
EAI Endorsed Transactions
on Context-aware Systems and Applications Research Article

1

Implementation of NoC on FPGA with Area and Power

Optimization

Momil Ijaz, Huma Urooj, Muhammad Athar Javed Sethi*

Department of Computer Systems Engineering, University of Engineering and Technology, Peshawar, Pakistan

im.momil@yahoo.com, humaurooj15@hotmail.com, atharsethi@uetpeshawar.edu.pk

Abstract

On-chip bus-based communication has many shortcomings to it, including resource sharing, delay, latency and cost (power and

area). Network on Chip (NoC) is an innovation that is planned to eliminate the shortcomings to buses such as compact systems,

size, speed, power and area. The goal of working was to design a usable and researchable general-purpose 2x2 mesh NoC

architecture, which is not application specific, and have optimized area and power. Desired NoC was coded and deployed on

FPGA Spartan-3 kit in a generic mode, with the efficient area and power utilization than traditional deployments.

Keywords: Network on chip, node, switching, packet, crossbar.

Received on 01 March 2019, accepted on 15 March 2019, published on 18 March 2019

Copyright © 2019 Momil Ijaz et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,

distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.23-5-2019.158953

1. Introduction

On-chip buses depend on shared communication assets
and on an arbitration mechanism that is countable for
serializing bus access demands. This broadly embraced
solution shockingly experiences power and execution
scalability constraints, and limited sharing of assets
between communication elements. The bus-based system
was termed acceptable for use for communication in small
embedded systems comprising of few intellectual
properties (IP) cores; however, this approach failed to be
proven as scalable. Also the increasingly troublesome
interconnect configuration process and the diminishing
performance because of the expanding measure of cores
joined to the bus(es), and numerous different downsides of
buses have demonstrated that a change in perspective is
needed.

NoC (Network on Chip) is an innovation planned to
eliminate shortcomings to buses. An NoC comprises of
interconnecting links, routers, IP centres and network
interfaces. Nodes can be processing elements like cores,
I/O, CPU, custom IP, DSP or storage elements, e.g. cache,
RAM, ROM.

Figure 1. NoC Architecture

The key elements of NoC are visible in Figure 1. First is a

network interface and it makes the connections of IP

macro cells and on-chip communication infrastructure.

The network interface translates packet-based

communication of the network into a form that is

interpretable by nodes and furthermore changes over the

information from nodes into packets which justifiable by

routers which propagate packet forward. The packet of

NoC is composed of the data payload, header, which is

sliced into units, knows as the flits. The flits are then

routed across the same network path. A router is a ∗Corresponding author. Email: atharsethi@uetpeshawar.edu.pk

EAI Endorsed Transactions on
Context-aware Systems and Applications

12 2018 - 03 2019 | Volume 6 | Issue 16 | e5

https://eudl.eu/journal/casa
mailto:im.momil@yahoo.com
mailto:humaurooj15@hotmail.com
mailto:atharsethi@uetpeshawar.edu.pk
http://creativecommons.org/licenses/by/3.0/

Momil Ijaz, Huma Urooj, Muhammad Athar Javed Sethi

2

networking gadget that advances information bundles

between PC systems. An information bundle is regularly

sent starting with one router then onto the next router

through the systems that constitute the inter network until

the point when it achieves its goal node. The router sends

information bundles from input ports to a particular

output port, depending upon the destination of the

information packet. NoCs offer better scalability, better

performance, productivity in design, modularity [1] and

efficient reuse of resources with high bandwidth. They are

capable of supporting multiple parallel communications

by efficient underlying routing algorithms instead of

serializing requests.
There is a large production volume of FPGAs for

serving the markets with low volume. This tells that the
demand for FPGA will rise in the near future to come up
with a feasible, economical hard-core solution. There is a
need for the FPGAs to adapt in order to meet the demands.
Plenty of NoCs have been developed, and some of these
have been adapted for the FPGAs [2]. However, the
designs are expensive in terms of the power consumed and
the area. Therefore, the advantages of FPGA cannot be
fully exploited. Therefore, there is a dire need to
implement FPGA NoC with improved performance, area
and power efficiency.

The main purpose of the study is to execute a working
model of NoC on FPGA. This incorporates the usage of
each of the four essential parts of NoC to be implemented
in Verilog hardware descriptive language on FPGA. After
effective execution of a 2x2 NoC, the subsequent stage is
to calculate and improve the area and power that NoC
utilizes on FPGA, which is in a number of used look-up
tables of FPGA, whereas power could be calculated in
terms of mili-watts.

2. Design specifications

The functionality of an NoC is characterized by the
interconnection of networks and how information is
transported from a starting point to the destination in the
network. These NoC design concepts can be sorted as
switching techniques, routing strategies, flow control,
topology and so forth and come into discussion when
designing of NoC takes place. All these design
specifications are listed below in the given Table 1.

Table 1: NoC Design Specifications

Sr. No. Specification Value

1. Design Topology 2D Mesh

2. Size 2 x 2

3. Switching Mechanism Wormhole Switching
 a

4. Packet Format Header, Body and Tail flits

5. Routing Algorithm Deterministic XY

6. Clock Frequency 50 MHz

Sr. No. Specification Value

7. Traffic injection rate Uniform
 b

8. Evaluation Parameters Area and Power

9. Flit Size 8 bits

10. Packet Size 3 Flits

11. Simulation Tool
Model Sim Student Edition
10.4a and Xilinx suite

10.12a

12. Kit FPGA Spartan-3

13. QoS Guaranteed Throughput

14. Design Nature Soft FPGA based NoC

a. Virtual Paths. (Address info from Header)

b. Flits follow header after periodic time space.

The topology opted for implementing NoC was 2D
Mesh, as it is easy to implement and debug. The size was
kept 2x2, which means four routers and four nodes
communication infrastructure was developed and was
improvised to have efficient area and power. FPGA-based
NoCs consist of two main types, i.e. Soft NoCs and Hard
NoCs. Conventional FPGA programmable resources are
used in soft NoCs by the end users. Silicon like FPGA
blocks is used for the hard NoCs. The hard functionality
typically includes multipliers, processors, memory
interfaces and other components. On the other hand, the
soft functionality includes flip-flops, gate arrays etc. We
have opted soft FPGA based NoC for our design
deployment with area and power as evaluation parameters.

2.1. Switching Mechanism

Switching mechanism of an NoC is the manner in
which the data unit travels in the network between source
and destination. There are a number of switching
techniques available for implementing an NoC‟s data unit
trajectory and travelling manner through the network. Few
are buffered whereas others are buffer less [3]. Buffer
techniques set up the flit to travel from source to
destination with resource reservation on the way and
acknowledgement flit back to the source. In this technique,
payload flits go through the network with no delay and
termination flit de-allocates each reserved hop. Whereas in
buffered techniques whole buffer data is allocated between
hops with on the go hop reservation and there is no
acknowledgement flits. These techniques are mostly
packet based and their messages are too long for on-chip
buffers, this increasing memory and area consumption.

Wormhole-switching technique is used as mentioned in
“Table 1”. It breaks up the packet into header, body and
tail flit, with addressing information in the header that
leads single or multiple bodies flits and tail flit that
releases reserved hop and tells the destination node about
the completion of data unit or packet. In this technique, the
header flit governs the route for remaining flits, and
remaining flits follow its route in a pipeline fashion. In our
implementation, buffers are reserved for a header that
crosses a hop first (for traffic injected with uniform timing
gaps). This technique seemed to be efficient than the store

EAI Endorsed Transactions on
Context-aware Systems and Applications

12 2018 - 03 2019 | Volume 6 | Issue 16 | e5

3

and forward or virtual cut through as it does not reserve
the whole link, efficiently use the available channel
resources and does not wait for the whole packet to be
received providing low latency.

2.2. Packet Format

The format of the packet to be sent was of wormhole
format, i.e. the data unit was split into three main articles
or part termed as flits as shown in Figure 2, which is a
link-level atomic (smallest) piece of data unit forms a data
stream through the network. The first fit is termed as
header flit, which holds the routing information for it and
remaining upcoming flits that follow the header flit to
make it to the destination. Flits following the header are of
two types, body and tail. The body flit contains the data or
message to be sent, and it can be one or multiple in
number. The last flit of the packet is termed as tail flit
which includes the information about ending of the
message and releases the reserved network resources.

Figure 2. Wormhole Packet Format

2.3. Routing Algorithm

The routing algorithm is one of the key factors in NoC
architecture. Routing algorithm defines the path taken by a
packet between the source and the destination. XY routing
algorithm is mainly used in NoC because of its simplicity.

In a deterministic XY routing algorithm, the packet to
be transferred first travels in the x-axis to reach to the
column of destination router and then travels in y-axis to
reach to the destination routers row. Figure 3 reveals the
flow of a packet from source to destination router and node
under XY routing algorithm.

2.4. Clock Frequency

The clock frequency used to run top-level Verilog
script, (for initializing 2 x 2 NoC) was FPGA Spartan 3
kit‟s standard clock frequency of 50MHz.

Figure 3. XY routing algorithm in 2x2 Mesh NoC

2.5. Traffic Injection Rate

Traffic was injected in the network through a module
named the source, which was triggered whenever nodes/
communicating bodies wanted to exchange messages
(contains packets having flits). On entering a specific
core‟s id on FPGA switch input, a three flit-automated
packet was generated and send by that core into the
network, which then travels, and makes it to the
destination. Each packet consists of three flits with
addressing information in the header with raw data in the
body and flits ending info in the tail, header goes first then
tail and body flit follows it.

2.6. Quality of Service

For our deployed model of mesh NoC, the QoS was

guaranteed throughput, i.e. the network provided

guaranteed delivery of packet with latency and throughput

reliability. For making this service available, congestion,

packet blocking or path blocking is avoided by

entertaining packets at first come first serve basis.

3. NoC Design Architecture

The proposed NoC design was deployed in a soft form
on FPGA Spartan-3 kits, in Verilog hardware descriptive
language. The design hierarchy for the network was
implemented in a bottom-up fashion with a modular
approach, i.e. the basic and smaller components were built
first, then integrated to build higher ones. There are three
core components of an NoC namely routers,
communicating nodes and network interface.

3.1. Network interface:

As revealed by its name, network interface provides an
interface to communicating nodes or cores to upload or
receive data packets from the network. For uploading data
to network, it receives raw data from core and converts it
to network understandable form (packets made of flit), and

Implementation of NoC on FPGA with Area and Power Optimization

EAI Endorsed Transactions on
Context-aware Systems and Applications

12 2018 - 03 2019 | Volume 6 | Issue 16 | e5

Momil Ijaz, Huma Urooj, Muhammad Athar Javed Sethi

4

for receiving packets from network it performs de-
packetization and converts data to core understandable
form by removing addressing and tail info from packet.

The network interface was not implemented for NoC
for the following reasons:

 Being a general purpose solution, a custom network

interface can be developed which converts core

specified data to our network specific format

 Secondly, our focus was on network design, so we

designed a core that already generates and

understands network-interpretable packet format.

3.2. Nodes:

These are the core components in an NoC
infrastructure responsible for generating data to be
exchanged. They can be CPU/GPU cores, cache, RAM,
ROM or any on-chip entity that wants to exchange
information. The module was implemented once and made
four instances of it for each router in our NoC. These cores
are designed for generating a packet when they are
triggered from outside by a switch to a destination node,
that is also triggered from outside switches on FPGA, to
go to receiving mode.

3.3. Routers:

Routers are a major part of NoC designed to direct the
packets from nodes to their destination under the action of
the routing algorithm implemented. One module for the
router was created with four instances of it. The underlying
algorithm in each router is deterministic XY routing
algorithm. The architecture of a router is majorly
composed of the following components:

a. Ports

b. Crossbar
A router is composed of five ports, four of which are

connected to neighbouring routers whereas one is
connected to a local node. Based on their location and
connection these ports are named as follows:

 North port

 East port

 West port

 South port

 Local port
The local port is used to connect the node to router via

a network interface as shown in Figure 4. The arrow for
the local port is bidirectional because data can be
generated by a node for another node to be transferred via
router and it can be received by a node from a router sent
to it by another node. Also, the other arrows are bi-
directional because they are representing the exchange of
data among the neighbouring routers. With in a router,
there‟s a single path for receiving and sending data to a
node or neighbouring router.

Figure 4. A router with five ports

a) Ports: Ports are an important part of each router, which

is responsible for receiving packets and directing them in

an appropriate direction to move out through the suitable

port of the router to get closer to the destination node. A

port has a main output and input. This main input and

output lines of each port are used for receiving or sending

data. A port consists of the following three main

components:

I. Inport

II. Output Calculator

III. Scheduler
Each component has its own function and location in

port as shown in Figure 5.

Figure 5. A single port

I. Inport:

Inport is at the entrance of a port, and it is responsible for

receiving incoming packet‟s flit from the port‟s input.

These flits are stored in a queue and are forwarded to the

output calculator for further processing.

EAI Endorsed Transactions on
Context-aware Systems and Applications

12 2018 - 03 2019 | Volume 6 | Issue 16 | e5

5

II. Output Calculator:
Output calculator is responsible for receiving incoming

flits from inport and reading addressing information from
the header and under XY routing algorithms decision,
directing the received flit through a particular output. An
output calculator has four output lines that are responsible
for directing the packets out to one line of other ports
scheduler input. These output lines are used in a crossbar
connection as shown in Figure 6.

III. Scheduler:
The scheduler is the core part of the port, which is

responsible for scheduling between requests coming to a
particular port. The scheduler used Round Robin technique
to perform scheduling between incoming requests. The
scheduler stores packet flits in its slot and gives fixed
timed slice to each slot so that it can go out from the port‟s
main out on positive of the edge of FPGA clock.

A scheduler has four output lines responsible for
receiving incoming flits from other port‟s output calculator
output, these lines are used in cross bar connection.

Figure 6. A router with crossbar connected ports

b) Crossbar: Crossbar is the fashion in which ports are

connected in a router. These ports are connected to each

other with in a router via crossbar connection. In a

crossbar connection, each port is connected to every other

port in the router. Keeping in view the architecture of a

port, crossbar connection is made. A port also has

separate paths for incoming and outgoing data; in a

crossbar connection of a port with another, input paths of

each port is connected with output paths of every other

port [4, 5]. In a 2x2 NoC, all routers are edge routers so

for optimizing the area and power utilization we skipped

the unused ports for edge routers. This strategy can be

used to optimize area and power utilization in any sized

NoC, i.e. skipping unused ports from the corner and

boundary routers.

4. Data Flow

The data is generated in the form of three consecutive
flits with some time gap in a source node whose id is
entered by the user as an input at the same time user also
enters an output id and that node goes into data receiving
state in which that node starts waiting for the packet to
come. Now the incoming packet from the source node first
enters the network through entering into router‟s local
port. From there the packets are directed towards input
port of a local port, this takes packet to output calculator of
the local port, which first receives header and process the
addressing information and decided the output line through
which the packet should be sent out. On setting out the
packet is received by the scheduler of a particular port
(which has been selected by XY routing algorithm, as on

Implementation of NoC on FPGA with Area and Power Optimization

EAI Endorsed Transactions on
Context-aware Systems and Applications

12 2018 - 03 2019 | Volume 6 | Issue 16 | e5

Momil Ijaz, Huma Urooj, Muhammad Athar Javed Sethi

6

making the packet leave from that port would get it closer
to destination). This packet on going out of scheduler ,
leaves that router and enters into neighboring router‟s
inport and then that port passes on it to other port then
other router and this process keeps on going until the
packet reaches the destination router from which it enters
again into destination router‟s local port, from where it
leaves the router and enters into destination node. During
this trip packet leaves and enters several routers, for our
2x2 NoC design, we tested all possible combinations of
source and destination pairs. A sample data flow for the
source node at the top left (node 0) to the destination node
at the right end (node 3) is shown in Figure 7 (a-c).
Selected four LEDs to present one of four routers. Each
LED glows when the packet leaves that particular router.

Figure 7(a). Packet leaving router 0

Figure 7(b). Packet leaving router 1

Figure 7(c). Packet leaving router 3

5. Area and Power Evaluation

The development of NoC has enhanced parallelism
with high throughput, low latency, and high bandwidth.
However, NoC suffers extensively from power
consumption caused by switching activities and leakage
power of the resources; particularly NoC routers [6]. Most
of the research in NoCs revolves around developing
various solutions for power efficiency and performance
[7]. As the number of cores on-chip are growing, greater
emphasis on efficient inter-core on-chip communication is
required as it replaces the old slow, delayed and non-
efficient bus-based communication system. As the
complexity of applications fitting inside a single SoC
raises, scalability and flexibility are achieved through the
use of multiprocessor systems on chip (MPSoCs), a special
case of SoCs where most or all PEs are programmable
processors, increasing the SoC architecture flexibility [8].
As mentioned, this flexibility comes at the cost of greater
power usage by NoC which makes it expensive and less
efficient for large size models such as 4x4 or nxn
depending upon the number of devices that wish to
exchange data.

X-Power Analyzer tool provided by Xilinx ISE
Version 14.7, was used to calculate the power of 2x2 NoC
model on FPGA. X-Power Analyzer (also referred to as
„XPA‟) is an interactive graphical tool used to calculate
power consumption for Xilinx FPGA devices for the
underlying implanted circuit. Detailed power report
includes static and dynamic power, power reduction areas,
estimation accuracy and much more [9].

Power estimation for our physically coded 2x2 mesh
NoC was done by X-Power Analyzer tool. Detailed power
report said underneath, Figure 8 was calculated with clock
frequency 50Mega Hz.

EAI Endorsed Transactions on
Context-aware Systems and Applications

12 2018 - 03 2019 | Volume 6 | Issue 16 | e5

Implementation of NoC on FPGA with Area and Power Optimization

7

Figure 8. Estimated Power for 2x2 mesh NoC on
FPGA

Power report included a sum of power consumed by
five basic fundamental components of our designed circuit,
i.e. clocks, logic, signals, IOs and leakage power summing
up to 0.042 Watt. In the event that we contrast our
workings with the past contributions of [10], we can see
that power devoured by their model of 2x2 mesh NoC
(their power dissemination is estimated utilizing Power
play control Analyzer instrument and XY-routing
algorithm is utilized) turned out to be around 200mW,

contrasted with our model which yielded a power
consumption of 42 mW for same 2x2 mesh NoC model.

Another essential factor that ought to be considered
while utilizing NoCs as an on-chip specialized device is
the area utilization of your executed model. Because one
of the prime reasons NoCs were prescribed, as a swap for
buses was the huge area utilization bus-based
communication framework had. As the quantity of cores or
nodes builds, the quantity of assets for bus-based
framework additionally increments, as is the conduct of
NoCs, next to the advantages of low latency, high
throughput and better performance NoCs gave over bus-
based framework, area utilization is likewise directly
proportional to size of NoC, which could be limited or
lessened.

We gave our shot to the solution of this issue by
proposing an area effectively, less power expending and
effortlessly scalable model of mesh NoC on FPGA. Area
utilization of our proposed design was evaluated regarding
LUTs required to execute the design on Spartan-3 FPGA
unit, results are shown in Figure 9.

Figure 9. Estimated Power for 2x2 mesh NoC on FPGA

Figure 9 reveals that area devoured by our proposed
2x2 NoC design was 1159 LUTs from a sum of 3840
LUTs accessible on Spartan-3 FPGA unit, which is just
30% of total accessible assets. Along with 626 out of 1920
slices and 9 out of 173 bounded IOBs. In the event that we
contrast our outcome and [11], it can be uncovered that
number of LUTs required by their utilized 2x2 mesh NoC
was 3000 in number which is 61.4% more than our
evaluated outcomes, and our result‟s the calculated area is
38.6% more efficient in area than [11 12].

6. Conclusion

In this study, we developed an FPGA based NoC
deployed in Verilog on a Spartan-3 kit with 50M Hz clock
frequency. The topology opted was mesh with a smaller
size of 2x2, with guaranteed throughput and wormhole
switching mechanism. Proper working of NoC was tested
via various tests and simulations for all possible source

and destination node pair. The area and power were
estimated and were found efficient and optimized than the
literature. The composed architecture of mesh topology for
NoC can be upgraded to enhance its power and area
utilization, latency and throughput and utilized for
communication amongst different and various processing
IP cores with the assistance of Network Interface designs.
As specified previously, our outlined design can be
reached out to 4x4, 8x8 or nxn model for sometime later,
and the extended design is expected be power and area
efficient, just as the base prototype 2x2 model.

References

[1] K. A. Helal and et al., “Comparative review of NoCs in the
context of ASICs and FPGAs,” in IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2015.

[2] T. Pionteck, R. Koch, and C. Albrecht. Applying partial
reconfiguration to networks-on- chips. In proceedings of

EAI Endorsed Transactions on
Context-aware Systems and Applications

12 2018 - 03 2019 | Volume 6 | Issue 16 | e5

Momil Ijaz, Huma Urooj, Muhammad Athar Javed Sethi

8

the International Conference on Field Programmable Logic
and Applications, 2006.

[3] Nicholas Chyrsos and Mannolis Katevenis‟ “Packet Switch
Architecture”, Univ. of Creete,Greece,
https://www.csd.uoc.gr/~hy534/15a/s8_NOCs_ho.pdf

[4] Sethi, Muhammad Athar Javed, Fawnizu Azmadi Hussin,
and Nor Hisham Hamid. "Bio‐inspired network on chip
having both guaranteed throughput and best effort services
using fault‐tolerant algorithm." IEEJ Transactions on
Electrical and Electronic Engineering, vol. 13, no. 8, 2018,
1153-1162.

[5] Sethi, Muhammad Athar Javed, et al. "Bio-Inspired
Solutions and Its Impact on Real-World Problems: A
Network on Chip (NoC) Perspective." Application Specific
Integrated Circuits-Technologies, Digital Systems and
Design Methodologies. IntechOpen, 2019.

[6] A. B. Achballah, "A survey of network-on-chip tools ",
2013.

[7] Sneha N Ved, Aparna Arya, Ankit Bhange and Joycee
Mekie , "A Comparative Study of Input Port and Crossbar
Configurations in NoC Router Microarchitectures " , In 4th
International Conference on Signal Processing and
Integrated Networks (SPIN) ,2017.

[8] W. Wolf et al., "Multiprocessor System-on-Chip (MPSoC)
Technology", IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 27, no. 10,
pp. 1701-1713, Oct. 2008.

[9] Xilinx Web Manual Maintenance Authorities,1995-2011.
"XPower Analyzer Overview":

http://www.xilinx.com/support/documentation/sw_manuals
/xilinx13_2/xpa_c_overview.html

[10] Maheswari Murali and Seetharaman Gopalakrishnan .,
"Design and Implementation of Low Complexity Router
for 2D Mesh Topology using FPGA ", J. J. College of
Engineering and Technology, Tiruchirappalli, India ,
Oxford Engineering College, Tiruchirappalli, India.

[11] Jenita Priya Rajamanickam Manokara ., "Experimental
Evaluation of an NoC Synthesis Tool", University of
Windsor Scholarship at UWindsor .Electronic eses and
Dissertations ,2005.

[12] Papamichael, M. K., and J. C. Hoe. "CONNECT:
CONfigurable NEtwork Creation Tool." :http://users. ece.
cmu. edu/∼ mpapamic/connect (2012).

EAI Endorsed Transactions on
Context-aware Systems and Applications

12 2018 - 03 2019 | Volume 6 | Issue 16 | e5

https://www.csd.uoc.gr/~hy534/15a/s8_NOCs_ho.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/xpa_c_overview.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/xpa_c_overview.html
http://users/

