality of hazard assessment. It was found that Sumatera 
has landslide hazard vulnerability dominated from medium to high level in mountain 

area, but not in deforested area. 
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1 Introduction 

Landslides are a natural disaster that occur in mountainous regions all over the world, 

causing thousands of fatalities each year. Deforestation has been found to increase landslide 

occurrence[1], [2], [3]. Deforestation can destabilizes the soil as tree roots decay, further 

increasing landslide hazard, especially rainfall-induced landslides [2], [4]. Forests and trees 

are useful in landslide reduction, and landslides are a growing hazard [5]. It is important to 

recognize the link between deforestation and landslides and take measures to prevent 

deforestation and promote reforestation in landslide-prone areas. 

Sumatra is among 11 regions in the world that contribute to 80% of global deforestation 

[6]. In the period 2001-2020, deforestation in Sumatra has reached more than three million 

hectares [6]. This has made hydrometeorological disasters a reality in Sumatra due to the loss 

of rainwater catchment [7], [8], [9]. One of them is landslides that often occur and have 
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endangered residents and productive areas in Sumatra. These two events are interrelated and 

will influence each other's impact. 

However, it is necessary to conduct preliminary studies to assess the likelihood of future 

hazards. This is possible by utilizing remote sensing and geographic information systems 

(GIS) to determine potential hazards [10]. Then, supported by the approach of various 

available machine learning methods, such as decision trees, artificial neural networks, random 

forests, and support vector machines, which have the advantages of improving prediction 

accuracy and reducing measurement errors, it will be possible to improve the quality of hazard 

assessments [11], [12], [13]. 

This study aims to identify landslide vulnerability using machine learning algorithms, 

then link it to the phenomenon of deforestation on the island of Sumatra. Hopefully, this initial 

study can serve as an initial trigger in the development of ecosystem-based adaptation and 

solutions to deforestation and landslides. 

2 Methodology 

The location of this landslide susceptibility mapping study is Sumatera Island. The study 

area used is shown in Figure 1. 

 

Fig. 1. Study Area. 

 



 

 

 

 

In modeling landslide susceptibility using machine learning, training data and prediction 

parameters are required. The training data used in the modeling is historical point data of 

landslide events obtained from NASA. On the other hand, the prediction parameters used are 

elevation data, slope data, soil water content data, normalized difference vegetation index 

(NDVI) data, enhanced vegetation index (EVI) data, precipitation data, and land cover data. 

The data used is shown in Table 1. 

Table 1: Data. 

No Data Product 
Data Type / 
Resolution 

References 

1 
Landslide repository 

events points 

NASA Cooperative Open Online 

Landslide Repository (COOLR) 
Tabular [14], [15] 

2 
Administrative 

boundaries 
RBI Map Vector [16] 

3 Elevation 
FABDEM (Forest and Buildings 

removed Copernicus 30m DEM) 
Raster / 30m [17] 

4 Slope 
FABDEM (Forest and Buildings 

removed Copernicus 30m DEM) 
Raster / 30m [17] 

5 Soil water content 
OpenLandMap Soil Water 

Content 
Raster / 250m [18] 

6 

Normalized 

difference 

vegetation index 
(NDVI) 

MOD13Q1.006 Terra Vegetation 

Indices 16-Day Global 
Raster / 250m [19] 

7 
Enhanced vegetation 

index (EVI) 

MOD13Q1.006 Terra Vegetation 

Indices 16-Day Global 
Raster / 250m [19] 

8 Precipitation 

TerraClimate: Monthly Climate 

and Climatic Water Balance for 

Global Terrestrial Surfaces, 
University of Idaho 

Raster / 5km [20] 

9 Land Cover 

Copernicus Global Land Cover 

Layers: CGLS-LC100 Collection 

3 

Raster / 100m [21] 

10 Forest Loss 
Hansen Global Forest Change 

v1.10 
Raster / 30m [22] 

 



 

 

 

 

In this study, the process is generally divided into 2 main parts: landslide susceptibility 

modeling using machine learning and landslide susceptibility modeling in deforestation areas. 

The methodology used is shown in Figure 2. 

 

 

Fig. 2. Methodology. 

Landslide susceptibility modeling is conducted using supervised classification method 

using machine learning algorithm based on landslide event points and predictor parameters. 

The predictor parameters are used as parameters that are taken into account in assessing the 

probability of landslide susceptibility of other areas based on the value of the predictor factor 

at the landslide event points. Modeling was conducted using 3 (three) machine learning 

algorithms, namely Random Forest (RF), Classification and Regression Trees (CART), and 

Gradient Tree Boost (GTB). 

Random forest is a supervised classification algorithm, and is an ensemble method using 

a decision tree model so that each tree corresponds to an independently sampled subset of data 

using a bootstrap technique [23]. Random selection of predictor variables is used to divide 

each node of the developed tree to minimize classification error. Classification and Regression 

Tree (CART) is a rule-based algorithm that generates binary trees through "binary recursive 

partitioning", a process that splits nodes into yes/no answers as predictor values [24]. If the 

dependent variable is a categorical scale, CART will produce a classification tree, and if the 

dependent variable is continuous data, then CART will produce a regression tree [25]. 

Gradient Tree Boost (GTB) algorithm is a combination of decision tree and boosting 

algorithm proposed by Friedman in 2001 [26]. Boosting refers to the combination of multiple 



 

 

 

 

weak classifiers to achieve a strong classifier, and gradient refers to increasing flexibility and 

ease when the model minimizes the loss function [27], [28]. 

The development of landslide susceptibility of multi-machine learning algorithm is done 

by combining the three machine learning algorithm models to form an agreement index value 

of landslide susceptibility of an area. The landslide susceptibility model of each algorithm has 

a susceptibility index value of 0 (zero) to 1 (one) which indicates a non-susceptible to 

susceptible area. A summation of the susceptibility index values is done to produce an 

agreement index value in the range of 0 (zero) to 3 (three). This is done to increase sensitivity, 

which is the ability of the model to detect a class correctly [29]. Landslide susceptibility index 

based on multi-machine learning algorithm is formed based on Equation 1. 

𝐿𝑆𝐼 = 𝑅𝐹+ 𝐶𝐴𝑅𝑇+ 𝐺𝑇𝐵                                       (1) 

Furthermore, to form the landslide susceptibility in deforested areas, the resulting 

landslide susceptibility is clipped based on the deforestation area. After that, the landslide 

susceptibility of deforested area in Sumatera Island is obtained. 

3 Results 

3.1   Landslide Susceptibility Based on Machine Learning Algorithm 

The landslide susceptibility model for each machine learning algorithm is shown in Figure 3. 

 

Fig. 3. Landslide susceptibility based on machine learning algorithm: (A) random forest algorithm; (B) 

classification and regression trees algorithm; (C) gradient tree boost algorithm; (D) multi-machine 

learning algorithm. 



 

 

 

 

The resulting visuals show that the RF algorithm and GTB algorithm models have an even 

distribution of colors, when compared to the CART algorithm model. It can be seen that the 

CART algorithm has a fairly drastic color distribution, there are only low and high classes in 

the resulting model. While in the multi-machine learning algorithm model, the agreement 

index of the three machine learning algorithms used previously is obtained. It can be seen that 

all algorithms have a high level of vulnerability in mountainous areas on the island of 

Sumatra, or in areas with high elevation or slope. 

Next, the area for each vulnerability class was calculated and the results are shown in Figure 

4. 

 

Fig. 4. Vulnerability area of each algorithm: (A) random forest algorithm; (B) classification and 

regression trees algorithm; (C) gradient tree boost algorithm; (D) multi-machine learning algorithm. 

Based on the distribution of data, in accordance with the visualization, it can be seen that the 

CART algorithm model has a poor distribution of predicted data where only a few medium 

landslide vulnerability classes are classified. In contrast to other algorithms, which have 

medium vulnerability class although not dominant. In multi-machine learning algorithm, the 

medium vulnerability class is more evenly distributed. This indicates a better classification 

result.  

Based on the graphical results obtained, it can be seen that for all algorithms, the area is 

dominated by low landslide vulnerability class compared to the whole Sumatera Island. 

However, it can be seen that some provinces such as Aceh Province, North Sumatra Province, 

Bengkulu Province, and West Sumatra Province have medium to high vulnerability levels that 



 

 

 

 

dominate their areas. This is because these provinces are dominated by mountainous areas 

with high elevation and slope, making them more vulnerable to landslides. 

3.2   Landslide Susceptibility in Deforested Area 

The landslide susceptibility model for each machine learning algorithm is shown in Figure 5. 

 

Fig. 5. Landslide susceptibility on deforestation area: (A) random forest algorithm; (B) classification and 

regression trees algorithm; (C) gradient tree boost algorithm; (D) multi-machine learning algorithm. 

In the visual of landslide vulnerability in deforestation areas, it can be seen that landslide 

vulnerability in deforestation areas is drastically reduced in terms of distribution. This shows 

that not all areas of Sumatera Island are deforested. Areas with high elevation and slope, 

which are areas with high landslide susceptibility class, are less likely to experience 

deforestation compared to areas with medium or low vulnerability class. This means that areas 

with high landslide vulnerability class in Sumatera Island tend not to experience deforestation. 

  



 

 

 

 

Next, the area for each vulnerability class was calculated and the results are shown in Figure 

6. 

 

Fig. 6. Vulnerability area of each algorithm in deforested area: (A) random forest algorithm; (B) 

classification and regression trees algorithm; (C) gradient tree boost algorithm; (D) multi-machine 

learning algorithm. 

Based on the results of the graph, it is found that the area for the high vulnerability class 

decreases drastically according to its spatial distribution. It is also found that the area without 

deforestation is dominant in Sumatra. Spatially, these no-deforestation areas include areas 

with high elevation and slope. This supports the previous argument, where deforestation tends 

not to occur in areas with high landslide vulnerability class that have high elevation and slope. 

It can also be interpreted that deforestation and reforestation tend to occur repeatedly in an 

area with medium to low vulnerability class that has relatively lower elevation and slope. It 

can be concluded that deforestation in Sumatra tends to be caused by factors other than 

landslides, such as land conversion, illegal logging, or land and forest fires caused by hotspots 

including one that occurred in Riau and West Sumatra Provinces [30], [31], [32], [33]. 

4 Conclusions 

This study found that medium to high landslide vulnerability is dominant in 

mountainous areas with high elevation and slope. However, these mountainous areas tend not 

to experience deforestation. This means that landslides that occur in Sumatra are not caused by 



 

 

 

 

deforestation, and deforestation that occurs in Sumatra is not caused by landslides. It can be 

assumed that landslides or deforestation that occur in Sumatra are caused by other factors. 
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