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Abstract—A new type of rigid origami mechanism is proposed in this paper, its 
combination mode is specified, and the calculation formula of the number of folding 
modes is given. Nine-plate rigid origami mechanism is one of the expressions of the new 
type of rigid origami mechanism. This paper takes the nine-plate rigid origami 
mechanism as an example, the Jacobian matrix method is used to calculate the degree-of-
freedom (DOF) of the mechanism, and its kinematic model is established in the Cartesian 
coordinate system. The variation function of the dihedral angle of the nine-plate rigid 
origami mechanism with respect to the driving angle during the folding process was 
calculated, and the variation law of the dihedral angle during the folding process was 
obtained. The rigid origami mechanism has certain application potential in mechanical 
engineering fields such as underwater folding equipment and space scaling machinery.  
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1 Introduction 

The origami mechanism is a unique mechanism that can convert 2D materials, such as plane 
paper, into a particular 3D shape by folding [1]. The rigid origami mechanism is an important 
branch of the origami mechanism. The rigid origami mechanism only rotates along the crease 
during the folding process, and does not bend and stretch [2]. The spatial folding motion of 
origami mechanisms is vibrant, which extends its applications in materials science [3,4], 
biology [5], and mechanical engineering [6]. Among them, the application in the field of 
mechanical engineering is mainly reflected in satellite antennas [7,8], solar cells [9], medical 
devices [10], folding robots [11], and so on. 

The degree of freedom (DOF) of the origami mechanism represents the number of prime mover 
required for the mechanism to generate a determined motion. The DOF of the stated 
mechanism is usually obtained according to the Grübler-Kutzback criterion. However, for some 
complex mechanisms, such as masts, it often gives an incorrect DOF of less than 1. In order to 
solve this problem, Dai JS et al. introduced the screw theory to evaluate the mobility of such 
mechanisms, and the scissor-like element (SLE) multi-loop foldable mechanism is used to 
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verify the effectiveness of the theory [12]. Nagaraj et al. proposed a numerical algorithm to 
evaluate the mobility of pantograph masts by calculating the constrained Jacobian matrix [13]. 
Cai JG et al. extended this method to calculate the DOF of origami mechanisms [14], the 
accuracy of this method is better than that of Grübler-Kutzback method and its more suitable 
for computer simulation. This paper uses Cai JG et al 's method to calculate the DOF of origami 
mechanism. 

In this paper, a new type of rigid origami mechanism is proposed. According to the 
combination of rigid origami mechanisms proposed, a series of rigid origami mechanisms 
including four-plate origami mechanisms and nine-plate rigid origami mechanisms can be 
constructed. In order to explore the motion mode of the new rigid origami mechanism, the 
motion analysis of the nine-plate rigid origami mechanism was carried out. The Jacobian matrix 
method is used to analyze its DOF, and its kinematics model is established in the Cartesian 
coordinate system. Finally, the variation of each dihedral angle during the folding process is 
obtained. 

2 A New Type of Rigid Origami Mechanism 

Two equilateral triangles and two isosceles triangles are combined, as shown in Fig. 1. 
Assuming all triangles are rigid triangles, a four-plate rigid origami mechanism is formed. It is 
also assumed that point B is fixed, so ABF and BCD rotate inward around point B 
synchronously in the plane where it is located, and folding can occur. Point E will move away 
from the plane as it folds. 

Since the combination of two rotation directions of the hinges BF, BD, and BE can meet the 
folding of the four-plate rigid origami mechanism when folding begins from the tile state, the 
four-plate rigid origami mechanism has two folding patterns, as shown in Fig. 2. The 
“ mountain ” crease in the figure is represented by a solid line, and the “ valley ” crease is 
represented by a dotted line. 

 

Figure 1 Combination method of four-plate rigid origami mechanism 



 

Figure 2 Two folding patterns of four-plate rigid origami mechanism 

Using the same combination method, a nine-plate rigid origami mechanism (Fig. 3) can also be 
obtained. Assume that points B and C are fixed, so that ABI and CDE rotate inward around 
points B and C synchronously in the plane where they are located, a similar folding can also 
occur. 

Similarly, since all hinges have four combinations of rotation directions to meet the folding of 
the nine-plate rigid origami mechanism when folding from the tile state, the nine-plate rigid 
origami mechanism has four folding methods, as shown in Fig. 4. 

 

Figure 3 Combination method of nine-plate rigid origami mechanism 

 

Figure 4 Four folding patterns of nine-plate rigid origami mechanism 

Using the similar method, a rigid origami mechanism containing  2n n N   triangular plates 

can be combined. The relationship between the number of folding patterns(m) of rigid origami 
mechanism and the number of plates(n) is: 

  12 nm   (1) 

    

a. Pattern 1 b. Pattern 2 c. Pattern 3 d. Pattern 4 



3 Motion Analysis of Nine-Plate Rigid Origami Mechanism 

The nine-plate rigid origami mechanism is a form of expression of the new rigid origami 
mechanism， and the motion characteristics of the new rigid origami mechanism can be better 
reflected by the folding process of the nine-plate rigid origami mechanism. Therefore, taking 
the nine-plate rigid origami mechanism as an example, the folding process is explored, the DOF 
is analyzed, and the kinematic model of the folding pattern 1 of the nine-plate rigid origami 
mechanism is established. 

3.1 Dof Analysis 

The Jacobian matrix method is used to calculate the DOF of rigid origami mechanisms. The 
system constraint equation can be obtained by constructing the rigid constraint equation, joint 
constraint equation, and boundary condition of the rigid origami mechanism. The Jacobian 
matrix is the derivative of the system constraint equation with respect to time. The null space 
dimension of the Jacobian matrix represents the number of degrees of freedom of the rigid 
origami mechanism. 

Firstly, the coordinate system in terms of the x, y, and z axes is established. The x and y 
coordinate axes are shown in Fig. 3, and the z coordinate axis can be determined according to 
the right-hand rule. For the convenience of calculation, the side lengths of the equilateral 
triangle ABI, CDE, and BCJ are all set to 1, and the coordinates of each node of the nine-plate 
rigid origami mechanism are provided in Table 1. 

Table 1 The coordinates of each node of nine-plate rigid origami mechanism 

Node A B C D E 
x -1.50 -0.50 0.50 1.50 1.00 
y 0 0 0 0 0.87 
z 0 0 0 0 0 

Node F G H I J 
x 0.50 0 -0.50 -1.00 0 
y 1.73 2.60 1.73 0.87 0.87 
z 0 0 0 0 0 

The rigid constraint equation represents the nine triangular rigid plates that combine the nine-
plate rigid origami mechanism. During the folding process, the shape of the triangular rigid 
plate does not change, which means that the length of each side of the triangle does not change: 
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In the formula, ijl  represents the distance between the node i and the node j, and the equation 

composed of the three-dimensional coordinates of each node and the side length of each 
triangular rigid plate during the folding process can be obtained, which is the rigid constraint 
equation of the nine-plate rigid origami mechanism: 
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The joint constraint of the folding origami mechanism represents the connection between the 
rigid plates, which can be regarded as two spherical joint constraints arranged at both ends of 
the crease. If the two adjacent triangular rigid plates are always in a coincidence state at a 
certain point during the folding process, the spherical joint constraints of the two plates here are 
automatically satisfied. When the nine-plate rigid origami mechanism satisfies the rigid 
constraint equation, its joint constraints are inevitably satisfied. 

Boundary conditions refer to the other additional constraints. In this case, points B and C are 
fixed, and ABI and CDE are restricted to rotate symmetrically relative to BCJ. The boundary 
conditions are given below: 
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In short, the system constraint equation of the nine-plate rigid origami mechanism can be 
rewritten as: 

 1 1 1, , 0, 1, 2j n n nf x x y y z z j m      (5) 

In the formula, “ m ” represents the number of constraint equations, and “ n ” represents the 
number of joints of nine-plate rigid origami mechanism.  

The system constraint equation of the folding process of the ideal origami mechanism is a set of 
functions about time. Deriving it with respect to time, the Jacobian matrix equation can be 
obtained. 

   0B X   (6) 

The Jacobian matrix B in the formula: 
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If the dimension of the null space of the Jacobian matrix B is greater than 1, then there will be a 
nonzero vector, and the mechanism has DOF in the direction of this nonzero vector. Therefore, 
the dimension of the null space of the Jacobian matrix B represents the DOF of the nine-plate 
rigid origami mechanism. 

There are 29 constraint equations and 30 coordinate variables in the nine-plate rigid origami 
mechanism. Therefore, the Jacobian matrix of the stated example is a 29×30 matrix. Importing 



the matrix into MATLAB, the null space dimension of the matrix turns out to be 1, which 
means that the spatial DOF of the nine-plate rigid origami mechanism is 1. 

3.2 The Establishment Of The Kinematics Model 

The motion theory of the origami mechanism can be described in the Cartesian coordinate 
system. The Cartesian coordinate system is fixed on each relatively moving object to represent 
the motion of the object. The matrix describes the rotation and translation transformation of the 
adjacent Cartesian coordinate system, and then the multiple transformation matrices are 
multiplied in order to establish the kinematics model of the origami mechanism. 

The Cartesian coordinate system can be established by fixing each coordinate system to the 
triangle corresponding to the number of the nine-plate rigid origami mechanism, as shown in 
Fig. 5 [15]. 

  

a. Number of the rigid plate  b. Cartesian coordinate system 

Figure 5 Nine-plate rigid origami mechanism 

A list of the pose transformation matrix of adjacent triangles and their coordinate 
transformation parameters are given in Table 2. 

Table 2 The pose transformation matrix of adjacent triangles and their coordinate transformation 
parameters 

Pose transformation 
matrix 

Relative to the X axis Relative to the X axis Relative to the X axis 
α a γ b θ c 

1T0 -π/6 0 0 0 θ1 -1.00 

2T1 π/6 0 0 0 θ2 0 

3T2 π/6 0 0 0 θ3 0 

4T0 π/6 0 0 0 θ4 -1.00 

5T4 -π/6 0 0 0 θ5 0 

6T5 -π/6 0 0 0 θ6 0 

7T4 -π/3 0 0 -0.87 θ7 0.50 

8T1 π/3 0 0 0.87 θ8 0.50 



Since the above pose transformation matrix only involves the rotation relative to the X-axis, the 
translation relative to the Y-axis, and the rotation and translation relative to the Z-axis, the 
general formula of the pose transformation matrix is: 
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Then we can get the expression of a point on any triangle in any coordinate system, for example: 
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Since the nine-plate rigid origami mechanism has four folding patterns, different folding 
patterns correspond to different kinematic models. Taking the folding pattern 1 as an example, 
the function of the dihedral angle can be obtained according to the solid geometry relationship 
( Formulas (11) - (15) ), which is brought into the pose transformation matrix to establish the 
kinematic model of the nine-plate rigid origami mechanism. 
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In the above formula, a and b are: 
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The function image of each dihedral angle of the nine-plate rigid origami mechanism with 
respect to θ is shown in Fig. 6, and the value range of the independent variable θ is  0, 3 . 

However, in the actual folding process, when θ decreases from 3  to the inflection points of 

θ7 and θ8 functions shown in the figure, points F and H overlapped. Although, theoretically, it 
can still be folded, if the nine-plate rigid origami mechanism is materialized, it will interfere 
with the folding. 



 

Figure 6 Function image of each dihedral angle of nine-plate rigid origami mechanism with respect to θ 

4 Conclusions 

In this paper, a new type of rigid origami mechanism is proposed, and the nine-plate rigid 
origami mechanism is a form of expression of it, which can represent its motion characteristics. 
For the nine-plate rigid origami mechanism, it is obtained that its DOF is 1 by calculating the 
null space dimension of the constructed Jacobian matrix, and its kinematic model is established, 
and the variation law of the dihedral angle during the folding process is analyzed. When the 
new rigid origami mechanism is folded, it will curl itself, reducing the length in the Y direction 
and increasing the length in the Z direction, which makes the whole more compact. 

This basic rigid origami mechanism has certain application potential in space folding 
machinery. The plate structure of the rigid origami mechanism makes the overall rigidity of the 
tiled state weak, so the anti-deformation ability of the tiled state should be considered in 
practical application. 
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