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Abstract. Currently, the tools for assessing the computational thinking(CT) abilities of 

college students lack comprehensive coverage, focusing only on the cognitive aspects of 

CT and neglecting exploration of non-cognitive abilities. In this study, through a 

literature review, a theoretical framework for college students' CT was constructed, 

encompassing both cognitive and non-cognitive abilities. The framework includes four 

core dimensions: conceptual knowledge, algorithmic thinking, problem exploration, and 

values, along with 11 secondary indicators. Based on this framework, a test tool suitable 

for assessing college students' CT was developed. The tool consists of 18 questions 

assessing non-cognitive abilities and 22 questions assessing cognitive abilities. Statistical 

analysis methods and multidimensional item response theory were employed to analyze 

the empirical results of the test. The results indicate that the tool has reasonable difficulty 

and discrimination; the α reliability coefficient method shows good internal consistency; 

factor analysis results demonstrate a good fit between the theoretical model and observed 

data, indicating high structural validity. Overall, the test tool exhibits high quality and 

performance, and the comprehensive dimensionality provides important guidance for the 

reform and development of CT in higher education. 

Keywords: Computational thinking; Assessment; Multidimensional item response 

theory; Test tool development; Higher education  

1. INTRODUCTION  

Computational thinking(CT), regarded as an essential professional competency in the era of 

artificial intelligence [1], effectively assists students in engaging with and understanding the 

computational world. It not only cultivates students' ability to solve problems using the 

powerful computational capabilities of computers but also trains them to approach problem-

solving from the perspective of computer scientists. Therefore, CT is considered a new literacy 

for the 21st century, alongside reading, writing, and arithmetic[2]. As a complex cognitive skill 

set, CT encompasses various cognitive skills for problem-solving [3]. Encouraging the 

development of CT in everyone has become a shared goal among numerous experts and 

scholars[4]. 

In the process of CT development, assessment plays a crucial role[5]. Reliable and effective 

assessment not only analyzes the extent to which students master CT but also provides a basis 
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for evaluating the effectiveness of CT cultivation[6]. Currently, research and development in 

CT assessment predominantly focus on the K-12 education stage[7]. In contrast to the 

development of CT in the K-12 stage, the progress of CT in higher education is considered 

slow and less emphasized [8]. Higher education, as a crucial gateway for producing talents for 

society, requires highly skilled individuals with innovative capabilities and comprehensive 

qualities[9]. Hence, students need to possess CT literacy oriented towards problem-solving. A 

literature review reveals a limited focus on evaluating CT in higher education, with most 

studies leaning towards measuring cognitive abilities while neglecting students' non-cognitive 

abilities[10]. Non-cognitive abilities, as a distinct capability, play a crucial role in computation, 

learning, and problem-solving [11]. Scholars in science education have researched non-

cognitive abilities in CT from various perspectives and levels. For example, Xue et al. [12] 

studied computer vision, finding that students had an advantage in attention retention but lacked 

sustained and stable executive control. Additionally, Tang et al. [13] systematically investigated 

non-cognitive abilities in CT from theoretical and experimental perspectives. These works 

indicate a close connection between CT and non-cognitive abilities. The non-intellectual factors 

such as knowledge, thoughts, culture, and emotions manifested in the CT process are crucial 

factors influencing the improvement and innovative development of CT abilities, as well as the 

formation and retention of learning outcomes [14]. 

Recognizing the importance of non-cognitive abilities in the development of CT, this study 

aims to develop a theoretical framework for CT by integrating multiple definitions and 

identifying its core elements. Using this framework, we will develop a CT assessment tool 

(CAPV-t) for cognitive and non-cognitive abilities in college students, and analyze and validate 

CAPV-t through statistical analysis methods and multidimensional item response theory. In 

summary, this research aims to develop a comprehensive and effective assessment tool to 

evaluate various dimensions of CT abilities in college students, analyze the relationships 

between multiple abilities, identify students' shortcomings in CT learning, and provide a 

standardized assessment tool for CT education. 

To ensure that the assessment of CT covers the entire educational stage, particularly addressing 

the neglect of CT abilities in college students, this study will focus on developing an effective 

tool to assess both cognitive and non-cognitive CT abilities in college students. The tool is 

expected to demonstrate high reliability and validity. In the following sections, we will address 

the following questions: 

Q1: What is the reliability and validity of the assessment tool we developed? 

Q2: How is the quality of the assessment tool? 

2. LITERATURE REVIEW 

2.1. The concept of CT 

CT was first proposed by Papert [15], and its concept was further clarified by Wing in a 

influential article in 2006. Wing defined CT as a cognitive activity that involves solving 

problems, designing systems, and understanding human behavior through the foundational 

concepts of computer science. While CT originated in the field of computer science, research 

has primarily focused on the domain of programming. Brennan and Resnick introduced a three-



dimensional framework for CT, encompassing both cognitive and non-cognitive abilities and 

expanding the understanding of CT through the lenses of computational concepts, practices, 

and perspectives[16]. Other researchers, such as Korkmaz and Bai̇ [17], as well as Selby and 

Woollard [18], have provided additional definitions and breakdowns of CT from various 

perspectives. 

CT is not only widely applied in the fields of computer science and engineering but also 

demonstrates its influence across other disciplines [19]. Researchers have explored diverse and 

scattered applications in higher education, including integrating CT into university-level 

computer science courses, adopting microlearning approaches to enhance CT among 

professional students, and incorporating it into undergraduate courses across various 

disciplines[20-22]. 

As a tool for undergraduate students to address professional problems, CT holds profound 

significance in changing thinking patterns and driving technological development and societal 

progress. Although there is no universally agreed-upon definition of CT, researchers and 

educators unanimously recognize its primary focus on developing students' cognitive abilities. 

2.2. CT assessment 

MetExtensive literature review reveals a predominant focus on integrating CT into 

undergraduate courses, with limited attention to universally applicable assessment tools for 

evaluating higher education CT levels and efficacy [23].  However, assessment is a crucial 

component of CT development.  Internationally recognized tools are often programming-based, 

evaluating students through coding tasks or projects.  For instance, the PECT CT development 

model [24] and Dr.Scratch for K-12 students [25] provide summative assessments based on 

specific programming tasks. 

While programming-based assessments have limitations, there is a growing trend towards 

question-based assessments for their convenience and quick feedback.  Notable examples 

include the CTt for K-12 students in Spain [26] and the Bebras Tasks challenge for K-12 

students in Lithuania [27].  Additionally, scale-based tools like the CTS scale for university 

students in Turkey [28] have been developed, covering dimensions like creativity, algorithmic 

thinking, critical thinking, collaboration, and problem-solving. 

Classic assessment tools primarily focus on K-12 education, leaving a gap in effective tools for 

evaluating CT in higher education.  The existing literature on higher education CT assessment 

can be broadly categorized into qualitative and quantitative assessments.  While most 

assessments are qualitative and susceptible to subjective influences, a few quantitative tools 

face challenges in robust development and validation methods. 

Our subsequent research will concentrate on developing a comprehensive test tool to assess 

both cognitive and non-cognitive aspects of CT in university students.  We will employ 

statistical analysis methods and multidimensional item response theory to analyze and validate 

the reliability and validity of this assessment tool. 



3. METHOD 

3.1. Development of assessment tools 

1) Assessment framework 

After an extensive literature review, it is evident that various experts, scholars, and academic 

organizations have different interpretations of CT. However, the majority agree that CT is a 

cognitive process that occurs when formulating solutions to problems. In the process of 

applying CT to problem-solving, not only foundational knowledge of computer concepts is 

utilized, but also abstract thinking is employed to transform real-world problems into ones that 

can be addressed by computers. Furthermore, specific algorithms are used to solve these 

problems. Therefore, at the cognitive level of CT, we identify three core dimensions: 

conceptual knowledge, algorithmic thinking, and problem exploration. 

CT, as a mature skill, not only involves cognitive abilities but also requires non-cognitive 

abilities. Non-cognitive abilities refer to attitudes, self-confidence, teamwork, and other non-

intellectual factors that students exhibit during the learning or application of CT skills. These 

non-cognitive factors are an integral part of cultivating CT abilities. Hence, we encompass 

students' attitudes, teamwork, inquiry, and creativity under the umbrella term "value 

perspectives" as the core dimensions of non-cognitive abilities in CT. 

• Conceptual knowledge is the basis for learners to carry out CT practice activities. It can 

be broadly classified into two categories: definitional knowledge, which involves the 

fundamental definitions of specific concepts, and operational knowledge, encompassing the 

basic operational concepts potentially utilized in programming. 

• Algorithmic thinking denotes a learner's capacity to formulate computer algorithms for 

solving specific problems.  The practical application involves grasping a series of algorithmic 

instructions and participating in algorithm design.  Therefore, students' algorithmic thinking 

abilities can be evaluated through two dimensions: understanding algorithms and designing 

algorithms. 

• Problem exploration refers to the learner's ability to analyze and solve problems using 

computational methods. The process involves abstraction, decomposition, and transfer. 

• Values refer to the constantly evolving understanding of how learners interact with 

others and perceive the world during the CT learning process. This aspect can be assessed 

across four dimensions: attitude, questioning, teamwork, and creativity. 

CT is the process of problem-solving. In the elucidation of the core dimensions, this study seeks 

to concretize the elements by finely dividing them into secondary dimensions, thereby 

obtaining more precise measurement criteria. In summary, this research will utilize conceptual 

knowledge, algorithmic thinking, problem exploration, and values as primary core dimensions. 

The secondary dimensions will include definitional knowledge, operational knowledge, 

algorithm understanding, algorithm design, abstraction, decomposition, transfer, attitude, 

teamwork, questioning, and creativity, serving as the basis for developing the testing tool. 

Specific details and connotations are described in Table 1. 

 



Table 1: The Theoretical Framework for CT Cognitive and Non-Cognitive Abilities 

Ability 

division 

First level 

dimension 

Secondary 

Dimension 
Connotation Description 

Cognitive 

ability 

Conceptual 

knowledge(C) 

Definitional 

knowledge (C1) 

Basic computer definitions, such as 

events, operators, data types, variables, 

constants, etc. 

Operational 

knowledge (C2) 

Basic operational concepts of 

programming in computers, such as 

sequence, judgment, loops, parallelism, 

conditionals, etc. 

Algorithmic 

thinking (A) 

Algorithm 

understanding 

(A1) 

Be able to understand the basic 

algorithmic steps. 

Algorithm design 

(A2) 

Be able to correctly design a series of 

algorithmic steps for effective problem-

solving. 

Problem 

exploration (P) 

Abstraction (P1) 
Extracting common, essential 

characteristics from things. 

Decomposition 

(P2) 

Break down the problem into smaller 

problems that can be easily solved. 

Transfer (P3) 
Apply the problem-solving approach to 

other problem scenarios. 

Non-

cognitive 

ability 

Values (V) 

Attitude (V1) 
Interest, confidence and self-efficacy in 

computer science and programming. 

Questioning (V2) 

Challenge and doubt existing knowledge 

and solutions, and pursue a deeper and 

more comprehensive understanding. 

Teamwork (V3) 

Actively integrate into the team and 

work with the team to accomplish tasks 

together. 

Creativity (V4) 
Generate new ideas and solve problems 

independently and innovatively. 

2) Assessment tool 

Based on the theoretical framework proposed earlier, the development of the testing tool 

involves categorizing dimensions into cognitive and non-cognitive abilities. Cognitive abilities 

refer to the mastery of specific skills, typically measurable through test questions. Non-

cognitive abilities are associated with a student's personality, encompassing different attitudes 

towards tasks and proactive behavior, which are challenging to measure through test questions. 

Therefore, the testing tool is designed in two parts: the first part assesses students' CT value 

perspectives, examining non-cognitive abilities through a scale. The second part evaluates 

students' conceptual knowledge, algorithmic thinking, and problem exploration, assessing 

cognitive abilities through a questionnaire. 

To assess various dimensions of CT in college students, this study, based on existing test 

questions and scales such as Bebras Tasks CT Challenge, CTt, The Fairy Assessment, and CTS, 

combined with college students' life experiences and characteristics, adapted and initially 

formulated 26 test questions and 14 scale questions. The scale section was uniformly designed 

as scoring multiple-choice questions, each with four options. The score range was set from 0 to 

3 points, with each option corresponding to a score based on the degree to which it reflected the 



ability dimension. For the questionnaire section, question types were set as multiple-choice and 

fill-in-the-blank, with a secondary scoring system of 0 and 1. After completing the item 

development, two experts in artificial intelligence and two experts in educational technology 

were invited to evaluate the tool separately. Items with unclear assessment dimensions were 

removed based on expert judgments, and several scale questions assessing students' non-

cognitive abilities were added. Subsequently, a small-scale test was conducted based on expert 

suggestions, and the results were analyzed through student feedback and submissions. Items 

with unclear meanings and high difficulty were eliminated, and some items were revised. 

Ultimately, 18 scale questions and 22 test questions remained. Each item involved one or more 

abilities, and all questions were designed using a multidimensional model within each item. 

During the determination of dimensions, experts repeatedly deliberated and calibrated the basic 

abilities addressed by each test question. The Q-matrix for the basic abilities assessed by each 

item is shown in Appendix 1. 

3.2. Participants 

The study focused on undergraduate students from a comprehensive university in China. We 

employed a random sampling method and selected 400 students from different grades and 

majors as the study sample. The sample included both male and female students, with ages 

ranging from 18 to 25 years. To ensure the representativeness of the study, we considered a 

balanced representation across various academic disciplines and aimed to cover different 

colleges within the university. Out of the 387 students who volunteered to participate, 366 

completed a 45-minute test online. Prior to the test, students were required to provide basic 

personal information, including gender, age, major, school, and whether they had prior 

programming experience. After excluding 34 incomplete reports, we ultimately obtained 366 

valid datasets, resulting in a data validity rate of 94%. The distribution of the sample is 

presented in Table 2. 

Table 2: Participant demographics 

 Boy Girl total 

freshman 53 28 81 

sophomore 43 46 89 

senior 56 55 111 

junior 48 37 85 

Total 200 166 366 

3.3. Data Analysis 

1) Verification of CAPV-t 

The validation of the tool involves reliability analysis, validity analysis, and parameter 

estimation analysis, which can be divided into the validation of the scale section and the 

validation of the test paper section. For the scale section, SPSS software was used for analysis, 

while for the test paper section, as it assesses multiple dimensions, MIRT was employed to 

analyze the relationships among different dimensions. The analysis used the mirt package and 

psych package in R. 



2) Reliability analysis 

For the scale section, intrinsic reliability is generally considered, which examines whether there 

is high internal consistency among items. The commonly used method for analysis is the alpha 

reliability coefficient. For the test paper section, the psych package was utilized for reliability 

analysis. Internal consistency of the test paper was assessed through the analysis of Cronbach's 

α coefficient. A Cronbach's α coefficient greater than 0.7 indicates high reliability of the test 

paper. 

3) Validity analysis 

The validation of CAPV-t involves two aspects: content validity and structural validity. Content 

validity is assessed using the Delphi method and analysis of pre-test results. Structural validity 

encompasses both the scale and the test paper.  Exploratory factor analysis is employed for the 

structural validity of the scale, with the suitability for factor analysis determined through the 

Kaiser-Meyer-Olkin (KMO) measure and Bartlett's test [29]. If deemed suitable, an analysis of 

factor loadings for each item across dimensions is conducted[30].For the test paper, structural 

validity is evaluated by analyzing the discrimination parameters of test questions. In R, the mirt 

package is utilized for assessing the structural validity of the test paper[31].Initially, 

unidimensional item response theory (UIRT) and 5-dimensional, 6-dimensional, and 7-

dimensional MIRT models are fitted to the data.  The fit is evaluated using Akaike information 

criterion (AIC), Bayesian information criterion (BIC), Comparative Fit Index (CFI), Tucker-

Lewis Index (TLI), and Root-Mean-Square Error of Approximation (RMSEA). If a 

multidimensional model demonstrates superior fit, further exploration for the optimal 

dimensions is conducted.Subsequently, exploratory factor analysis is employed to identify the 

test dimensions. The QMCEM [32] algorithm is used to fit the data, and a discrimination matrix 

with a critical value of 0.25 is applied to filter out discriminations above this threshold, 

approximating the attribution of items to each dimension. 

4) Parameter estimation 

When conducting a quality analysis of the tool, it is essential to first choose an appropriate 

model to ensure the attainment of desired outcomes [33]. For the validation of questions 19-36, 

considering these items are binary scoring single-choice questions and recognizing the 

possibility of student guessing in multiple-choice questions, we consider guessing as a 

significant factor to more accurately reflect students' actual proficiency. Therefore, we 

employed the three-parameter multidimensional logistic model (3PL) proposed by Reckase 

[34]for modeling, encompassing three key parameters: difficulty parameter (d), discrimination 

parameter (a), and guessing parameter (c). It's noteworthy that the value of parameter c does not 

vary with changes in the ability level of examinees; even among examinees with the lowest and 

highest abilities, the probability of guessing the correct answer remains the same. To ensure the 

validity of results, the theoretical range for parameter c is 0-1, but in practice, it generally does 

not exceed 0.35. 

For questions 37-40, which are binary scoring fill-in-the-blank questions, we opted for the two-

parameter multidimensional logistic model (2PL). In comparison to the 3PL model, the 2PL 

model reduces the guessing coefficient in parameter settings. This choice takes into account the 

nature of fill-in-the-blank questions and more precisely reflects student performance during the 

modeling process. The application of this modeling strategy contributes to better adapting to the 



characteristics of different question types and enhances the accuracy of understanding students' 

test-taking behavior. 

4. RESULTS 

4.1. Reliability and validity of CAPV-t (answer to Q1) 

1) Reliability of CAPV-t 

Table 3 presents the overall reliability of the Non-Cognitive Ability Beliefs Inventory and the 

reliability of each sub-dimension. According to the results in the table, the reliabilities for 

Attitude, Questioning, Teamwork, and Creativity are all greater than 0.85. The overall 

reliability of the Inventory exceeds 0.7, indicating a high level of reliability for assessing 

students' non-cognitive abilities using this inventory. 

Table 3: Cronbach's α consistency coefficient test results of the scale 

 Cronbach’s Alpha Number 

Attitude (V1) 0.909 4 

Questioning (V2) 0.950 4 

Teamwork (V3) 0.860 5 

Creativity (V4) 0.919 5 

Values 0.703 18 

For the cognitive abilities section, reliability analysis of the questionnaire was conducted using 

the psych package in R, and the results indicate high reliability for the overall questionnaire and 

its various sub-dimensions. The Cronbach's α value for the entire sample is 0.8, with α values 

of 0.77 for conceptual knowledge, 0.81 for algorithmic thinking, and 0.71 for problem 

exploration. The overall consistency coefficients for the questionnaire and its sub-dimensions 

are all above 0.7, indicating a high level of reliability for the questionnaire. Therefore, the 

questionnaire meets the requirements for test development. 

2) Validity of CAPV-t 

Initially, a Kaiser-Meyer-Olkin (KMO) test was conducted on the non-cognitive abilities 

inventory, yielding a KMO value of 0.863 with a significance level below 0.05, indicating 

suitability for factor analysis. Subsequently, principal component analysis with maximum 

variance orthogonal rotation identified four factors, explaining a cumulative variance of 

76.645%, exceeding 60%.  This suggests that the four extracted factors effectively represent the 

entire dataset.  The rotated component matrix, presented in Table 4, indicates high factor 

loadings for items T1, T2, T3, and T13 on the first factor, labeled "Attitude";  items T4 to T7 on 

the second factor, labeled "Questioning";  items T8 to T12 on the third factor, labeled 

"Teamwork";  and items T13 to T18 on the fourth factor, labeled "Creativity."  The component 

matrix aligns perfectly with the original dimensions of the inventory (Appendix 1), affirming 

the inventory's robust validity. 

 



Table 4: Matrix of components after rotation 

Item  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 

Components 

1 0.867 .872 .870          .866      

2    .894 .879 .923 .933            

3        .789 .868 .721 .719 .813       

4              .812 .842 .855 .878 .866 

Validity analysis was conducted for the cognitive abilities section by comparing the fit results 

of Unidimensional Item Response Theory (UIRT) with 5D, 6D, and 7D Multidimensional Item 

Response Theory (MIRT) models. The fit results, shown in Table 5, indicate that smaller values 

of AIC and BIC represent better model fit, while larger values of CFI and TLI suggest 

improved model fit (typically above 0.9), and smaller RMSEA values indicate better model fit 

(usually below 0.08). The table reveals that multidimensional models outperform the UIRT 

model, with the 7D model providing the best fit to the data. 

Table 5: Comparison of multiple model fit indicators 

Dimensionality AIC BIC CFI TLI RMSEA 

UIRT 9756.568 9928.283 0.493 0.436 0.113 

5-Factor Model 9234.831 9796.811 0.719 0.671 0.081 

6-Factor Model 9180.202 9808.526 0.861 0.811 0.078 

7-Factor Model 9148.172 9738.938 0.937 0.917 0.046 

Exploring the dimensions of the questionnaire items, Table 6 presents parameter estimates 

derived from the 7D 3PL and 2PL models using the QMCEM algorithm in MIRT.  The 

parameter "a" represents the item's discrimination parameter, indicating the extent to which an 

item distinguishes students on the latent trait, serving as a primary reference for judging item 

dimensionality.  Each item loads on one or more dimensions, with larger absolute values 

indicating a higher probability of the item assessing that ability dimension.  When loading 

values are below 0.25, the item is considered not to assess that dimension significantly.  For 

instance, item 21 loads on C2 and A1, suggesting that it primarily assesses operational 

definition and algorithm understanding dimensions.  The discrimination matrix indicates that 

the exploratory analysis aligns with the predefined item dimensions, affirming good structural 

validity for the questionnaire. 

Table 6: Project parameters based on 2PL and 3PL models 

Item 
a 

d c MDIFF MDISC RMSEA 
C1 C2 A1 A2 P1 P2 P3 

T19  0.87      0.82 0.24 -0.94 0.87 0.046 

T20       0.52 0.16 0.26 -0.31 0.52 0.051 

T21  0.98 0.33     -0.75 0.24 0.72 1.03 0.046 

T22   0.83    0.35 1.01 0.22 -1.11 0.91 0.032 

T23  0.58 0.56   0.44 1.34 -1.04 0.29 0.64 1.62 0.058 

T24   0.91     0.56 0.15 -0.61 0.91 0.049 

T25 0.75 0.83 1.03     3.68 0.22 -2.42 1.52 0.070 

T26    1.02    1.07 0.24 -1.04 1.03 0.046 

T27    0.81    1.06 0.22 -1.30 0.81 0.068 

T28     0.98   0.72 0.26 -0.73 0.99 0.045 

T29    0.73    0.41 0.26 -0.56 0.73 0.062 



T30    1.53 0.41   -1.22 0.22 0.77 1.59 0.059 

T31    0.96 1.78   -1.21 0.26 0.60 2.02 0.043 

T32    0.34 0.39   0.30 0.24 -0.58 0.52 0.050 

T33  0.87 1.46     0.59 0.24 -0.35 1.70 0.061 

T34    1.42 1.30   -0.37 0.24 0.19 1.93 0.035 

T35   0.28   0.36  -1.21 0.25 2.65 0.46 0.049 

T36  1.29  0.74    -1.21 0.23 0.81 1.49 0.045 

T37 0.49 0.82 1.32     -0.47 - 0.59 0.80 0.027 

T38   1.25   1.79 1.53 -0.46 - 0.17 2.67 0.023 

T39    0.74   1.03 -3.09 - 2.45 1.26 0.045 

T40    0.82   1.15 -3.62 - 2.57 1.41 0.036 

4.2. Quality of CAPV-t (answer to Q2) 

1) Project - model fitting analysis 

The mirt package's itemfit function was employed to analyze the fit of the item model. The fit 

indices utilized the Root Mean Square Error of Approximation (RMSEA), ranging from 0 to 1. 

A lower RMSEA value indicates better fit between items and the model. According to general 

standards, an RMSEA below 0.1 suggests good fit, below 0.05 indicates very good fit, and 

below 0.01 implies excellent fit. The RMSEA values for the 22 items are provided in Table 6, 

ranging from 0.23 to 0.7, indicating satisfactory fit for the items. 

2) Parameter quality analysis of test paper 

Table 6 presents the parameter estimation results for the 22 items. Here, "a" represents the item 

discrimination, "d" denotes the item difficulty, and "c" signifies the item guessing. In the 

multidimensional item response model, we utilized the multidimensional difficulty coefficient 

(MDIFF) instead of "d" to indicate item difficulty. Larger MDIFF values imply greater 

difficulty, falling within the standard range of [-3, 3]. The difficulty of the items ranged from -

2.42 to 2.65, meeting the difficulty standards for item design. There is a gradual increase in 

item difficulty with the item number, aligning with the vertical organization of the test and 

reflecting students' thinking habits during answering. 

The multidimensional discrimination index (MDISC) reflects the overall discrimination of 

items. Larger MDISC values indicate higher discrimination in multidimensional space, 

although this doesn't guarantee high discrimination on every dimension. MDISC values above 

1.5 are considered excellent discrimination, 1.0-1.5 are good, 0.5-1.0 are moderate, and below 

0.5 are considered poor and should be considered for removal. Applying this criterion, seven 

items exhibit excellent overall discrimination, constituting approximately 32% of the entire test. 

Five items are categorized as good, nine as moderate, and only item T35 has an overall 

discrimination below 0.5, suggesting its removal. 

3) Student ability estimation based on CAPV-t 

The distribution of scores on the values and skills levels for the participants is illustrated in 

Figure 1. Overall, scores in the skills domain are concentrated between 0.5 and 0.65, indicating 

the highest total scores in the decomposition dimension and the lowest total scores in the 

transfer dimension. In contrast, scores in the values domain range from 1.4 to 2.2, with the 

highest total scores observed in the questioning dimension and the lowest total scores in the 

creativity dimension. 



 

Figure 1.  CT score distribution of subjects in each dimension 

5. DISCUSSION 

5.1. CAPV-t based on cognitive and non-cognitive abilities is innovative and complete 

1) The innovation and integrity of the CT framework 

Clarifying the dimensions of CT is crucial for teaching and assessment. Current research 

summaries indicate a traditional inclination to categorize CT abilities as cognitive skills, such 

as abstraction, algorithmic thinking, and decomposition. This emphasis underscores students' 

capabilities in information processing and extraction, resembling an assessment of students' 

"IQ" levels. Conversely, non-cognitive abilities are often overlooked in research but are equally 

significant in educational studies. Recognized as a core competency of the 21st century, non-

cognitive abilities are considered implicit human capital. Both academia and society are 

gradually acknowledging the necessity for schools to impart skills beyond textbooks, 

particularly those related to students' attitudes, beliefs, and values. 

The essence of CT lies not only in identifying and abstracting problem scenarios but also in the 

analysis and handling of intricate relationships between problem scenarios and data 

information. This viewpoint breaks away from traditional CT training methods, representing a 

direction for educational reform and development. Therefore, this study integrates literature 

research, defining conceptual knowledge, algorithmic thinking, and problem exploration as 

cognitive components of CT. Simultaneously, it identifies values as non-cognitive components, 

forming a theoretical framework for CT. Under the standards of core dimensions, secondary 

dimensions are finely delineated, providing clear definitions to explicate core dimensions. The 

CT framework, comprising both cognitive and non-cognitive abilities, transcends traditional 

definitions, enriching the connotation of CT. 

2) Innovation and integrity of CAPV-t 

CAPV-t is a testing tool developed based on the aforementioned theoretical framework, aiming 

to comprehensively assess students' cognitive and non-cognitive abilities. Cognitive abilities 

are often manifested through horizontal tests, so we assess students' performance in the 

cognitive dimensions of conceptual knowledge, algorithmic thinking, and problem exploration 

by compiling questionnaires. In contrast, non-cognitive abilities cannot be judged numerically. 

Therefore, we choose to employ a scale to describe students' performance in attitude, 



skepticism, teamwork, and creativity, aiming to evaluate their CT values. This study 

innovatively designs the CT assessment tool to include both a scale and a questionnaire, 

breaking away from the conventional restriction of having only one type of testing method. 

This approach allows for a diverse and comprehensive evaluation of students' CT abilities. 

5.2. CAPV-t has strong psychometric characteristics 

1) Reliability and validity analysis of CAPV-t 

The study conducted reliability and validity analyses of CAPV-t using SPSS software and the 

mirt toolkit. The experimental results indicate that both the scale and the questionnaire achieved 

satisfactory levels of reliability. Factor analysis of the scale revealed consistency in the number 

of dimensions with the preset dimensions, and the component loadings on the factors matched 

the expectations, ensuring good structural validity. The validity analysis of the questionnaire 

suggested that fitting the data with a 7-dimensional model was most appropriate, with superior 

fit indices compared to other models. The discriminant matrix obtained through QMCEM 

method demonstrated alignment between the dimensions of the questionnaire and the preset Q 

matrix.  

2) CAPV-t quality analysis 

Based on the analysis of 366 sets of data, the quality of CAPV-t generally meets the standards 

of psychometrics. The research results indicate that the difficulty of CAPV-t ranges from -2.42 

to 2.65, with the majority of items falling into the moderate difficulty level. Items that are either 

too difficult or too easy constitute only 18% of the test, aligning with the requirements of 

educational measurement. The evaluation of items using the MDISC index reveals that 54% of 

the items are rated as good, with only item 35 showing relatively poor discriminability. 

Participant feedback attributes this to unclear wording in the question. Given that the test does 

not assess students' reverse thinking, it has been decided to remove this particular item. In 

summary, the CAPV-t demonstrates good item discriminability and moderate difficulty, 

making it suitable for assessing college students' CT abilities. 

6. CONCLUSIONS 

This study has established a comprehensive and reasonable theoretical framework for CT, 

encompassing both cognitive and non-cognitive abilities of students. Based on this theoretical 

framework, a well-designed assessment tool has been created, demonstrating high-quality item 

characteristics and meeting the standards of psychometrics. This assessment tool enables 

effective inference of participants' abilities, assisting educators in evaluating students' 

proficiency or deficiencies in CT. It also serves as a foundation for future optimizations of the 

assessment tool and informs instructional practices. In summary, the developed CAPV-t in this 

study is a novel and validated assessment tool with high quality, specifically designed to 

evaluate cognitive and non-cognitive aspects of CT in college students. 
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