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Abstracts.The problem of landfill leakage risk has garnered significant attention in the 
field of environmental protection. Accurate prediction of landfill leakage is crucial for 
environmental management and risk assessment. This thesis integrates traditional 
parametric rate-setting methods with deep learning, highlighting the application of 
modern machine learning in predictive modeling. Initially, a landfill leakage model is 
established. Subsequently, the Bayesian optimization algorithm is employed for 
parameter rate-setting to enhance the model's predictive accuracy. Following this, 
leakage prediction is conducted using an LSTM neural network based solely on 
measured data. Comparative analysis reveals that LSTM achieves higher prediction 
accuracy, unveiling the advantages and limitations of both methods. This provides a vital 
reference for landfill leakage risk assessment. The study analyzes the application of 
traditional intelligent optimization algorithm machine learning methods in environmental 
science and introduces new ideas for future research on similar problems. 
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1 Introduction 

With industrialization and urbanization, hazardous waste is on the rise, presenting an urgent 
challenge for effective treatment. Landfills, owing to their reliable technology, straightforward 
operation, and ample treatment capacity, are widely employed for hazardous waste disposal. 
However, landfill leakage stands out as a major environmental risk.[1] The complexity and 
significance of this issue necessitate ongoing research to enhance our understanding and 
prediction of leakage risks and to implement effective control measures. 

Traditional methods for assessing landfill seepage risk primarily rely on predicting design 
parameters and groundwater environmental risks. [2] Nevertheless, these approaches fall short 
in analyzing landfill leakage processes comprehensively. Furthermore, the parameters in these 
models are often either not directly measurable or possess unreasonable values, contributing to 
increased model uncertainty. [3] Consequently, the accuracy and reliability of existing models 
are constrained. 

To tackle these challenges, our study aims to enhance landfill seepage risk assessment on 
multiple fronts. Firstly, we will employ a Bayesian optimization approach to rate the 
parameters of the landfill leakage model, thereby improving the accuracy of parameter values. 
This will facilitate a more accurate simulation of the landfill leakage process and mitigate 
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model uncertainty. Secondly, we will employ a deep learning approach to construct a 
predictive model for landfill leakage risk based on analyzed measured data. This model is 
expected to better capture spatial and temporal variations in leakage risk, consequently 
enhancing the accuracy of leakage predictions. 

In summary, this study promises to bring fresh perspectives and methodologies to the field of 
landfill leakage risk research. It is poised to guide the enhancement of operation and 
management practices, improve overall performance, meet industry demands for advancing 
landfill technology, and stimulate further development in environmental risk management.[4] 

2 Model and Methods 

2.1 Bayesian optimisation 

The Bayesian optimization algorithm is a global optimization method grounded in Bayesian 
statistical theory, designed to explore a high-dimensional parameter space and identify a 
globally optimal solution for an objective function. At its core is the Gaussian process (GP), 
which constructs a mapping of the objective function based on observed data, offering insights 
into both expectation and uncertainty. [5] The sampling strategy is employed to choose the next 
parameter setting, striking a balance between exploration and exploitation to swiftly converge 
toward the global optimal solution, as depicted in Fig. 1.[6] 

 

Fig. 1. Flowchart of Bayesian optimization algorithm 

2.2 LSTM Model 

Long Short-Term Memory (LSTM) is a deep learning neural network particularly well-suited 
for handling time-series data and sequence modeling tasks. The LSTM architecture is 
illustrated in Figure 2. The key elements of the LSTM network comprise a Cell State and three 
gating units: Forget Gate, Input Gate, and Output Gate.[7]The formulate1 to 4 for these 
components are as follows: 



 
 
 
 

𝑓௧ ൌ 𝜎ሺ𝑊௙ ⋅ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏௙                                        (1) 
𝑖௧ ൌ 𝜎ሺ𝑊௜ ⋅ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏௜ሻ                                      (2) 
𝐶ሚ௧ ൌ tanhሺ𝑊஼ ⋅ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏௖ሻ                                 (3) 
𝜊௧ ൌ 𝜎ሺ𝑊𝑜 ⋅ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏௢ሻ                                    (4) 
ℎ௧ ൌ 𝜊௧ ∗ tanhሺ𝐶௧ሻ                                                     (5) 

 

Fig.2 LSTM unit structure diagram 

3 Case Study 

3.1 Landfill leakage modeling 

Utilizing the hydrological model structure of the landfill, we formulated a leachate seepage 
model grounded in the configuration of a single liner layer. This model encompasses three 
sub-models: vertical infiltration,[8] lateral conduction and drainage,[9] and geomembrane 
liner.[10] These sub-models collectively depict the processes of leachate generation, conduction 
and drainage, and seepage. The aim is to establish a foundation for the automatic 
determination of model parameters. 

Building upon this model, we conducted a case study at a hazardous waste landfill site in 
Chengdu City, Sichuan Province, China. The daily measured data for the landfill included the 
cumulative water level value minus the cumulative value of the previous day's leakage. The 
fundamental parameters of the model are detailed in Table 1. 

Table 1 Parameter value table of landfill leakage model 

Submodel Parameter Value Unit Distribution 

Vertical permeability 
Model 

Thickness 7 m Single 
Density 0.6 t/m Single 

Total porosity 0.671 vol/vol Single 
Field capacity 0.292 vol/vol Single 

Withering point 0.077 vol/vol Single 
Sat.hydr.conductivity 0.864 m/day Single 

Lateral drainage layer 

Thickness 0.3 m/day Single 
Total porosity 0.437 vol/vol Single 
Field capacity 0.062 vol/vol Single 

Withering point 0.024 vol/vol Single 
Sat.hydr.conductivity - m/d Normal(5,0.5) 

Geomembrane liner 

Geomembrane thickness 2 mm Single 
Total porosity 0.85 vol/vol Single 
Field capacity 0.01 vol/vol Single 

Withering point 0.005 vol/vol Single 
Sat.hydr.conductivity 1e-10 m/s Single 

Pingole density - #/ha Normal(2,0.5) 
Installation defects - #/ha Normal(5,0.5) 



 
 
 
 

3.2 Coupling of Bayesian optimization algorithms with leakage models 

A Bayesian optimization algorithm is employed in the parameter rate-setting process of the 
leakage model to enhance its accuracy and reliability. Initially, the leakage model is defined 
along with the parameters to be optimized, such as the density of holes in the geomembrane of 
the landfill and the permeability coefficient of the conductive drainage layer. Subsequently, 
the prior distributions of these parameters are specified, commonly assumed to be normal 
distributions. Following this, a Bayesian global optimization algorithm computes the posterior 
distributions of the parameters by comparing the model with observed data to identify the best 
estimates. The algorithm iteratively generates candidate parameter values, executes the 
hydrologic model, updates the parameter posterior distributions, and ultimately furnishes a 
method for optimizing the hydrologic model to better align with the observed data. 

3.3 Analysis of results 

The model fitting accuracy is the error between the model simulation value and the measured 
data, and the evaluation indexes we used are mean square error MSE, root mean square error 
RMSE, mean absolute error MAE, and coefficient of determination R2.[11] 

3.3.1 Parameter rate determination and model prediction results 

Through the parameter rate determination, we obtained the best set of parameter values for the 
leakage model as follows: the density of pinhole holes is 2/ha, the installation holes is 5/ha, 
and the permeability coefficient of the conductive drainage layer is 5.0112m/day; The division 
between the rate period and the validation period is 8:2. After the rate determination, we 
verified the performance of the model by comparing the fit between the model simulation 
values and the measured values, and the fitting accuracies of the simulation cases for the rate 
determination period and the validation period are shown in Table 2, and the fitting effects are 
shown in Fig. 3. 

Combined with Fig. 3 and Table 2, it can be seen that the R2 in the rate period is close to 0.95, 
the MSE and RMSE are very close to zero, and the MAE is very small, which indicates that 
the model performs very well in the rate period and fits the actual data well. The R2 for the 
validation period is 0.89 with a larger MSE and RMSE and a larger MAE. This may indicate 
that the model performs relatively poorly in the validation period and does not generalize well 
to new data. 

Table 2. Model fitting accuracy values by parameterization 

 R2 MSE RMSE MAE 

Parameter rate periodic 0.95 4.12e-10 2.02e-05 1.37e-10 

validation period 0.89 2.25e-8 1.5e-4 5.17e-8 



 
 
 
 

 

Fig.3. Plot of the effect of fitting the predicted values to the measured values 

3.3.2 LSTM neural network prediction results 

In the LSTM neural network model structure, it consists of an input layer, three LSTM hidden 
layers (with 45, 35 and 25 neurons respectively) and an output layer for generating predictions. 
The model has a batch size of 64 and was trained for 100 rounds with a learning rate of 0.001 
and the model parameters were updated using the Adam optimizer. In addition, the data 
preprocessing phase consisted of data loading, data normalization to scale the data range to [0, 
1], and splitting the dataset into training and validation sets in an 8:2 ratio. The accuracy of the 
model in the training and testing periods is shown in Table 3 and the fit is shown in Figure 4. 

Combined with Figure 4 and Table 3, on the training set, the model shows a very high fit with 
R2 close to 1, MSE and RMSE very close to zero, and a very small MAE, which indicates that 
the model performs well on the training data. The model also performs well on the test set. 
These results show that the LSTM model is able to accurately predict future leakage data with 
credible and accurate predictions. 

Table 3 Model fitting accuracy values in the LSTM 

 R2 MSE RMSE MAE 

Training period 0.99 5.65e-20 2.37-10 1.26e-10 

Testing period 0.97 1.17e-19 3.42e-10 2.17e-10 



 
 
 
 

 

Fig.4.Effect of LSTM model fitting accuracy 

3.3.3 Comparison and Analysis 

The parametric rate-determined model performs well on the training data, but the performance 
drops during the validation period, which may be due to overfitting. This suggests that more 
care needs to be taken in parameter selection and model evaluation to avoid model 
performance degradation on new data.The LSTM model performed well in predicting the 
measured leakage data with its strong capability and high generalization performance. This 
suggests that LSTM is a powerful tool suitable for time series data prediction and can be used 
to improve the accuracy of leakage prediction.For comparative analysis of the above results, 
see Table 4. 

Table 4 Comparison of prediction results between traditional Bayes and LSTM 

Methods R2 MSE RMSE MAE 
Bayesian optimization 0.89 2.25e-8 1.5e-4 5.17e-8 

LSTM model 0.97 1.17e-19 3.42e-10 2.17e-10 

In conclusion, the parametric rate-determined model performs well in the training period but 
may not be robust enough in the validation period, whereas the LSTM model shows good 
generalization ability and is suitable for reliable prediction of real leakage data. It is necessary 
to choose an appropriate modeling method based on specific needs and data characteristics. 

4 Conclusion 

The traditional global optimization algorithm Bayesian optimization algorithm is used to 
determine the parameters of the landfill leachate leakage model, and the optimal set of 
parameters can be obtained, which shows that the algorithm is feasible. 

Compared with the calculation of the simulation value of the leakage amount by using the idea 
of optimizing the leakage model, the generalization of the numerical model of the leachate 



 
 
 
 

leakage process is not considered. According to the measured values, the prediction accuracy 
of the leakage amount by using LSTM is higher, and the effect of risk assessment is better. 
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