
A Human-Centred Tangible approach to learning
Computational Thinking
Tommaso Turchi1,∗, Alessio Malizia1

1Human Centred Design Institute, Brunel University London, UB8 3PH, United Kingdom

Abstract

Computational Thinking has recently become a focus of many teaching and research domains; it encapsulates
those thinking skills integral to solving complex problems using a computer, thus being widely applicable in
our society. It is influencing research across many disciplines and also coming into the limelight of education,
mostly thanks to public initiatives such as the Hour of Code. In this paper we present our arguments for
promoting Computational Thinking in education through the Human-centred paradigm of Tangible End-User
Development, namely by exploiting objects whose interactions with the physical environment are mapped to
digital actions performed on the system.

Received on 18 July 2016; accepted on 20 July 2016; published on 23 August 2016
Keywords: Computational Thinking, Education, Tangible User Interface, End-User Development

Copyright © 2016 Tommaso Turchi and Alessio Malizia, licensed to EAI. This is an open access article distributed
under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/),
which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.23-8-2016.151641

1. Introduction
Given how our entire society is increasingly surrounded
by technology, programming is becoming an essential
skill to master for the general public: from the amount
of software involved in managing a flight, to the
simple task of turning on the engine of your car, it
is unmistakably clear how much we rely on software
in every part of our lives. That being the case, people
will always strive to play a more active role in their
life, resulting in a clear overall heightened interest
in coding: take for instance the Hour of Code1, a
successful global initiative organised by Code.org (a
non-profit founded in 2013 and supported, among
others, by Mark Zuckerberg and Bill Gates) involving
millions of students of different ages starting with 4-
year old, aiming at introducing coding skills to a wide
and heterogeneous audience.
Programming is no longer simply a job skill, but

becoming a literacy, enabling people to acquire a
new way of thinking and seeing the world, fostering
abilities like problem solving, abstraction, and pattern
recognition to name but a few: in a word, the so-
called Computational Thinking (CT) skills. They allow

∗Corresponding author. Email: tommaso.turchi@brunel.ac.uk
1https://hourofcode.com

to break a complex problem down into small chunks
and express them to a non-human entity such as a
computer [1].
In the following, we highlight the current and future

role of CT in Education, and present our arguments
for fostering its development through pairing End-
User Development (EUD) with Tangible User Interfaces
(TUIs).

2. Computational Thinking in Education

In her seminal work [2], Wing introduced
Computational Thinking (CT) as a set of thinking skills,
habits, and approaches integral to solving complex
problems using a computer, thus widely applicable
in today’s information society. It encompasses far
more than just programming, representing a range of
mental tools reflecting the fundamental principles and
concepts of Computer Science, including abstracting
and decomposing a problem, recognizing similar ones
and being able to generalize their solutions. It shares
many of its concepts, practices and perspectives with
other subject areas taught in schools, such as science,
mathematics, arts and engineering, making a strong
case for its teaching in disciplines outside of Computer
Science and right from kindergarten [3] as for its
promotion to a new form of literacy [1].

1

EAI Endorsed Transactions
on Ambient Systems	 Research Article

EAI Endorsed Transactions on
Ambient Systems

12 2015 - 08 2016 | Volume 3 | Issue 9 | e6

http://creativecommons.org/licenses/by/3.0/
mailto:<tommaso.turchi@brunel.ac.uk>
https://hourofcode.com

T. Turchi, A. Malizia

The echo of the discussion around the importance of
teaching programming and CT in school [4] resounded
already in the adoption of new curricula by many
European nations, such as England, where coding
is mandatory in elementary schools from year 12,
Finland, planning to introduce CT in its curriculum
from this year, and Estonia, having had coding as
part of its curriculum since 20133. Moreover, many
other European [5] and extra European countries (e.g.,
Russia, South Africa, New Zealand, and Australia)
either already have or plan to introduce Computer
Science as part of their K-12 curriculum [6].
The idea of enabling pupils to participate in CT has

been around for thirty years, and can be traced back
to the work of Seymour Papert [7]; he first proposed
the idea of children engaging in coding and developed
the Logo programming environment to enable them to
do so. In his paper of 1972 he predicted most of the
creative movements around educational technologies
we see today, by imagining what would happen if
children could teach computers to express their ideas,
build things and inventions [8].
Many other tools and programming environments

followed and have been developed with the aim of
promoting CT skills in K-12 education; the main
principle guiding their development was the idea
of “low floor, high ceiling” — i.e., they enable any
beginner to cross the threshold to create working
programs easily (low floor), but are also powerful
enough to satisfy the needs of more advanced users
(high ceiling). Besides, effective CT-supporting tools
for children must not only (1) have low floor and
high ceiling, but also (2) provide stepping stones with
managed skills and challenges to get them from the
“floor” to the “ceiling” (scaffold), (3) enable transfer
between different application contexts, (4) support
equity, and (5) be systemic and sustainable [9].
Visual Programming Environments (VPE) like

Scratch4, Alice5, Kodu6, Blockly7 and App Inventor8

closely follow these 5 principles on various degrees:
they are relatively easy to use and allow novices to focus
on designing and creating while avoiding the issues of
the traditional murky and complicated programming
syntax. They engage in CT using a three-stage “Use-
Modify-Create” pattern [10], scaffolding increasingly
deep interactions to foster the development of CT

2https://www.gov.uk/government/publications/
national-curriculum-in-england-computing-programmes-of-study
3http://www.sitra.fi/en/artikkelit/well-being/
future-will-be-built-those-who-know-how-code
4https://scratch.mit.edu
5http://www.alice.org
6http://www.kodugamelab.com
7https://developers.google.com/blockly/
8http://appinventor.mit.edu

skills; students start using existing artifacts and gain
skills and confidence through a series of iterative
modifications and refinements, as well as fostering
appropriation of what started as someone else’s and
became one’s own.
Tools and programming environments however need

to support— and, in turn, be supported—by curricular
activities such as game design and robotics, typically
serving as a trigger for the iterative exploration of
CT while motivating and engaging school children.
These activities — along with many similar ones
— should support what have been proposed to be
the four pedagogical phases of learning to think
computationally [3]:

1. unplugged (off-screen) activities are used to inspire
students and enhance subject knowledge, and can
be implemented without the use of computers,
making abstract concepts both tangible and
visible [11] and improving upon their problem
solving skills; they break down limited access
barriers and focus on cognitive skills rather than
implementation details. Computer Science (CS)
Unplugged9 is one of the main resource for
unplugged activities, a collection of free learning
activities that introduce students to CT through
games and puzzles;

2. making activities include playing ormaking things
and taking them apart to solve problems inspired
by technology; they encourage students to cohe-
sively combine multiple ideas into an organized
process to produce something unexpected [12].
Prototyping and testing physical artifacts — also
referred to as Tangible Programming (TP) —
directly impacts a digital environment [13], thus
tangibly representing CT;

3. tinkering [14] supports learning of CT concepts
by exploring them in a creative way, allowing
students to use materials and tools to represent
CT. In agreement with Papert’s constructionism
model of learning [7], tinkering provides a rich
context for developing and representing under-
standing through the experience and process of
building something physical or digital;

4. remixing (or “hacking”) involves critically looking
at existing code, as well as practicing modifying
it to suit new purposes; analyzing code, making
connections and creating new applications from
existing code require sophisticated reasoning and
problem solving skills [3], all being essential
elements for the development of CT.

9http://csunplugged.org

2 EAI Endorsed Transactions on
Ambient Systems

12 2015 - 08 2016 | Volume 3 | Issue 9 | e6

https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
http://www.sitra.fi/en/artikkelit/well-being/future-will-be-built-those-who-know-how-code
http://www.sitra.fi/en/artikkelit/well-being/future-will-be-built-those-who-know-how-code
https://scratch.mit.edu
http://www.alice.org
http://www.kodugamelab.com
https://developers.google.com/blockly/
http://appinventor.mit.edu
http://csunplugged.org

A Human-centred Tangible approach to learning Computational Thinking

Lastly, it is worth pointing out that the effectiveness
of existing tools seems pretty unsettled with respect to
the many facets of CT: for instance, a 2008 study [15]
involving 80 urban youth aged 8-18 reported learning
of several CT elements through the use of Scratch in
an after-school setting; nonetheless, the tool does not
provide a mean of encapsulating functionalities into
procedures and functions, somehow failing to tap into
the abstraction skills. There is undoubtedly a need for
new tools that foster CT skills specifically targeted to
K-12 education, following the principles just described
and guided by the most recent research on how children
approach problem solving [16, 17].

3. Fostering Computational Thinking skills with
Tangible End-User Development
Fostering the development of Computational Thinking
(CT) skills has recently become a focus of the End-
User Development (EUD) research community [18],
whose aim is to allow end users (i.e., any computer
user) to adapt software systems to their particular
needs at hand; it strives to enable them to exploit
some of the computational capabilities enjoyed by
professional programmers, thus to perform their tasks
more efficiently and effectively (e.g., task automation).
CT, therefore, seems the ideal skill set needed to help
the EUD community to reach its aim of lowering
programming barriers and fostering its spread.
At the same time, programming itself has proven

to be an excellent way of developing CT skills [19]
especially in K-12 education (as discussed in the
previous section), thus existing EUD techniques might
have a similar effect on end users, although much
discussion is still ongoing about how much this comes
about and results are still inconclusive.
Since its introduction, there have beenmany attempts

of defining more precisely what CT actually means
[20]. Even though there is not yet an agreement on
it, the only consensus reached so far between the
different proposed definitions pertains to the concepts
of abstraction and decomposition:

• Abstraction helps modeling problems and sys-
tems by capturing only the essential properties
common to a set of objects while hiding their
differences, the latter being not relevant from the
perspective we are currently interested in.

• Decomposition refers to thinking about a problem
(or, more generally, an artifact — e.g., a system,
a process, or an algorithm) in terms of its
components; one can then understand, solve and
evaluate them separately, making the overall
problem easier to solve.

These two concepts are an integral part of CT, as well
as frequently required during any programming task.

Dealing with abstract concepts is often a challenge for
inexperienced users, who usually need to be trained and
practice this skill for quite a while before mastering it.
While developing his theories on learning and

developing Logo, Papert widely referred to the work
of Jean Piaget: his constructivist theory [21] tries to
explain how human capabilities evolve during the
first years of life: at ages 7 to 11 children are in
what he called concrete operational stage; they can
think logically in terms of objects, but have difficulty
replacing themwith symbols. Ultimately, they can solve
problems in a logical fashion, but are typically not
able to think abstractly or hypothetically. The following
stage — i.e., the formal operational stage — enables
them to replace objects with symbols, generalizing and
manipulating abstract concepts by using proportional
reasoning and deriving cause-effect relationships. The
shift from concrete operational to formal operational
should occur by age 12, but a later study [22] found that
most College freshmen in physics courses still have not
made it, being incapable of grasping abstract concepts
not firmly embedded in their concrete experience.
In the light of these considerations, we argue

that exploiting our innate dexterity for objects’
manipulation in the physical world could be an
effective way of aiding concrete operational thinkers to
grasp abstract concepts often involved by coding, thus
fostering the development of CT skills. Moreover, we
already pointed out how tangible objects can support
computational learning in making activities [3].
Physical manipulation is an interaction paradigm

currently employed in digital systems with the aim
of providing users with an easy to use interface
that can be used even by inexperienced people; this
paradigm is called Tangible User Interfaces (TUIs) [23].
Employing a TUI in an End-User Development system
— thus pairing it up with a technique with the aim of
lowering programming barriers and allowing end users
to program— could foster their CT skills by supporting
them with a concrete representation of the abstract
concepts they have to deal with.

3.1. TAngible Programmable Augmented Surface
In a recent study [24] we introduced TAngible
Programmable Augmented Surface (TAPAS), a system
that allows users to adapt a public display’s features
to their own needs, by using the movements of their
smartphone to interact with it (figure 1); users can
develop simple workflows by assembling different
services together by means of a puzzle: each service
is mapped to a puzzle piece and its shape dictates
constraints on its required inputs and output. Even
though components are not physically represented here
but only digitally (i.e., projected over the surface), the
system is controlled through a tangible object (i.e., the

3 EAI Endorsed Transactions on
Ambient Systems

12 2015 - 08 2016 | Volume 3 | Issue 9 | e6

T. Turchi, A. Malizia

smartphone, but the system can work even with other
types of objects), making it fun and easy to use [25]. The
digital representation of the programming constructs
involved makes it a rather flexible environment that
can be easily repurposed to fit many heterogeneous
contexts.

Figure 1. An example of a workflow assembled using TAPAS.

TAPAS was built on the premises of Visual Pro-
gramming Environments (VPE) like Scratch, striving to
properly support the development of CT with low floor
and high ceiling, scaffolding, transfer between different
contexts, equity, and being systemic and sustainable
[9]. Even though TAPAS’ actual delivery of many of
these properties is yet to be evaluated, we have already
carried out a preliminary study [26] with the aim of
collecting initial user feedback on TAPAS’ interaction
modality and main idea.
We interviewed three groups — sized respectively

4, 5 and 6 — of second year Computer Science
undergraduate students, each one involved in the
developing of an Android application as part of their
annual curriculum with the supervision of a teaching
staff member. Each group has to meet at least once a
week to discuss their progress and work collaboratively
on their next development task. We set out to let them
freely take TAPAS for a spin and then carried out a
semi-structured interview about its core features.
Overall participants enjoyed playing with TAPAS and

were able to understand how to operate it to develop
simple workflows; their feedback pointed mostly on
missing features related to the specific scenario —
which could be added by developing additional puzzle
blocks or allowing users to develop their own [27].
Nevertheless, further investigations are needed to

see whether the proposed interaction modality helps
developing users’ CT skills in conjunction with its
application domains. We are currently running a
study with high school students to investigate such
implications in a fully-educational domain.
Summarizing, we believe that exploiting the benefits

of using a tangible interaction in conjunction with EUD

techniques will leverage on human’s natural ability of
manipulating objects in the real world, aiding end users
in grasping highly abstract concepts while fostering
their CT skills.

Acknowledgement. We would like to acknowledge the
Research Visibility Award funded by Brunel University
London for partially supporting this work.

References
[1] Vee, A. (2013) Understanding Computer Programming

as a Literacy. Literacy in Composition Studies .
[2] Wing, J.M. (2006) Computational thinking. Communica-

tions of the ACM 49(3): 33.
[3] Namukasa, I.K., Kotsopoulos, D., Floyd, L., Weber, J.,

Kafai, Y., Khan, S., Yiu, C. et al. (2015) From compu-
tational thinking to computational participation: Towards
Achieving Excellence through Coding in elementary schools.
Tech. rep., University of Western Ontario.

[4] (2011) Report of a Workshop on the Pedagogical Aspects
of Computational Thinking (Washington, D.C.: National
Academies Press).

[5] Balanskat, A. and Engelhart, K. (2014) Computing our
future: Computer programming and coding-priorities,
school curricula and initiatives across europe.

[6] Grover, S. and Pea, R. (2013) Computational Thinking
in K-12: A Review of the State of the Field. Educational
Researcher 42(1): 38–43.

[7] Papert, S. (1980) Mindstorms: children, computers, and
powerful ideas (Basic Books, Inc.).

[8] Blikstein, P., Sipitakiat, A., Goldstein, J., Wilbert, J.,
Johnson, M., Vranakis, S., Pedersen, Z. et al. (2016)
Project Bloks: designing a development platform for
tangible programming for children .

[9] Repenning, A., Webb, D. and Ioannidou, A. (2010)
Scalable game design and the development of a checklist
for getting computational thinking into public schools.
In the 41st ACM technical symposium (New York, New
York, USA: ACM Press): 265–269.

[10] Lee, I., Martin, F., Denner, J., Coulter, B., Allan,

W. and Erickson, J. (2011) Computational thinking for
youth in practice. Acm Inroads .

[11] Curzon, P. (2013) Cs4fn and computational thinking
unplugged. In ACM International Conference Proceeding
Series (Queen Mary University of London, London,
United Kingdom): 47–50.

[12] Wilkerson-Jerde, M.H. (2014) Construction, categoriza-
tion, and consensus: student generated computational
artifacts as a context for disciplinary reflection. Educa-
tional Technology Research and

[13] Strawhacker, A. and Bers, M.U. (2015) “i want
my robot to look for food”: Comparing kinder-
gartner’s programming comprehension using tangible,
graphic, and hybrid user interfaces. International Jour-
nal of Technology and Design Education 25(3): 293–319.
doi:10.1007/s10798-014-9287-7, URL http://dx.doi.

org/10.1007/s10798-014-9287-7.
[14] Bers, M.U., Flannery, L., Kazakoff, E.R. and Sullivan,

A. (2014) Computational thinking and tinkering:

4 EAI Endorsed Transactions on
Ambient Systems

12 2015 - 08 2016 | Volume 3 | Issue 9 | e6

http://dx.doi.org/10.1007/s10798-014-9287-7
http://dx.doi.org/10.1007/s10798-014-9287-7
http://dx.doi.org/10.1007/s10798-014-9287-7

A Human-centred Tangible approach to learning Computational Thinking

Exploration of an early childhood robotics curriculum.
Computers & Education () 72: 145–157.

[15] Maloney, J., Peppier, K., Kafai, Y.B., Resnick, M. and
Rusk, N. (2008) Programming by choice: Urban youth
learning programming with scratch. In SIGCSE’08 -
Proceedings of the 39th ACM Technical Symposium on
Computer Science Education (MIT Media Laboratory,
Cambridge, United States): 367–371.

[16] Chen, T.Y., Lewandowski, G., McCartney, R., Sanders,
K. and Simon, B. (2007) Commonsense computing. ACM
SIGCSE Bulletin 39(1): 276.

[17] Pane, J.F., Ratanamahatana, C.A. and Myers, B.A.

(2001) Studying the language and structure in non-
programmers’ solutions to programming problems.
International Journal of Human-Computer Studies 54(2):
237–264.

[18] Kraemer, E., Ermel, C. and Fleming, S. (2015) Foreword
VL/HCC 2015. In Proceedings of IEEE Symposium
on Visual Languages and Human-Centric Computing,
VL/HCC.

[19] Orr, G. (2009) Computational thinking through pro-
gramming and algorithmic art. SIGGRAPH Talks 2009 :
1–1.

[20] Selby, C. (2013) Computational thinking: the developing
definition. Other. URL http://eprints.soton.ac.uk/

346937/.
[21] Inhelder, B. and Piaget, J. (1969) The psychology of the

child.

[22] Williams, K.A. and Cavallo, A. (1995) Reasoning Ability,
Meaningful Learning, and Students’ Understanding of
Physics Concepts (Journal of College Science Teaching).

[23] Ishii, H. and Ullmer, B. (1997) Tangible bits. In the
SIGCHI Conference (New York, New York, USA: ACM
Press): 234–241.

[24] Turchi, T., Malizia, A. and Dix, A. (2015) Fostering
the adoption of Pervasive Displays in public spaces
using tangible End-User Programming. In 2015 IEEE
Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) (IEEE): 37–45.

[25] Bellucci, A., Malizia, A., Díaz, P. and Aedo, I. (2010)
Don’t Touch Me: Multi-user annotations on a map
in large display environments. In Proceedings of the
Workshop on Advanced Visual Interfaces AVI.

[26] Malizia, A. and Turchi, T. (2015) Pervasive displays in
the wild: Employing end user programming in adaption
and re-purposing. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics).

[27] Hosio, S., Goncalves, J., Kukka, H., Chamberlain, A.
and Malizia, A. (2014) What’s in it for me: Exploring
the real-world value proposition of pervasive displays.
In PerDis 2014 - Proceedings: 3rd ACM International
Symposium on Pervasive Displays 2014.

5 EAI Endorsed Transactions on
Ambient Systems

12 2015 - 08 2016 | Volume 3 | Issue 9 | e6

http://eprints.soton.ac.uk/346937/
http://eprints.soton.ac.uk/346937/

	1 Introduction
	2 Computational Thinking in Education
	3 Fostering Computational Thinking skills with Tangible End-User Development
	3.1 TAngible Programmable Augmented Surface

