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Abstract: Accurate uncertainty evaluation of soil moisture (SM) products is crucial for 
maximizing their utility in research and applications in hydro-meteorology and 
climatology. At present, the uncertainty analysis of SM is mostly carried out from the 
perspective of temporal domain based on time series. Whereas, the influence of spatial 
heterogeneity when representing spatial errors is usually ignored. To solve this problem, 
a novel spatial-temporal three-corned hat (ST-TCH) method is proposed for SM 
uncertainty evaluation. Firstly, a moving window is used to construct the spatial-
temporal data cube of SM within the neighborhood. Secondly, the heterogeneous pixels 
are eliminated based on Spearman correlation coefficient to avoid the interference of 
heterogeneous pixels. Finally, the 3D spatial-temporal data is vectorized into a sequence 
which is fed into TCH to produce the relative uncertainty (RU). Experiments are 
conducted on four SM products over the Qinghai-Tibet plateau (QTP). To quantitatively 
verify the performance, four products are merged based on the estimated RU, and the 
merged products are further validated with the in-situ data. Results demonstrate that RU 
obtained by ST-TCH is more complete in spatial distribution, and the merged product 
produced by ST-TCH is more close to the in-situ data with R = 0.769 among all products. 

Index Terms—Soil moisture (SM); three-corned hat (TCH); spatial-temporal fusion, 
Qinghai-Tibet Plateau (QTP). 

1. Introduction 

SOIL moisture is an crucial climate variable in hydro-meteorological and climate[1]. 
Although SM products from multi-source are now widely available, many of them are 
associated with varying degrees of uncertainty[2]. Quantifying the uncertainty of various soil 
moisture products is a prerequisite for their utilization. At present, the uncertainty 
quantification methods of soil moisture products mainly include direct evaluation and indirect 
evaluation[3].  

Direct evaluation is to compare the soil moisture products with the in-situ data to find out the 
statistical error. Statistical variables commonly used in direct evaluation mainly include 
Pearson correlation coefficient (R), root mean square error (RMSE), deviation and unbiased 
root mean square error (unbias)[4]. However, the direct evaluation based on in-situ data is 
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limited to the discrete network of measured stations and can not be extended to areas without 
high-density measured stations. 

Indirect evaluation methods mainly include Triple Collocation (TC)[5-8], Extended Triple 
Collocation (ETC) [9], the three-cornered hat (TCH)[3,10,11], Quadruple Collocation 
(QC)[12], etc. Wang Shuguo et al. used TC method to analyze the uncertainty of AMSR-2, 
SMAP and SMOS, and found that the random errors among different remote sensing products 
were significantly inconsistent in spatial distribution[13]. ETC is a new statistical tool 
developed by introducing correlation coefficient on the basis of TC method. Yuan et al. used 
ETC method to solve the scale mismatch problem between SMAP products and ground 
measured data [14]. TCH was originally developed to evaluate the random error of atomic 
clocks, and now it is widely used to quantify the uncertainty of multiple data sets (generally 
more than three). For instance, Liu et al. [3] investigated the relative uncertainty of 11 soil 
moisture products in the Qinghai-Tibet Plateau using the TCH method. The results indicated 
that SMOS-IC products were notably affected by radio frequency interference, JAXA 
products exhibited higher air noise, and LPRM products demonstrated greater relative 
uncertainty in the southeast of the study area. To detect temporal non-stationary errors during 
uncertainty analysis, Zhou et al. (2021) proposed a triple collocation-based 2D (TC-2D) soil 
moisture merging methodology [15].The method combines the error variance in the temporal 
and spatial dimensions and achieves the merging of multiple products in a least-square 
framework. Although this method produces a superior merged SM product, there are some 
shortcomings: 1) the method operates under the assumption that all SM values share the same 
spatial error variance at any given time, disregarding potential variations in error variances 
across different regions.; 2) the method assesses spatial and temporal error variances 
independently, later averaging them with weighted factors. However, this post-combination 
approach could introduce additional uncertainty.  

To address the potential issues mentioned above, this article proposes a spatial-temporal three-
cornered hat (ST-TCH) method. This method analyzes the spatial-temporal uncertainty of 
homogeneous pixels in the neighborhood. We apply this method to four soil moisture (SM) 
products: AMSR2, SMAP, FY3B, and ERA-Interim. We also implement the original TCH for 
comparisons. Moreover, to demonstrate the enhanced accuracy achieved by our method in 
producing merged products, we merged the four products using three merging schemes (equal-
weight, TCH-based, ST-TCH-based). Both the parent products and the merged products were 
validated using in-situ data collected over the Qinghai-Tibet Plateau. 

2. Data sets 

2.1 SMAP passive data 

SMAP is a satellite launched by the National Aeronautics and Space Administration (NASA) 
in January 2015 for monitoring global soil moisture and landscape freeze-thaw conditions. 
The satellite carries both L-band active microwave radar and passive microwave radiometer, 
but the L-band active microwave radar ceased operation on July 7, 2015. On March 31 2015, 
SMAP provided L-band (1.41GHz) passive microwave remote sensing data for the first time. 
It’ s satellite orbit is synchronized with the sun, and the satellite's descending overpass is 6:00 
LST and ascending overpass is 18:00 LST.  The descending SMAP Level 3 daily passive data 



 
 

(9 km) is collected from January 2015 to December 2016[16]. Data source: 
https://nsidc.org/data/spl3smap/versions/2. 

2.2 AMSR2 passive data 

AMSR2 was launched by Japan Aerospace Exploration Agency(JAXA) in 2012,which is 
onboard the Global Change Observation Mission–Water 1 (GCOM-W1) mission. It provides 
near real-time passive microwave observations at global scale with equatorial overpass times 
of 1:30 a.m./p.m.[17].The AMSR2 SM products are retrieved using C- and X-band brightness 
temperature (Tb)[18]. The SM used in this study was LPRM-AMSR2 Level-3 descending 
V001 Data products at 10 km spatial resolution which was retrieved by Land Parameter 
Retrieval Model(LPRM) Algorithm. The AMSR2 data were downloaded from 
https://search.earthdata.nasa.gov/. 

2.3 FY3B passive data 

FY-3B was successfully launched by the China National Space Administration (CNSA)on 5 
November 2010.It provides the passive microwave radiometer observations called Microwave 
Radiation Imager (MWRI)[19] with equatorial overpass times of 1:40 a.m./p.m. The SM used 
in this study was 25km FY-3B level-1 with the EASE-GRID projection, which was retrieved 
by the inversion model based on the brightness temperature data of relevant channels. FY-3B 
data can be obtained from http://satell ite.nsmc.org.cn/ portalsite/default. aspx. 

2.4 Reanalysis data  

ERA-Interim is the global atmospheric reanalysis produced by the European Centre for 
Medium-Range Weather Forecasts (ECMWF)[20]. The SM used in this study was the volume 
of water in soil layer 1 (0-7cm) with the spatial resolution of 0.125°. ERA-Interim can be 
obtained from http://apps.ecmw f.int/datasets/.  

2.5 In-situ data  

In this paper, four ground monitoring networks of SM in Qinghai-Tibet Plateau are selected, 
namely Ngari, Naqu, Maqu and Pali. There are two main sources of network data of the four 
stations: 1) hourly observation data set of soil moisture and temperature in Qinghai-Tibet 
Plateau (2008-2016) (https://data.tpdc.ac.cn/zh-hans/); 2) CTP-SMTMN in International soil 
moisture observation Network (ISMN) (https://ismn.geo.tuwien.ac.at/en/). In this study, the 
point data (cm³/cm³) with a nominal depth of 5cm and no anomalies at 6: 00 am were selected. 

3. Proposed method 

For soil moisture data in the Qinghai-Tibet Plateau, spatial uncertainty of pixels can vary even 
on the same day across different regions. The ST-TCH method addresses this spatial 
heterogeneity by employing a spatial moving window. In the ST-TCH method, a moving 
window is utilized to construct the temporal and spatial sequence of soil moisture within the 
neighborhood. Similarity between the pixels in the neighborhood and the central pixel is 
calculated based on Spearman correlation coefficient. A threshold is set to filter out 
heterogeneous pixels, minimizing their interference within the window. Subsequently, the 



 
 

homogeneous spatial-temporal sequence of soil moisture is vectorized in the spatial dimension. 
Finally, the TCH method is employed to analyze the uncertainty of the vectorized sequences 
within the neighborhood. The detailed process of this method is as follows: 

(1) Construct the spatio-temporal sequence of soil moisture within the neighborhood by 
utilizing a moving window of size w×w to extract the time series of soil moisture from both 
the central pixel and its neighboring pixels. Given the potential spatial heterogeneity, 
variations between neighboring pixels and the central pixel may exist. To mitigate the 
interference of heterogeneous pixels within the window, it's essential to incorporate a 
similarity assessment process. 

(2) Derive a homogeneous spatial-temporal sequence of soil moisture within the neighborhood. 
The Spearman correlation coefficient is utilized to assess the degree of similarity. This 
coefficient employs a monotonic function to evaluate the correlation between two statistical 
variables. The calculation formula is as follows: 
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where di represents the difference of the rank values of the ith data pair. We utilize the 
Spearman correlation coefficient to calculate the similarity of time series between neighboring 
pixels and the central pixel. Subsequently, a threshold ( * ) is set to eliminate neighboring 

pixels below * , identifying them as heterogeneous pixels. 

(3) Steps (1) and (2) are performed individually on different products. Subsequently, the 
homogeneous spatio-temporal series of soil moisture is vectorized in the spatial dimension to 
yield the spatio-temporal fusion series of various products. 

(4) TCH is used to analyze the uncertainty of series of different products acquired form step 
(3), and the relative uncertainty (RU) of each product is obtained. 

 

Fig. 1. The flowchart of spatial-temporal three-cornered hat. 

Fig 1 illustrates the principle of the ST-TCH method proposed in this paper, while Algorithm 
1 shows the pseudo code of the algorithm. The method proposed in this paper holds the 



 
 

following potential advantages: 1) Reflecting the changing spatial uncertainty of soil moisture 
on each grid as the window moves, resulting in a more realistic representation; 2) Achieving a 
synchronous fusion of temporal and spatial dimensions, thereby avoiding the introduction of 
additional errors from separate analysis and weighted averages; 3) Taking into account the 
homogeneous pixel set within the neighborhood window, thus increasing the sample size of 
soil moisture data for uncertainty analysis. 

To verify the effectiveness of the proposed ST-TCH method, four products (SMAP, AMSR2, 
FY-3B, and ERA-Interim) were utilized to get their relative uncertainties. The resulting 
relative uncertainties were then employed as weights in the merging process. The calculation 
for these weights was as follows: 
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here RUn
-1 represents epresents the inverse of RUn, andλn represents merged weights of the 

different products. With these values, the merged product can be obtained 
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The four SM products are merged based on the three different SM merging schemes: 1) Equal-
weight Merging: This simple reference scheme assigns equal weights (i.e., 1/4) to each SM 
product; 2) TCH Merging: In this scheme, the Relative Uncertainties (RU) obtained by TCH 
were utilized as weights following Eq. (2) and Eq. (3); 3) ST-TCH merging, the same as 
scheme 2), but the RU was obtained through the ST-TCH method. Furthermore, the merged 
products was evaluated through direct comparison with independent in-situ SM observations, 
using the Pearson correlation coefficient (R) values. 

Algorithm 1:  Spatial-temporal three-corned hat (ST-TCH). 

 Input: N SM products {SM}n (n=1, 2, ..., N), The size of each product is McrR  ,r is the size 

of row,c is the size of column, M is the length of time series，discrimination threshold of 
heterogeneous pixels in neighborhood *  

 Output: Relative uncertainty of space-time integration for N products nSpa-temp  

 Initialization: Mirror fill each image  with window size w×w, the size of the filled image 
becomes (r+2×w,c+2×w) 
 Main loop: 
 For i from (w+1) to (w+r)  
    For j from (w+1) to (w+c)        
      Tn,p=SMn(i±p, j±p,:), p = 1, 2, ..., (w-1)/2      
      Tn,center=SMn(i,j,:)        
      Tn,zeros = zeros(1,1,M)  
       Calculate  according to（1） 
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       T=[T1, T1, ..., TN,] 

        TCH(T)RUST n  

       STRU),( nn jiSpa-temp   

    End for 
 End for 
 Return {Spa-tempn} 

4. Experimenal results 

4.1 Parameter Sensitive Analysis and Ablation Study 

To determine the optimal window size (w) and the threshold (ρ*), we set w to 3, 5, and 7, and 
ρ* to 0.5, 0.6, 0.7, 0.8, and 0.9. Using these parameter combinations, spatial-temporal 
sequence data were obtained from the four products with a data size of (M×w2)×4. This 
sequence data was then input into TCH to calculate the relative uncertainties of the four 
products. R values for different combinations of parameters were obtained by regression 
analysis with the in-situ data.  

As shown in Fig. 2, under the same threshold ρ*, R becomes lower as w increases and is 
highest when w=3. Under the same window size w, R generally decrease as ρ* increases, 
being highest when ρ*=0.9. Consequently, the optimal parameters identified for the 
subsequent experiments were w=3 and ρ*=0.9. The results denote that the method proposed in 
this paper works best with smaller window size (w)  and higher threshold (ρ*). 

    

(a) R                                                             (b) RMSE 

Fig. 2 The impact of window size and threshold on ST-TCH (Optimal: w=3, ρ*=0.9). 



 
 

4.2 Comparison of relative uncertainties 

To visually assess the spatial impact of different uncertainty methods, we compared and 
analyzed the relative uncertainties generated by TCH and ST-TCH in our experiment. As 
depicted in Figure 3, ST-TCH and TCH exhibit high similarity in most areas, indicating that 
temporal uncertainty plays a predominant role. Relative to TCH, ST-TCH provides a more 
comprehensive spatial distribution of RU. When comparing the results across different 
products, it becomes apparent that SMAP and ERA-Interim exhibit low relative uncertainties, 
whereas AMSR2 displays variable relative uncertainties across space. 
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Fig. 3 Spatial map of relative uncertainties for four SM products 

4.3 Evaluation results of parent and merging SM products 

Table 1. The results of direct evaluation using in-situ data 

Products R RMSE bias ubRMSE 
SMAP 0.7519 0.0593 -0.0282 0.0521 

AMSR2 0.7156 0.1084 -0.0933 0.0552 
FY3B 0.2323 0.1264 -0.0873 0.0915 

ERA-Interim 0.4619 0.1417 -0.1252 0.0665 



 
 

EM 0.7641 0.0976 -0.0843 0.0493 
TM 0.7671 0.1020 -0.0890 0.0499 

STM (Ours) 0.7688 0.1009 -0.0877 0.0499 

As shown in Fig. 4, parent and merged soil moisture products are directed evaluated using in-
situ data, and the accuracy of different soil moisture products is shown in Table 1. The R value 
of FY3B, among the original products, is the lowest, and it has a relatively large RMSE 
compared to the in-situ data. The R value of the fused soil moisture product is higher than that 
of the parent products, which shows that the correlation between the product and the measured 
data is improved after fusion. Compared with other fusion methods, the fusion method based 
on ST-TCH (the method in this paper) has achieved higher R value. This may indicates that 
merged products through comprehensive consideration of both temporal and spatial 
uncertainty are expected to further reduce the uncertainty of the products. 

   

(a) SMAP (b) AMSR2 (c) FY-3B 

   

(d) ERA-Interim (e) Equal merged (f) TCH merged 

 

  

(g) ST-TCH merged (Ours)   

Fig. 4 Scatterplots of different products compared with in-situ data. 



 
 

5. Conclusion 

In this study, we introduced a spatial-temporal three-cornered hat method for analyzing the 
uncertainty of soil moisture products. Our sensitivity analysis indicates that this method is 
more effective with a smaller window size and a larger discriminant threshold. When 
comparing the spatial distribution of Relative Uncertainties (RU) and merged products 
obtained by ST-TCH (the proposed method) with the original TCH method, the results 
demonstrate that the relative uncertainties obtained by ST-TCH have a more compre- hensive 
spatial distribution. Furthermore, the merged products based on ST-TCH achieve the highest 
R-values among all products. The ST-TCH method shows notable improvements owing to the 
potential advantages mentioned in Section III. As a result, ST-TCH effectively addresses the 
limitation of TCH in neglecting spatial heterogeneity. This probably makes it a valuable tool 
for uncertainty analysis of soil moisture products and multi-product merging research. 
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