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Abstract. The concept prerequisite learning task is a crucial study in smart education and 
plays an important role in online course design, course guidance, and learning material 
recommendation systems. In general, concept prerequisite relations are the determination 
of whether two concepts have a prerequisite relationship, usually as a binary task. 
Nowadays, learning concept representations from pre-trained models has become a new 
trend in concept prerequisite learning (CPL) tasks. However, too many handicraft features 
are still required to discover the concept features in previous studies.  In this paper, we 
propose a concept prerequisite relationship discovery method based on prompt learning, 
in which we design four prompt functions, mapping the predicted labels to the existing 
labels through answer engineering after the model training. Conducting thorough 
experiments across three publicly available benchmarks reveals enhancements of up to 13% 
in F1 score. It shows that the prompt learning approach can effectively improve the 
prediction of prerequisite relations and provide a new idea for the study of concept 
prerequisite relations tasks. 
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1 Introduction 

Today, with the proliferation of open-source knowledge learning platforms such as MOOC, 
Coursera, and NetEase Open Classes, people are increasingly learning online. Faced with plenty 
of knowledge materials, it can massively increase the learner’s learning efficiency if the best 
study path could be shown. However, the order of learning resources is determined by the 
relations between their central concepts [1]. Therefore, one of the key steps toward the study 
recommendation system is the concept prerequisite learning (CPL) task which learns the 
prerequisite relation between two concepts. In other words, if concept A has a prerequisite 
relation to concept B, learners should learn concept A before concept B.  

CPL was first introduced by Talukdar and Cohen[2], who learned the concept from Wikipedia, 
represented it as a probabilistic planning problem, and found prerequisite relations by machine 
learning. Previous works mainly focus on various materials, including Wikipedia articles[3], 
university course dependency[4], or MOOC[5], to learn the relationship between the two concepts. 
Nonetheless, these resources either necessitate extra pre-processing and refinement steps or 
encompass an excessive amount of unstructured text, introducing further complexities to 
prerequisite education. In a recent study by K. Xiao[6], the Bert model was implemented to 
acquire an understanding of the prerequisite relations between concepts, and the study validated 
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the efficacy of employing pre-training models for concept acquisition. Therefore, this paper 
aims to determine whether two given concepts contain prerequisite relations with the help of 
pre-train learning models. 

In recent studies, Prompt-learning has become a new paradigm in modern NLP, which provides 
a pre-trained learning model with “task description”. The main idea of prompt learning is to 
unify the training objectives of the downstream task into a prediction problem for the mask 
language model. It entails devising a prompt template, merging it with the original input 
sentences, and employing a pre-trained language model to forecast the masked words within the 
prompt template. As a simple and effective method, prompt learning has worked well for many 
natural language processing tasks, especially low-resource situations.  

We employ prompt models and propose a model named PCPL for prerequisite relationship 
discovery. The main contributions of this paper can be summarized as follows： 

(1) We are the first to propose the discovery of conceptual prerequisite relations using the 
prompt learning method. Considering the prerequisite relationship citation scenarios, we 
designed four prompt template functions to explore the effect of different types of template 
functions on prerequisite relation learning. We have proposed PCPL that necessitates no 
additional external knowledge and relies solely on the input of two concepts to determine 
prerequisite relationships.  

(2) Due to the advantage of prompt learning under few-shot learning, it is the first attempt of 
prerequisite relationship learning with low-resource situation. In order to simulate low-resource 
scenarios, we evaluate the method in a few-shot learning context. Remarkably, our prompt-
based model performs admirably even in situations with limited training samples.  

(3) A comprehensive series of experiments has been conducted across a variety of different 
pre-trained models. We explore the performance of diverse pre-trained models on varying 
datasets by employing distinct prompt templates. The results demonstrate that prompt-based 
models consistently achieve state-of-the-art performance on educational datasets. 

2 Related Work 

2.1 The concept prerequisite learning works 

Previous works mainly focus on three paradigms to learn prerequisite relations. The first 
paradigm models the concept meaning through textual content[7,8]. It calculates the correlations 
with the means of features engineering, which entirely relies on manual construction and needs 
several materials to discover the relationship. The second paradigm models the concept and 
relationship into neural networks such as GCN and VGAE[9,10,20], which transfers the CPL task 
into the link prediction task. In this paradigm, automatic feature acquisition for end-to-end 
classification is implemented. However, manual work is still required to design a reasonable 
network structure, and the model’s performance depends on a large number of datasets. Due to 
the popularity of transfer learning, the third paradigm models learn the concepts through pre-
trained models such as Bert, Roberta, etc. Some latest studies[11] employ manual and semantic 
features together and construct various neural networks to predict prerequisite relationships. To 
some extent, they combine these three paradigms in all.  In this paper, we employ prompt 



engineering in which pre-training method is used to learn the concept features automatically 
without constructing additional manual features. 

2.2 Prompt Works 

In order to measure the knowledge learned by pre-trained models such as Bert and Roberta, 
researchers have proposed prompt learning, where the model is asked to answer mask questions 
by reconstructing the input. prompt-based learning approaches have yielded good results for 
many natural language processing tasks[12,13,14]. Schick et al. [12] propose manual construction of 
templates and knowledge distillation using a large unannotated external corpus for document-
level sentiment classification tasks. Hu et al. [15] propose a tag-word mapper that uses an external 
knowledge base to extend the classification task. Shin et al. [16] propose a gradient-guided 
approach to automatically construct prompt templates for downstream tasks. In most cases, pre-
trained models adapt to various downstream tasks, while the prompt is the various downstream 
tasks that accommodate the pre-trained language model. The idea of the prompt is to reconfigure 
the downstream task to fit the pre-trained language model without the need to fine-tune it. Few 
or zero samples are the most significant advantages for prompt engineering. In contrast to the 
traditional paradigm of pre-training fine-tuning, prompt-based languages are a boon for low-
resource languages as they do not require task-defined parameters and do not require much 
annotation information. In this paper, we use prompting to reconstruct the model’s input, and 
let the model give reasonable answers through cloze questions.  

3 Methodology 

In this section, we introduce the details of our method：prompt-based CPL framework. The 
prompt-based approach to prerequisite relationship discovery uses the pretrained model to 
transform prerequisite relationship discovery into a masked prediction task, where categories 
are judged by the output of [mask] positions. Prompt learning includes the construction of a 
prompt, the construction of a verbalizer and training stage. 

The prompt-based CPL framework proposed in this paper is illustrated in Figure 1. For concept 
prerequisite learning task, the input comprises two distinct knowledge points. A complete input 
sentence is obtained by adding a template of our design, and the new sentence is fed into the 
pre-trained language model to obtain the probability distribution of the [mask] position about 
the whole word list. We define the prerequisite relationship through the verbalizer, and let the 
model predict the probability of the words filled by the verbalizer to obtain the final predicted 
category. 



 
Fig.1. prompt-based CPL framework. 

3.1 Problem definition 

The objective of the concept prerequisite learning task is to ascertain if there exists a correlation 
between two concepts. In the previous study, researchers usually convert it into a binary 
classification problem, that can be defined as: 

𝑃𝑟𝑒𝑞ሺ𝐴, 𝐵ሻ ൌ  ൜
   1,          𝐴 𝑖𝑠 𝑎 𝑝𝑟𝑒𝑟𝑒𝑞𝑢𝑖𝑠𝑖𝑡𝑒 𝑜𝑓 𝐵
0, 𝐴 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑒𝑟𝑒𝑞𝑢𝑖𝑠𝑖𝑡𝑒 𝑜𝑓 𝑏

ሺ1ሻ 

𝑃𝑟𝑒𝑞ሺ𝐴, 𝐵ሻ  ൌ  1  means A is a prerequisite of B. In other words, if people want to master 
concept B, they must master concept A beforehand.  

3.2 Construction of Prompt Function 

Since the idea of prompt learning is used in our framework, we first need to construct a prompt 
project. There are various ways to set up prompt templates, such as handwritten templates, 
automatic discrete templates, automatic continuous templates, etc. This paper is designed in the 
form of handwritten templates. Therefore, we build a prompting function P to modify the input 
text x, the input after constructing prompt is: 

𝑋ᇱ ൌ 𝑃ሺ𝑋ሻ ሺ2ሻ 
 
The prompt function works as follows: Firstly, we design a template, which is a textual string 
that has two slots: input slots [X] and answer slots [Z]. Such as in the case of CPL tasks where 
x1 is “tree” and x2 is “binary tree”, the template may take a form as “[X1] and [X2] have [Z] 
relationship”. Then the input sentence X’ would become “tree and binary tree have [Z] 
relationship”. In prompt learning, if input texts come entirely before the answer slots[Z], we 
name it the prefix prompt. Otherwise, if answer slots are in the text, we call it a cloze prompt. 
In the CPL task, we define two prefix prompts and two cloze prompts in Table1.  

Specially, in order to distinguish whether there is a prerequisite relationship, there is such a 
teaching scenario, the teacher will teach the knowledge of "binary tree", frequently mention the 
knowledge of "tree", because "tree" is the prerequisite knowledge of binary tree, so that the 
"tree" and "binary tree" appear in the same semantic scenario. By applying the concept of 
prompt-based learning, we can recreate educational scenarios through the construction of 



templates. This enables pre-trained language models to gain a comprehensive understanding of 
the contextual settings in which concepts appear, ultimately allowing them to learn the 
prerequisite relationship between two concepts. We categorize the citation scenarios between 
two concepts into two types: explicit citation scenarios and implicit citation scenarios. Explicit 
citation scenarios involve a teacher explicitly indicating the prerequisite relationship between 
two concepts in the educational context. Implicit citation scenarios require inferring the 
prerequisite relationship between two concepts based on the teacher's discourse. According to 
the prompt type and citation scenarios, we define four prompt templates.  

Table 1. CPL prompt templates. 

Number Prompt type citation Scenarios Template 
Template 1 cloze prompt explicit [X1] and [X2] have [mask] relationship 

Template 2 prefix prompt explicit 
Do [X1] and [X2] have prerequisite 

relationship? [mask] 

Template 3 prefix prompt Implicit 
We should learn/study [x1] first, then 

learn [x2]. Right？[mask] 

Template 4 cloze prompt Implicit 
Learning [X1] is [mask] for learning 

[X2]. 

Through formulating the prompt, we acquire the reconstructed text X′, which comprises the 
masked tokens. Take “tree and binary tree have [Z] relationship” for example, after the model 
accepts and reads the input sequence, it first replaces it with [MASK] at the position where the 
prerequisite relationship is judged. Then, the model inserts the [CLS] and [SEP]. Where [CLS] 
is inserted at the head of the sentence and also as a marker for the start of the sentence, and [SEP] 
is checked at the end of the sentence.  

3.3 Construction of Verbalizers 

In this section, we design some possible answers to fill the answer slots. In prompt learning, Z 
could be a set that ranges from the entirety of the language. Function 𝑓௙௜௟௟ሺ𝑥ᇱ, 𝑧ሻ is the process 
by which we fill in the position [Z] with potential answers. For CPL tasks, the answersets vary 
with different templates, we define Verbalizers as table 2.  

Table 2. CPL verbalizers. 

Prompt templates Verbalizers(1) Verbalizers(0) 
Template1 Prerequisite No-prerequisite 
Template2 Yes No 
Template3 Yes No 
Template4 Important/crucial irrelevant 

After that, a verbalizer is constructed that maps each label to a word from the masked language 
model.  In the end, We explore the set of potential responses, z, by assessing the likelihood of 
their associated completed prompts using a pre-trained learning model, the calculation process 
is shown as follows:  

𝑧=search𝑧𝜖𝑍𝑃𝑓𝑓𝑖𝑙𝑙𝑥′,𝑧;𝜃                       (3) 
 

Where 𝜃  is the parameters of the language model, 𝑓௙௜௟௟ሺ𝑥ᇱ, 𝑧ሻ  indicates the insertation of 
answer z into the input text x’, 𝑃ሺ𝑓௙௜௟௟ሺ𝑥ᇱ, 𝑧ሻ; 𝜃ሻ denotes the probability of each answer z being 



inserted into the input text x' under the parameter 𝜃, 𝑠𝑒𝑎𝑟𝑐ℎ indicates the search function of 
the search probability. We find the highest scoring text �̂� to maximise the learning model score. 

3.4 Prediction process and Training loss 

During the training phase, the pre-trained model predicts the probability distribution 𝑝ሺ𝑣 | 𝑋′ሻ 
for all predicted words. Subsequently, We calculate the average probability of forecasted words 
belonging to identical categories, resulting in the corresponding label probability 
distribution 𝑝ሺ𝑙 | 𝑋ሻ. The loss function is defined as follows: 

𝐿ሺ𝑦, 𝑝ሻ ൌ െ ෍ 𝑦௜ logሺ𝑝௜ሻ
௞

௜ୀ଴

ሺ4ሻ 

where k is the number of labels and y represents the ground truth. The process of prediction is 
shown as Figure 2. 

 
Fig.2. The process of prediction. 

4 Experiments 

In this section, we perform a series of experiments on publicly available datasets to assess the 
effectiveness of our suggested approach and compare it with the current state-of-the-art methods 
for identifying prerequisite relationships. 

4.1 Datasets 

We evaluate our approach on the following three public datasets: 

MOOC ML: an English dataset that includes concepts extracted from video subtitles of 
Coursera’s courses. The concepts are mostly from Machine Learning and Data Structure & 
Algorithms.  



Lecture Bank: an English dataset collected from online lecture files that cover 60 courses in 
Natural Language Processing.  

University Course: an English dataset that comes from university course dependency and its 
concepts are extracted using Wikipedia Miner. The concepts are mostly within the field of 
computer science.  

4.2 Experimental Setup and Evaluation Metrics 

In order to assess the ability of the model to predict prerequisite relationships, we randomly 
sliced the dataset at a rate of 6:4, constructing the training set and test set, shown as table3. For 
the purpose of addressing the imbalance problem, we oversample the positive examples and 
negative samples in two strategies as follows. 

𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 1:   𝑖𝑓 𝐴 → 𝐵 𝑎𝑛𝑑 𝐵 → 𝐶, 𝑡ℎ𝑒𝑛 𝐴 → 𝐶 

𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 2:   𝑖𝑓 𝐴 → 𝐵, 𝑡ℎ𝑒𝑛 𝐵 ! →  𝐴 

The first strategy is based on the prerequisite relationship chaining rule: If concept A is a 
prerequisite knowledge point of concept B, concept B is a prerequisite knowledge point of 
concept C, then concept A is a prerequisite knowledge point of concept C. The second strategy 
indicates that if concept A is the prerequisite knowledge point of concept B, then concept B must 
not be the prerequisite knowledge point of concept A.  

Then, we insert the training set and test set into each position of the template.  

Table 3 datasets. 

Dataset concepts Training set Test set 

MOOC ML 244 1882 1256 

Lecture Bank 205 2570 1714 
University Course 407 16011 10675 

The PCPL model presented is constructed using the OpenPrompt toolkit, a resource developed 
by the Natural Language Processing Laboratory at Tsinghua University. We set the learning rate 
as 1e-4, epoch as 10, weight decay as 1e-2, max sequence Length as 256. We also use Adam as 
an optimizer.  

Accuracy, Precision, Recall, and macro F1 Score are used as evaluation metrics. The detailed 
formulas are as follows. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝐹𝑃 ൅ 𝐹𝑁 ൅ 𝑇𝑁
  ሺ5ሻ 

   
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ  

்௉

்௉ାி௉
 ሺ6ሻ   

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ  
்௉

்௉ାி௉
ሺ7ሻ  

𝐹1 ൌ  
ଶ∗௉௥௘௖௜௦௜௢௡∗ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟
 ሺ8ሻ   

 
 



In this context, TP denotes the count of correctly identified positive samples, FP signifies the 
count of negative samples erroneously categorized as positive, TN represents the count of 
accurately identified negative samples, and FN indicates the count of positive samples 
inaccurately classified as negative. 

4.3 Performance of PCPL on Three datasets 

For the pre-trained learning model, we employ the Bert-base, t5-base, gpt2 in three datasets. 

Bert-base[19] is an advanced language model created by Google, excels in comprehending word 
contexts within sentences through extensive training on an extensive text corpus. Its 
bidirectional nature, which takes into account the contextual information to the left and right of 
a word during prediction, empowers it to capture intricate linguistic connections effectively. 

T5[17] is a text-to-text model developed by Google that frames all NLP tasks as a text-to-text 
problem. It uses a unified architecture where both input and output are treated as text strings. 
This model has a single pre-trained architecture that can be fine-tuned for various NLP tasks 
such as translation, summarization, text classification, and more. 

GPT2[20] is a generative language model developed by OpenAI. It's known for its ability to 
generate coherent and contextually relevant text based on a given input or prompt. It has been 
used for tasks like text generation, chatbots, and text completion. 

Table 4-6 shows the experimental results with different templates and different pretrained 
models for classification on MOOC, University Course and Lecture Bank. 

We can conclude from the three tables that (1) No matter which pretrained models is employed, 
all three datasets have the best precision value on the template 4, which indicates that implicit 
referenced scenarios are more consistent with the pre-trained model training contexts. it is 
explainable because there are seldom scenarios that the relationship between two concepts is 
pointed out directly. (2) On the MOOC ML and Lecture Bank, the Bert model achieves the best 
training results on all four templates, which is due to the fact that Bert, as a bi-directional encoder, 
was initially designed for understanding tasks, and prerequisite relationship prediction usually 
requires that the model be able to understand contextual information in the text, which is 
compatible with Bert's task. In contrast, gpt2, as a generative model, is a unidirectional encoder 
and is not applicable to the prerequisite relation understanding task. (3) It’s worth noting that on 
University Course dataset, T5 achieves the best performance, which indicates that the best 
model for different datasets is not necessarily consistent and there are only subtle differences in 
the effects of the different models. 

Table 4.The performance of PCPL on MOOC ML. 

Model Template Accuracy Precision Recall F1_recall 

Bert 

T1 0.8416 0.8478 0.84 0.8403 
T2 0.8439 0.8492 0.8425 0.8429 
T3 0.8415 0.8443 0.8405 0.8409 
T4 0.859 0.8612 0.8582 0.8586 

AVG 0.8465 0.8506 0.8453 0.8457 

T5 
T1 0.8288 0.8324 0.8276 0.8279 
T2 0.8288 0.829 0.8284 0.8286 
T3 0.8511 0.8515 0.8507 0.8509 



T4 0.8431 0.848 0.8418 0.8422 
AVG 0.8379 0.84 0.8371 0.8374 

GPT2 

T1 0.8383 0.8391 0.8389 0.8384 
T2 0.828 0.828 0.8282 0.828 
T3 0.836 0.837 0.8353 0.8356 
T4 0.8376 0.8387 0.8369 0.8372 

AVG 0.835 0.8357 0.8348 0.8348 

Table 5.The performance of PCPL on Lecture Bank. 

Model Template Accuracy Precision Recall F1_recall 

Bert 

T1 0.9154 0.9155 0.9155 0.9154 

T2 0.9119 0.9123 0.9121 0.9119 
T3 0.9014 0.9022 0.9011 0.9013 
T4 0.9212 0.9228 0.9216 0.9212 

AVG 0.9125 0.9132 0.9126 0.9125 

T5 

T1 0.9037 0.9037 0.9038 0.9037 

T2 0.9084 0.9085 0.9085 0.9084 
T3 0.9177 0.918 0.918 0.9177 
T4 0.9049 0.9051 0.905 0.9049 

AVG 0.9087 0.9088 0.9088 0.9087 

GPT2 

T1 0.9142 0.9146 0.9141 0.9142 

T2 0.91 0.91 0.909 0.91 
T3 0.9078 0.908 0.908 0.9078 
T4 0.9078 0.9078 0.9077 0.9078 

AVG 0.9099 0.9101 0.9097 0.9099 

Table 6. The performance of PCPL on University Course. 

Model Template Accuracy Precision Recall F1_recall 

Bert 

T1 0.9614 0.9629 0.9614 0.9613 

T2 0.9347 0.939 0.9348 0.9345 
T3 0.9632 0.9641 0.9633 0.9632 
T4 0.962 0.9632 0.962 0.9619 

AVG 0.9553 0.9573 0.9554 0.9552 

T5 

T1 0.9647 0.965 0.9647 0.9647 

T2 0.9649 0.9653 0.965 0.965 
T3 0.9644 0.9651 0.9644 0.9644 
T4 0.9639 0.9654 0.964 0.9639 

AVG 0.9645 0.9652 0.9645 0.9645 

GPT2 

T1 0.9609 0.9621 0.961 0.9609 

T2 0.962 0.962 0.962 0.962 
T3 0.9617 0.9625 0.9617 0.9617 
T4 0.8878 0.8904 0.8878 0.8876 

AVG 0.9431 0.9443 0.9431 0.943 

4.4 Comparisions Against State-of-the-Arts methods  

We compared our framework with several state-of-the-art approaches, including PREQEQ, Bert, 
VGA, CPRL. 



PRERE[18]is a method for predicting unknown concept antecedents from labelled concept 
prerequisite and course prerequisite data. PREREQ uses pairwise linked LDA models to obtain 
vector representations of concepts and Siamese networks to predict unknown concept 
antecedents 

Bert[19] uses a pair of concept names and fine-tuned them to classify the prerequisite relations 
using a binary cross-entropy loss. 

VGA[10] is a graph-based, unsupervised educational relationship extraction model that treats 
concepts as nodes in a graph and relationships as edges in a graph, and discovers prerequisite 
relationships through graph autoencoders. 

CPRL[21] is the latest CPL method that achieves state-of-the-art results by creating a 
heterogeneous graph to represent concepts beyond the learning object. It uses a R-GCN to 
encode nodes and a Siamese network to identify preconditions. 

Table 7. A Comparative Analysis of Performance: Prompt-Based Model vs. Baseline Approaches. 

 
MOOC ML Lecture Bank University Course 

precisi
on 

recall 
F1 

score 
precisio

n 
recall 

F1 
score 

precisio
n 

recall F1 score 

PREREQ 0.448 0.592 0.510 0.590 0.502 0.543 0.468 0.916 0.597 

Bert 0.746 0.753 0.761 0.838 0.837 0.838 0.838 0.835 0.835 

VGAE 0.496 0.496 0.495 0.706 0.673 0.669 0.570 0.562 0.539 

CPRL 0.800 0.642 0.712 0.861 0.858 0.860 0.689 0.760 0.723 
Our best 
model 

0.861 0.858 0.859 0.923 0.922 0.9212 0.965 0.965 0.965 

For MOOC ML and Lecture Bank, our best model is under the Bert pretrained model and T4 
prompt template, for University Course, our best model is under the T5 pretrained model and 
T2 prompt templates. The experimental results for all assessed models across these three 
datasets, with Precision, Recall, and F1 score referring to macro averages, are summarized in 
Table 7. Notably, as shown in Table 7, our proposed model consistently attains state-of-the-art 
performance in three datasets, irrespective of the prompt template used. From the results we can 
conclude that (1) When compared to non-pretrained models like PREREQ, VGAE, and CPRL, 
Bert models outperform them due to their comprehensive language representation acquired 
through extensive pre-training on a vast corpus. (2) In comparison to the Bert model, our 
prompt-based model exhibits superior performance. It effectively leverages the knowledge 
acquired during the pre-training stage, allowing it to not only accurately decipher implicit intent 
but also demonstrate applicability across various domains. 

4.5 Few-shot performance  

In order to replicate low-resource scenarios found in real-world applications, we employed a 
random sampling approach, selecting 𝑘 (50,100,200,300,500) instances for the training set, with 
the remaining examples designated for the test set. Recognizing that various selections of 
pretrained models and prompt templates can exert an influence on test performance, we 
maintained consistency throughout this experimental phase by utilizing the Bert pretrained 
model in combination with the T4 template. 

 



Table 8. Performance on few-shot learning 

Datasets Training set Proportions Accuracy Precision recall F1 score 

MOOC ML 

50 1.6% 0.4983 0.2491 0.5 0.332 

100 3.2% 0.5001 0.2504 0.5 0.3337 
200 6.4% 0.5044 0.2522 0.5 0.3352 
300 9.6% 0.7174 0.7392 0.7188 0.7116 
500 15.9% 0.7843 0.7905 0.7849 0.7833 

Lecture Bank 

50 1.2% 0.6925 0.7161 0.6926 0.6839 

100 2.3% 0.786 0.7887 0.7863 0.7857 
200 4.7% 0.7906 0.7947 0.7901 0.7897 
300 7.0% 0.8187 0.8373 0.8199 0.8166 
500 11.7% 0.8547 0.8548 0.8546 0.8546 

University 
Course 

50 0.2% 0.4996 0.2498 0.5 0.3331 

100 0.4% 0.5003 0.2502 0.5 0.3334 
200 0.7% 0.6799 0.7305 0.6801 0.6615 
300 1.1% 0.8719 0.8749 0.8719 0.8717 
500 1.9% 0.8875 0.8939 0.8874 0.887 

The performance of few-shot learning is shown as Table8. Since the size of each dataset is 
different, the proportion of few shots samples is different too. For University Course dataset, 
when the training set is reduced to about 1.9% of the original, the accuracy and precision of our 
model can still reach 88.75% and 89.39%. For the Lecture Bank dataset, the accuracy can reach 
81.87% when the training size is only 300. For MOOC ML dataset, four evaluation indicators 
can achieve more than 70% when the training size is reduced to 300. The experimental results 
proved that our proposed model presents strong robustness even when the training size is few-
shot. 

5 Conclusion 

In this paper, we introduce an innovative approach to learn prerequisite relations, termed PCPL 
(Prerequisite Concept Precept Learning), built upon the foundations of Prompt learning. Firstly, 
according to the scenarios in which the concepts appear in the contextual context. we design 
explicit citing templates and implicit citing templates, as well as the corresponding verbalizer. 
Secondly, in response to the four proposed templates, this study conducted experiments using 
three representative pre-trained language models, namely Bert, GPT-2, and T5. The 
experimental results demonstrate that the influence of different templates and various pre-
trained models on the results is relatively subtle. Thirdly, We compared this paper's method with 
other benchmark models and improved the f1-recall by 13%, which means that the present 
method is more effective in discovering the prerequisite relationship between two concepts. 
Ultimately, our assessment extends to evaluating the models under few-shot conditions. 
Surprisingly, the prompt-based model demonstrates strong performance, even when the 
available training samples are limited. In this study, the prompt templates in the experiments 
were designed manually and were not unique. Different prompt templates will have different 
prompting effects, and automatically designed templates can be tried in the future.  
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