
ICCSET 2018, October 25-26, Kudus, Indonesia

Copyright © 2018 EAI

DOI 10.4108/eai.24-10-2018.2280526

System Testing using Black Box Testing Equivalence

Partitioning (Case Study at Garbage Bank

Management Information System on Karya Sentosa)

Yudie Irawan1, Syafiul Muzid2, Nanik Susanti3, R. Rhoedy Setiawan4

{yudie.irawan@umk.ac.id1, syafiul.muzid@umk.ac.id2, nanik.susanti@umk.ac.id3}

Information System Department, Engineering Faculty, Universitas Muria Kudus, Indonesia.1234

Abstract. The system testing is one of the stages in system development. The system

testing becomes very important because it ensures that users will not find errors in the

system used. Black Box testing is one of the testing methods that focus on the functional

requirements of software. The Black Box method is able to uncover error classes in the

White Box test. Black Box Testing Method consists of several techniques, such as

Equivalence Partitioning, Boundary Value Analysis, Comparison Testing, Sample Testing,

Robustness Testing. In this study, the Equivalence Partitioning testing technique was

chosen to test the Management Information System at Karya Sentosa Garbage Bank by

observing the use case system as the basis for making the test case. The results of this study

will show that there are several system validations that have not been fulfilled, even though

they have been tested from structural testing.

Keywords: testing, black box, test case, equivalence partitioning.

1 Introduction

To determine the quality of software it depends upon how the software system is tested.

Organizations and testers suggest giving 40-50% of their resources (time and budget) on testing.

To achieve high level of reliability, maintainability, availability, security, survivability,

portability, capability, efficiency and integrity the system must need to be properly tested.

Software testing provides absolute assurance that the system is functioning properly. Critical

and modern software system must be correct and provide functionality as specified. [1]

In general, there are two methods known in software testing, first is to test how the

application works, this test is directed to show the level of correctness of the method used, how

it works according to internal procedures and specifications. This first method is called White

Box testing. The second way is to test the application functionality. This test is directed to show

that the product can fulfill the function properly. This method is called Black Box testing. [2]

Along with the development of testing methods, the third method appears between the white

box and black box testing, it called Grey Box Testing. This is a testing technique where there is

little knowledge about the application's internal work. This technique is an independent

language and platform. The grey box combines the benefits of white boxes and black box

testing. Grey box designs test cases using algorithms and internal data structures less than white

box testing but more than black box testing. [1][3]

1

Black Box testing has the advantage of not requiring source code, so that it does not require

instrumentation and source code availability. Conversely, someone might hypothesize that

accessing source code using white box testing can increase source code coverage and increase

initial error statements. The white-box technique has also been claimed can be expensive and

that the use of coverage information from previous versions might degrade prioritization

effectiveness over multiple releases. White-box test case prioritization techniques may be

inapplicable where source code is unavailable, or instrumentation is impossible, so a tester may

have no choice but to use black-box strategies. It is therefore useful to know how the different

black-box techniques perform against each other, motivating our second.[4]

Therefore Black Box Testing is not an alternative test, but is an important part of testing a

system that is not covered by White Box Testing. In this study testing will be carried out on 8

(eight) modules that have functional including member data collection, member types, types of

garbage, savings amount, types of goods, savings transactions, goods transactions and reports.

2 Research Method

2.1 Testing Software

Software testing is an essential part of the software development process. The importance of

software testing can simply not be overestimated in the business practice, if the quality of the

system production is to be ensured. The importance of software testing must not be too excessive

in business practices, if the quality of the production system must be ensured. Effectiveness and

economics are the two most important aspects of choosing a testing methodology. While

effectiveness means that the designed test must be able to reveal the maximum number of errors

in the software, economics implies that the test itself should consume as little time and resource

as possible [5]. There are a number of rules that serve as testing targets as follows:

1. Testing is the process of executing a program with the intention to finding errors

2. A good test case is a test case that has a high probability of finding errors that have

never been found before.

3. Successful testing is testing that reveals all mistakes that have never been found before.

[6]

In software testing also known the principles of testing that must be understood by each

engineer before testing the system are explained as follows:

1. All tests must be able to test all requirements set by the customer.

2. The test must be planned long before it begins, planning testing is made simultaneously

at the stage of system development planning.

3. The Pareto principle applies to all software testing.

4. Testing starts from the small one and develops into a big test.

5. In-depth testing is not possible because of the large number of program permutation

pathways.

6. Testing is carried out by a third party to get a high value of effectiveness.

2

Software testing is an element of a broad topic that is often interpreted as Verification and

Validation (V&V).

1. Verification: refers to a collection of activities that ensure that the software has

implemented a specific function.

2. Validation: refers to a different collection from activities that ensure that the software

that has been built can be traced to customer needs. [7]

2.2 Black Box Testing

Black Box Testing, also called behavioural testing, focuses on the functional requirements of

the software. That is, black box testing enables the software engineer to derive sets of input

condition that will fully exercise all functional requirements for a program. Black-box testing

attempts to find errors in the following categories:

1. Incorrect or missing function.

2. Interface errors.

3. Errors in data structures or external database access.

4. Behaviour or performance errors.

5. Initialization and termination errors. [6]

Most known black box software testing techniques are the following: [1]

1. Boundary value analysis

There is a possibility that the system may be fail on boundary. Because there are

chances of error that the programmer done at the boundaries of equivalence classes.

Therefore this technique focuses on edges or values that are chosen at extreme

boundaries.

2. Equivalence partitioning

This technique helps us to reduce the number of test cases. It basically works on

dividing the program input domain based on input values into equivalence classes. Test

cases are generated from these equivalence classes which are derived from the input

domain.

3. Orthogonal Array Testing

Orthogonal array testing is a statistical way of test. It is used where the input domain

is very small and helps to reduce the number of test combinations. Variable is

represented by columns and test case is represented by rows.

4. Fuzzing

Fuzzing is a black box testing technique that is developed by Barton Miller in 1989 at

University of Wisconsin. This technique is based on feeding random input to

application. Fuzz testing technique can be used to find implementation bugs in

automated or semi-automated session fuzz test use malformed/semi-malformed data

injection.

5. Graph based testing

It is a black box testing technique which starts by creating a graph. The graph is created

from input modules. An identifier is given to input modules. Through graph a

connection is established between effect and its causes.

6. All Pair Testing

A sort of black box technique in which the purpose of test cases is to execute all discrete

combinations which are possible for input parameter of each pair to cover all the pairs

we need to use a number of test cases.

3

7. State Transition Diagrams (or) State Graphs

A brilliant tool that is used to capture several types of system requirements and to

documented internal system design. This tool is also used to test state machine and to

navigate GUI (graphical user interface).

2.3 Equivalence partitioning

The analysis of Equivalence-Classes Partitioning examines the input conditions contained

explicitly or implicitly in the Software Requirements Specification (SRS). These input

conditions are partitioned into a number of valid and invalid equivalence classes. Test cases are

then generated for each class. The assumption here is that the test case designed for one class is

representative for all other input values within the same class. The charm and the reason of the

wide use of this methodology lie in the fact that by deploying a small number of test cases, a

large range of input conditions can be effectively covered. [5][8]. To determine valid and invalid

equivalence classes there are guidelines that must be considered as follows:

1. If an input condition specifies a range, one valid and two invalid equivalence classes

are defined

2. If an input condition requires a specific value, one valid and two invalid equivalence

classes are defined

3. If an input condition specifies a member of a set, one valid and one invalid equivalence

class are defined

4. If an input condition is Boolean, one valid and one invalid class are defined.

By applying these guidelines for the derivation of equivalence classes, test cases for each

input domain data object can be developed and executed. Test cases are selected so that the

largest numbers of attributes of an equivalence class are exercised at one. [9]

3 Results and Analysis

The initial stage of Equivalence partitioning is done by determining the input domain in

each application. The researcher analyzed the existing input domain by referring to the existing

equivalence partitioning. Examples on the garbage savings data input form have a saving code

field, member code, savings transaction date, savings transaction type, savings transaction

weight and savings transaction nominal. The test case does not cover fields that are

automatically filled in, or have been presented with definite choices. In this case, for example

the Savings Code, Member Code, Type of Savings Transaction and Savings Transaction

Nominal. The system will automatically generate the code in the Savings Code field, the

Member Code field and the Saving Transaction Type containing the definite choices in the form

of a dropdown, while the Savings Transaction Nominal is the result of the calculation of the

specified weight and standard price. So that the test case will be created for the Savings

Transaction, Transaction Date and Savings Transaction Date field. Partitions for valid and

invalid values are specified as follows:

4

1. Savings Transaction Date

Fig. 1. Equivalence Partition for Savings Transaction Date.

In Figure 1, the date of the savings transaction has a valid provision for 30 days before

the date of filling, charging less than that provision is considered invalid. And also for

charging on the date after the charging date, it is also considered invalid.

2. Savings Transaction Weight

Fig. 2. Equivalence Partition for Savings Transaction Weight.

Fig. 3. Equivalence Partition for Savings Transaction Weight.

Savings transaction weight has two equivalence categories as presented in Figure 2 and

Figure 3. Equivalence of the first partition is valid if it is charging using a numeric data

type, while charging is invalid if it is not filled (null) or filled with a string data type.

In the equivalence of the second partition, the field will be valid if it is filled with a

numeric that is more than 0 (zero), and invalid if it is filled with a value below 0 (zero).

After determining the equivalence partition class, the next step the researcher makes a

test case.

For designing the test cases, it must be considered which input data leads to which

result of the decisions or partial conditions and which parts of the program will be

executed after the decision. The expected output and expected behaviour of the test

object should also be defined in advance in order to detect whether the program

behaves correctly. [10]

Tanggal hari ini Tanggal setelah hari ini Tanggal pada bulan lalu

invalid invalid valid

0

>0<=0

invalid valid

numeric string null

invalid valid invalid

5

Table 1. Test case dan Test Result for Input Savings Data.

Test

Case ID Scenario/condition

Savings

transaction

date

Savings

transactio

n weight

Expec

ted

Result

Actual

Result

Conclusi

on

TC 1 Add Record Success 20 Juli 2018 1 T T Success

TC 2
All Record is Empty

(Null)
Empty Empty F F Success

TC 3
Transaction Date is less

than 30 days

20 Juni

2018
1 F T

Failed

TC 4

Transaction Date

exceeds the date when

input

23 Juli 2018 1 F F Success

TC 5

Savings Transaction

Weight is filled with

strings

20 Juli 2018 ABCDE F F Success

TC 6
Savings Transaction

Weight is less than 0
20 Juli 2018 -5 F F Success

By determining the equivalence partition, the testers have the opportunity to do testing by

saving more time, because they do not have to test all invalid conditions, but just take one value

from each invalid class. Another advantage is that in the case of charging others, some fields

have the same character as the equivalence partition class that has been determined from the

previous field. So this saves time because it doesn't need to create a similar class equivalence

partition again. An easy example is for each field that has a numeric type, it will be invalid if it

is filled with a string, or vice versa, the string should be invalid if it is filled with numeric. So

that the equivalence class of the case can be reused in the same case.

From the example of one case test in this case it can be concluded that for one field to be

tested it requires a minimum of 1 (one) equivalence partition with 3 (three) valid and invalid

class partitions. Although from the preparation guide equivalence partition allows at least 2

(two) class partitions only, that is in the Boolean data types, in practice Boolean data is usually

inputted with choice forms such as radio buttons and dropdowns/lists/menus, so it is less likely

to fill out those options. Because this can be ignored, the prediction of the total number of tests

to be carried out is 3 test data for one field. For example, if in one form there are 2 (two) fields

tested, then the minimum number of test data needed is 6 (six) test data. Of the 35 (thirty-five)

fields tested we found a total of 7 (seven) cases consisting of errors 2 (two) filling in dates and

5 (five) string filling errors with numeric.

In a previous study of the method of Boundary Value Analysis, it was explained that the

Limit Value Analysis method requires more test cases to be tested. [11] Because in the

Boundary Value Analysis method, if an input condition specifies a range of values between m

and n, test cases should be designed with values m and n as well as values just above and just

below m and n.. The number of test cases generated is higher as compared to other functional

methods. [8]

6

4 Conclusions

The results of testing using Black Box Testing Equivalence Partition, it can be concluded

as follows:

1. Testing with the Black Box Equivalence method Partitioning begins with determining

the equivalence partition class based on 4 equivalence preparation guidelines which are

then used to compile a test case.

2. In the Black Box Equivalence Partitioning test, it is able to estimate the number of tests

carried out as a whole based on the number of fields, the minimum number of

equivalence partitions and partition classes available.

3. Equivalence Partitioning can reduce the number of total test cases that must be developed

because of the error classes that represent each case of possible errors.

4. The test results in this study indicate that there are still errors in the system that must be

corrected immediately, especially in the validation process, so that the system can be

operated properly according to its function.

References

[1] S. Roohullah Jan, S. Tauhid Ullah Shah, Z. Ullah Johar, Y. Shah, and F. Khan, “An Innovative

Approach to Investigate Various Software Testing Techniques and Strategies,” Int. J. Sci. Res. Sci.

Eng. Technol., vol. 2, no. 2, pp. 682–689, 2016.

[2] S. Nidhra, “Black Box and White Box Testing Techniques - A Literature Review,” Int. J. Embed.

Syst. Appl., vol. 2, no. 2, pp. 29–50, 2012.

[3] M. E. Khan and F. Khan, “A Comparative Study of White Box, Black Box and Grey Box Testing

Techniques,” Int. J. Adv. Comput. Sci. Appl., vol. 3, no. 6, pp. 12–15, 2012.

[4] M. Shi, “Software Functional Testing from the Perspective of Business Practice,” vol. 3, no. 4, pp.

49–52, 2010.

[5] C. Henard, M. Papadakis, M. Harman, and Y. Le Traon, “Comparing White-box and Black-box

Test Prioritization,” 2016.

[6] R. S. Pressman and B. Maxim, Software Engineering, a Practitioner’s Approach, 8th ed. New York:

McGraw-Hill, 2014.

[7] M. S. Mustaqbal, R. F. Firdaus, and H. Rahmadi, “(Studi Kasus : Aplikasi Prediksi Kelulusan

SNMPTN),” J. Ilm. Teknol. Inf. Terap., vol. I, no. 3, pp. 31–36, 2015.

[8] V. Akshatha and V. Illango, “A Comparative Analysis On Equivalence class partitioning And

Boundary value analysis,” Int. J. Recent Trends Eng. Res., vol. 4, no. 3, pp. 542–554, 2018.

[9] V. Arnicane, “Complexity of Equivalence Class and Boundary Value Testing Methods,” Sci. Pap.

Univ. Latv., vol. 751, no. May, pp. 80–101, 2009.

[10] A. Spillner, T. Linz, and H. Schaefer, Software Testing Foundation, 4th ed. Santa Barbara:

Rockynook, 2014.

[11] D. Andriansyah, “Pengujian Kotak Hitam Boundary Value Analysis Pada Sistem Informasi

Manajemen Konseling Tugas Akhir,” vol. 7, no. 1, pp. 20–25, 2018.

7

