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Abstract. Copulas are a powerful tool in multivariate statistics. If copula functions used 

for modeling dependence between random variables, there is an immediate and obvious 

need to test whether the model can describe the data at hand accurately enough or not. 

Copulas involve several underlying functions: the marginal cumulative distribution 

functions (CDF) and a joint CDF.  To estimating the copula functions, first issue consists 

in specifying how to estimate the margins separately. Moreover, some of these functions 

can be fully known. Depending on the assumptions made, some quantities have to be 

estimated parametric, semiparametric or even non-parametric. In this paper, we propose 

the step of parameter estimation in modeling Copula Gaussian Multivariate and AR (1)-N. 

GARCH (1,1) Models 
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1   Introduction 

The copula is one of the statistical methods that can describe the relationship between 

variables that are not too strict on the assumption of distribution and can show the relationship 

of dependencies on extreme points. Mostly copula used in finance, climate, environmental 

(Kazianka, 2013). This method can describe the dependency structure between variables with 

different margins and model their tail dependencies. Many copula models can be used such as 

Copula Gaussian (Kolev & Paiva, 2009), Copula-t, Copula Clayton (Patton, 2013), Copula 

Frank, and Copula Gumbel(Choroś, Ibragimov, & Permiakova, 2010) . In this paper will be 

demonstrated the application and the step construction of Copula gaussian with AR (1)-N. 

GARCH (1,1). A time series {𝑌𝑡 , 𝑡 ∈ 𝑇} is said to be stationary if f every t is applicable: 

a. 𝐸[𝑌𝑡] = 𝜇 (constant) 

b. 𝑐𝑜𝑣(𝑌𝑡 . 𝑌𝑡−𝑘) =  𝛾𝑘 (not dependent on t) 

The stationary data TS {𝑌𝑡 , 𝑡 ∈ 𝑇} fluctuates around its mean with constant variance. The 

method to stationary the data one of them is log return. 

𝑌(𝑡 + 1) = log (
𝑆(𝑡 + 1)

𝑆(𝑡)
) 

If 𝑆(𝑡 + 1) denotes the stock price at time 𝑡 + 1,  , then the log return of the stock price at time 

𝑡 + 1,  expressed by 𝑌(𝑡 + 1).  At 𝑡 = 0, it is assumed 𝑌(0) = 0 to keep much data the same. 
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2   The Step Construction 

Here is the formula for model AR (1) - N. GARCH (1,1) 

𝑌𝑡 = 𝜇 + 𝛼𝑌𝑡−1 + 𝜎𝑡𝜖𝑡 , 𝜖𝑡~𝑁(0,1)         (1) 

𝜎𝑡
2 = 𝛼0 + 𝛽1(𝑌𝑡−1 − 𝜇 − 𝛼𝑌(𝑡−2) )

2
+ 𝛽2𝜎𝑡−1

2     

 (2) 

with parameters 𝛼0, 𝛽1, 𝛽2 . 

Here are the steps to estimate the parameters of AR (1)-N. GARCH (1,1) models: 

1. Assume the error value 𝜖𝑡t is normally distributed (0.1). 

2. Determine the parameter values 𝛼0, 𝛽1, 𝛽2  by using the Likelihood function 

defined as follows: 

𝑃(𝜎𝑖,𝑡𝜖𝑖,𝑡 ≤ 𝑠𝑡  |Ω𝑡−1)   

𝐹(𝑠𝑡  |Ω𝑡−1) = 𝑃 (𝜖𝑖,𝑡 ≤
𝑠𝑡

𝜎𝑖,𝑡
 |Ω𝑡−1)    

= ∫
1

√2𝜋
𝑒−

1

2
𝑥2

𝑑𝑥
𝑠𝑡

𝜎𝑖,𝑡
−∞

  

pdf  → 
1

√2𝜋
𝑒

−
1

2
(

𝑠𝑡
𝜎𝑖,𝑡

)
2

 

𝑓(𝑠𝑡) = (𝜎𝑖,𝑡𝜖𝑖,𝑡  |Ω𝑡−1) = (𝜃𝑖,𝑡  |Ω𝑡−1)  with 
1

𝜎𝑖,𝑡
~𝑁(0, 𝜎𝑖,𝑡

2 ) 

Then   𝑃(𝜃𝑖,2, 𝜃𝑖,3, … , 𝜃𝑖,𝑇) =

𝑓(𝜃𝑖,𝑡  |𝜃𝑖,𝑇−1, 𝜃𝑖,𝑇−2, … , 𝜃𝑖,2). 𝑓(𝜃𝑖,𝑇−1 | 𝜃𝑖,𝑇−2, 𝜃𝑖,𝑇−3 … , 𝜃𝑖,2) … 𝑓(𝜃𝑖,3 | 𝜃𝑖,2)𝑓(𝜃𝑖,2)  

𝑓(𝜃𝑖,2, 𝜃𝑖,3, … , 𝜃𝑖,𝑇) = ∏
1

√2𝜋
𝑒

−
1

2
(

𝑠𝑡
𝜎𝑖,𝑡

)
2

𝑇
𝑡=2 .  

Select 𝜎𝑖,1 = 0  or the standard deviation value of the data. 

The Likelihood log function is as follows: 

log 𝑓 = log
1

√2𝜋
+ (∑ −

1

2
(

𝑠𝑡

𝜎𝑡
)

2
𝑇
𝑡=2 )      (3) 

To obtain the parameters, maximize the likelihood log function above by using the optimization 

method. 

3. Enter the values of parameters that have been obtained from AR model (1) -

N.GARCH (1,1) to get error value 𝜖𝑡 from the model. 

4. Testing the error of  AR (1)-N.GARCH (1,1) using ACF and PACF plots. 

5. Perform a distribution fitting to find out the distribution of error data. 

The copula is a joint distribution function of some marginal distribution function(Genest & 

Favre, 2007). The copula is used to analyse the dependence of random variables in structures 

described by the combined function (Caraka, Yasin, Sugiyarto, Sugiarto, & Ismail, 2016) and 

(Caraka, Supari, & Tahmid, 2018). Here is Gaussian copula for two variables, which can be 

easily extended to multivariable. 

Let (𝑋, 𝑌)   Bivariate Normal 𝑋𝑁(0,1), 𝑌𝑁(0,1) 

h (x, y) = f (x) .g (y) .c (u, v), where 𝑢 =  𝐹(𝑥) , 𝑣 = 𝐺(𝑦) 

Pdf Gaussian Copula 

𝐶(𝑢, 𝑣)  =  
1

 ||1/2
 𝑒

1/2([𝑥  𝑦](𝐼 − −1)[
𝑥
𝑦])

 

When  𝑥 = −1(u), y=−1(v), with (𝑥) is the cumulative and normal standard distribution. 

At the same time, gaussian copula can describe as  equation (4): 



 

 

 

 

 

𝐶(𝑢1,…,𝑢𝑇) = 0,(0,1
−1(𝑢1),0,1

−1(𝑢2),…,0,1
−1(𝑢𝑇))  

0,(𝑥1,…,𝑥𝑇)= ∫ ∫ … ∫  
1

(2)𝑇/2 ||1/2  𝑒
−

1

2
[(𝑠1,…,𝑠𝑇)−1(

𝑠1
⋮

𝑠𝑇

)]
𝑥1

−∞

𝑥𝑇−1

−∞

𝑥𝑇

−∞
  

0,1(x) = ∫
1

√2
 𝑒−

1

2
𝑠2

 𝑑𝑠   , 𝑢𝑖 = 𝐹𝑖(𝑥𝑖)    
𝑥

−∞
  

𝐶(𝑢1,…,𝑢𝑇) = (0,1
−1𝐹1(𝑥1),0,1

−1𝐹2(𝑥2),…,0,1
−1𝐹𝑇(𝑥𝑇))  

if 𝐹𝑖(. )~𝜇𝑖,𝜎𝑖
2(. ), then 

𝐶(𝑢1,…,𝑢𝑇)   = (0,1
−1(𝜇

1,𝜎1
2
(𝑥1)),0,1

−1(𝜇
2,𝜎2

2
(𝑥2)),…,0,1

−1(𝜇
𝑇,𝜎𝑇

2
(𝑥𝑇)))  

=   (0,1
−1 (0,1 (

𝑥1−𝑁1

𝜎1
)) ,0,1

−1 (0,1 (
𝑥2−𝑁2

𝜎2
)) , … ,0,1

−1 (0,1 (
𝑥𝑇−𝑁𝑇

𝜎𝑇
)))  (4) 

Let 𝑋𝑖~𝐹 copula gauss is defined as  

𝐶Λ = ΦΛ(Φ−1(𝑢1), … , Φ−1(𝑢𝑇)),       (5) 

With:  

ΦΛ States the function of a cumulative distribution a multivariate normal with a 

covariance matrix Λ, 

Φ−1 inverse normal standard univariate CDF, and 𝑢𝑖 = 𝐹(𝑥𝑖)  

Probability density function (pdf) from 𝐹(𝑥) is 𝑓𝑋(𝑥),can be defined as: 

𝑓𝑋(𝑥) =
1

(2𝜋)
𝑇
2|∑|

1
2

𝑒−
1

2
(𝑥 𝜇)𝑇∑−1(𝑥  𝜇)

       (6) 

with  

𝑥′ = (𝑥1, 𝑥2, … , 𝑥𝑇) 

∑  = [
var(x1, x1)     cov(x1, x2)    ⋯ cov(x1, xT)

⋮                     ⋱ ⋮ ⋮
cov(xT, x1)             ⋯                 ⋯ var(xT, xT)

]  

Then: 

𝐹𝑋(𝑦1, 𝑦2 , … , 𝑦𝑇) = ∫ ∫ … ∫ 𝑓(𝑥)
𝑦1

−∞
𝑑𝑥1𝑑𝑥2 … 𝑑𝑥𝑇

𝑡𝑇−1

−∞

𝑦𝑇

−∞
  

𝐶Λ = ∫ … ∫ 𝑓(𝑥)
Φ−1(𝑢1)

−∞
𝑑𝑥1 … 𝑑𝑥𝑇

Φ−1(𝑢𝑇)

−∞
        (7) 

 

Since the correlation between variables is unknown, the correlation is approximated by utilizing 

the profile information of the data, which in this case is a partition time index. The variance-

covariance matrix is approximated by the Kernel matrix, which has a similar trait, namely 

positive and symmetric definite. The Kernel matrix is chosen to maximize the likelihood 

function value of Copula Gauss. The kernel functions used are: 

Λ𝑇(𝑝, 𝑞) =  ℎ𝑗  𝑒

|𝑥𝑝−𝑥𝑞|
2

ℎ𝑗        (8) 

From the previously obtained Copula Gauss, we can obtain the loglikelihood function to obtain 

kernel parameters as an approximation of the variance-covariance matrix. 

𝑙𝑜𝑔 𝐶𝛬𝑇
(𝑢1, … , 𝑢𝑇) =  

1

2
log|Λ𝑇| +

1

2
 𝑧𝑇(𝐼 − Λ𝑇

−1) 𝑧      (9) 

Next, we will find the parameter estimate h that maximizes likelihood function with the 

following algorithm. 

 

Algorithm 

1. Choose ℎ𝑗 



 

 

 

 

2. Get the kernel 

   Λ𝑇(𝑝, 𝑞) =  ℎ𝑗  𝑒

|𝑥𝑝−𝑥𝑞|
2

ℎ𝑗 𝑤𝑖𝑡ℎ   𝑝, 𝑞 = 1,2, … , 𝑇 

 

3. Determine the lower triangular matrix L by Cholesky factorization on the Λ𝑇  matrix 

already obtained above 

Λ𝑇 = 𝐿𝐿′ 

4. Complete the equation  𝐿𝑣 = 𝑧. 

with 𝑧𝑗 = ϕ−1(𝑢𝑗)  , 𝑢𝑗 = 𝐹(𝑥𝑗)  in this case 𝑥𝑗 use the data of  𝜖𝑖,𝑗 

Calculate  𝐿𝑗 = − ∑ log 𝐿𝑗𝑗  𝑇
𝑗=1 + 

1

2
𝑧′𝑧 −

1

2
𝑣′𝑣 

5. Select h with condition has the largest 𝐿𝑗. 

 

However, , we propose Copula binding (Ma & Sun, 2011) to combine two or more copulas. 

Especially for Copula Gauss Bivariate, pdf from copula can be written as: 

𝑐(𝑢, 𝑣: 𝜚) ≔
𝜕2

𝜕𝑢𝜕𝑣
𝐶(𝑢, 𝑣: 𝜚) =

𝜑2(Φ−1(𝑣);Φ−1(𝑣);𝜚)  

𝜑(Φ−1(𝑢);φ−1(Φ−1);𝑣)
  

=
1

√1−𝜚2
exp(

2𝜚Φ−1(𝑢)Φ−1(𝑣)−𝜚2(Φ−1(𝑢)2Φ−1(𝑣)2)

2(1−𝜚2)
    (10 

 With CDF as follows: 

𝐶(𝑢, 𝑣: 𝜚) = ∫ ∫ 𝑐(𝑠, 𝑡; 𝜚)𝑑𝑡 𝑑𝑠
𝑣

0

𝑢

0
  

In this case, 𝜌 is a measure of Pearson's dependence. For elliptic copulas such as Gaussian 

Copula, 𝜌 can be obtained as follows: 

𝜌 = sin (
𝜋

2
𝜏)      (11) 

With 𝜏 representing coefficient of correlation Kendall’s Tau. Suppose (𝑥1, 𝑦1), … (𝑥𝑛 , 𝑦𝑛) the 

set of random variables of X and Y respectively, so that each pair of values (𝑥𝑖 , 𝑦𝑖) is single. 

Any observation pair (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) are defined to be concordant if the order of each 

element is equal, in other words 𝑥𝑖 < 𝑥𝑗 and 𝑦𝑖 < 𝑦𝑗   or 𝑥𝑖 > 𝑥𝑗 and 𝑦𝑖 > 𝑦𝑗. Kendall's Tau is 

calculated as follows: 

𝜏 =
#𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛−# Disconcordant correlation 

1

2
(𝑛)(𝑛−1)

      (12) 

 

3. PREDICTION  

In this section, we will provide a predictive explanation of predictions using copula(Patton, 

2013). The formula of the conditional distribution function of AR-N.GARCH model error for 

𝐹(𝜀2|𝜀1). 

𝐹(𝜀2|𝜀1) =

𝜕

𝜕𝑢1
𝐶(𝑢1,𝑢2)

𝑐(𝑢1)=1
  

= ∫ 𝑓(Φ−1(𝑢1), 𝑠2)𝑑𝑠2
𝜕Φ−1(𝑢1)

𝜕𝑢1

Φ−1(𝑢2)

−∞
  

= ∫ 𝑓(Φ−1(𝑢1), 𝑠2)𝑑𝑠2
1

𝜙(Φ̃(𝑢1))

Φ−1(𝑢2)

−∞
           …(*) 

Let 𝑦1 = Φ−1(𝑢1), then the equation (*) becomes: 

∫
1

(2𝜋)|∑|
1
2

𝑒
−

1

2
(𝑦1   𝑥2) ∑−1(

𝑦1 
𝑥2

)𝑦1

−∞

1

𝜙(Φ̃(𝑢1))
      ….(**) 



 

 

 

 

Since pdf Φ is standard normal distribution, then the equation (**) is probably positive. Then, 

we get the conditional distribution function formula from AR-N.GARCH model error for 

𝐹(𝜀3|𝜀2 𝜀1). 

𝐹(𝜀3|𝜀2 𝜀1) =

𝜕2

𝜕𝑢1𝜕𝑢2
𝐶(𝑢1, 𝑢2, 𝑢3)

𝑐(𝑢1, 𝑢2)
 

=
∫ 𝑓(Φ−1(𝑢1),Φ−1(𝑢2),𝑠3)𝑑𝑠3

𝜕Φ−1(𝑢1)

𝜕𝑢1

Φ−1(𝑢3)
−∞ .

𝜕Φ−1(𝑢2)

𝜕𝑢2

exp (−
1

2
(𝑦1  𝑦2)(Λ−1−I)(

𝑦1 
𝑦2

))|Λ|
−

1
2

  

=
∫ 𝑓(𝑦1,𝑦2,𝑠3)𝑑𝑠3

1

𝜙(y1)
𝑦3

−∞ .
1

𝜙(y2)

exp(−
1

2
(𝑦1  𝑦2)(Λ−1−I)(

𝑦1 
𝑦2

))|Λ|
−

1
2

       is positive 

=
∫

𝑓(𝑦1,𝑦2,𝑠3)

ℎ(𝑦1,𝑦2)
𝑑𝑠3

ℎ(𝑦1,𝑦2)

𝜙(y1)𝜙(y2)
𝑦3

−∞

exp(−
1

2
(𝑦1  𝑦2)(Λ−1−I)(

𝑦1 
𝑦2

))|Λ|
−

1
2

  

=
∫

𝑓(𝑦1,𝑦2,𝑠3)

ℎ(𝑦1,𝑦2)
𝑑𝑠3𝐶Λ(𝑢1,𝑢2)

𝑦3
−∞

exp(−
1

2
(𝑦1  𝑦2)(Λ−1−I)(

𝑦1 
𝑦2

))|Λ|
−

1
2

  

= ∫
𝑓(𝑦1,𝑦2,𝑠3)

ℎ(𝑦1,𝑦2)
𝑑𝑠3

𝑦3

−∞
       (13) 

Relationship between 𝑓𝑋(𝑥) pdf normal standard distribution with pdf copula. 

𝑐Λ(𝑢1, 𝑢2) =
ℎ(𝑥,𝑦)

𝑓(𝑥)𝑔(𝑦)
 =

ℎ(𝐹−1(𝑢1),𝐹−1(𝑢2))

𝑓(𝐹−1(𝑢1))𝑔(𝐹−1(𝑢2))
=

ℎ(Φ−1(𝑢1),Φ−1(𝑢2))

𝜙(Φ−1(𝑢1))𝜙(Φ−1(𝑢2))
   (14) 

In general, let be known the random variable 𝑌𝑘 , 𝑘 = 1, … , 𝑛. We want to know the predicted 

value of 𝑌𝑘 if the previous information is known. The conditional distribution function of Y 

can be written : 

𝑃(𝑌𝑘 ≤ 𝑦𝑘|𝑌1, … 𝑌𝑘−1) = 𝐶𝑛 ({
𝑔𝑘({𝑢𝑖

(𝑗)}
𝑖=1

𝑘
)

𝑐𝑘−1({𝑢𝑖
(𝑗)}

𝑖=1

𝑘
)
}

𝑗=1

𝑛

)      (15) 

With the form of gk as follows: 

𝑔𝑘 ({𝑢𝑖
(𝑗)}

𝑖=1

𝑘
) =

𝜕𝑘−1

𝜕𝑢𝑘−1 … 𝜕𝑢1

𝐶𝑘 ({𝑢𝑖
(𝑗)}

𝑖=1

𝑘
) 

= [
𝜕𝑘−1

𝜕𝑧𝑘−1 … 𝜕𝑧1

0;({𝑧1}𝑖=1
𝑘 )] ∏

𝜕𝑧𝑖

𝜕𝑢𝑖

𝑘−1

𝑖=1

 

= ∫ ϕ0,(𝑧1, … , 𝑧𝑘−1, 𝛼)𝑑𝛼

𝑧𝑘

−∞

[∏
𝜕𝑧𝑖

𝜕𝑢𝑖

𝑘−1

𝑖=1

]

−1

 

= [∏
𝜕𝑧𝑖

𝜕𝑢𝑖

𝑘−1

𝑖=1

]

−1

∫
ϕ0,(𝑧1, … , 𝑧𝑘−1, 𝛼)

ϕ0,A(𝑧1, … , 𝑧𝑘−1)

𝑧𝑘

−∞

 ϕ0,A(𝑧1, … , 𝑧𝑘−1)𝑑𝛼 

=
ϕ0,(𝑧1, … , 𝑧𝑘−1, 𝛼)

∏ ϕ0,1(𝑧𝑖)𝑘−1
𝑖=1

 ∫ ϕμ′,σ′(𝛼)𝑑𝛼

𝑧𝑘

−∞

 

= 𝑐𝐴(𝑢1, … , 𝑢𝑘−1)μ′,σ′(𝑧𝑘)     

 (16) 

where: 



 

 

 

 

𝑢𝑖 = 𝐹𝑌𝑖
(𝑌𝑖) 

𝑧𝑖 = 0;1
−1(𝑢𝑘

(𝑗)) 

𝜇′ = 𝒌𝑘
𝑡 (𝒌(𝑥𝑘 , 𝑥𝑘))

−1
((

𝑧1

⋮
𝑧𝑘

) − 𝜇𝑘)  

𝜎′ = − 𝒌𝑘
𝑡 𝐾−1𝒌𝑘

 − 𝒌(𝑥𝑘 , 𝑥𝑘) 

 

So, the conditional distribution function of Y becomes 

𝑃(𝑌𝑘 ≤ 𝑦𝑘|𝑌1, … 𝑌𝑘−1) = 𝐶𝑛 ({
𝑔𝑘({𝑢𝑖

(𝑗)}
𝑖=1

𝑘
)

𝑐𝑘−1({𝑢𝑖
(𝑗)}

𝑖=1

𝑘
)
}

𝑗=1

𝑛

)   

= 𝐶𝑛 ({
𝑐𝑘−1;𝐴({𝑢𝑖

(𝑗)}
𝑖=1

𝑘
)

μ′,σ′(𝑧𝑘)

𝑐𝑘−1({𝑢𝑖
(𝑗)}

𝑖=1

𝑘
)

}

𝑗=1

𝑛

)   

= 𝐶𝑛 ({μ′,σ′(0;1
−1(𝑢𝑘

(𝑗)))}
𝑗=1

𝑛
)     

 (17) 

By changing the distribution function μ; into standard normal distribution and using Gaussian 

copula then the equation becomes 

𝑃(𝑌𝑘 ≤ 𝑦𝑘|𝑌1, … 𝑌𝑘−1) = 𝐶𝑛 ({μ′,σ′(0;1
−1(𝑢𝑘

(𝑗)))}
𝑗=1

𝑛
)  

= 𝐶𝑛 ({0;1 (
0;1

−1(𝑢𝑘
(𝑗))−𝜇′

𝜎′ )}
𝑗=1

𝑛

)  

=  ({−1 (0;1 (
0;1

−1(𝑢𝑘
(𝑗))−𝜇′

𝜎′
))}

𝑗=1

𝑛

)  

=  ({
0;1

−1(𝑢𝑘
(𝑗))−𝜇′

𝜎′
}

𝑗=1

𝑛

)      

 (18) 

With probability density function of Y: 

𝑃({𝑌𝑘 = 𝑦𝑘}𝑖=1
𝑘 ) =  ∏ 𝑐𝑛 ({

𝑔𝑠 ({𝑢𝑖
(𝑗)}

𝑖=1

𝑠
)

𝑐𝑠−1({𝑢𝑖
(𝑗)}𝑖=1

𝑠−1)
}

𝑗=1

𝑛

)

𝑘

𝑠=1

∏ [
𝑐𝑠 ({𝑢𝑖

(𝑗)}
𝑖=1

𝑠
)

𝑐𝑠−1({𝑢𝑖
(𝑗)}𝑖=1

𝑠−1)
 𝑓

𝑌𝑠
(𝑗)(𝑌𝑠

(𝑗))]

𝑛

𝑗=1

  

=  ∏ 𝑐𝑛 ({
𝑐𝑠−1;𝐴 ({𝑢𝑖

(𝑗)}
𝑖=1

𝑠
)μ′,σ′(𝑧𝑠)

𝑐𝑠−1({𝑢𝑖
(𝑗)}𝑖=1

𝑠−1)
}

𝑗=1

𝑛

)

𝑘

𝑠=1

∏ [
𝑐𝑠 ({𝑢𝑖

(𝑗)}
𝑖=1

𝑠
)

𝑐𝑠−1({𝑢𝑖
(𝑗)}𝑖=1

𝑠−1)
 𝑓

𝑌𝑠
(𝑗)(𝑌𝑠

(𝑗))]

𝑛

𝑗=1

  

=  ∏ 𝑐𝑛
𝑘
𝑠=1 {μ′,σ′(𝑧𝑠)}

𝑗=1

𝑛
∏ [

𝑐𝑠({𝑢𝑖
(𝑗)}

𝑖=1

𝑠
)

𝑐𝑠−1({𝑢𝑖
(𝑗)}

𝑖=1

𝑠−1
)
 𝑓

𝑌𝑠
(𝑗)(𝑌𝑠

(𝑗))]𝑛
𝑗=1    

=  ∏ 𝑒𝑥𝑝 (−
1

2
𝑌𝑡(σs

′ −1
−𝑛

𝑗=1

I)𝑌) |σs
′ |−1/2 ∏ [

𝑐𝑠({𝑢𝑖
(𝑗)}

𝑖=1

𝑠
)

𝑐𝑠−1({𝑢𝑖
(𝑗)}

𝑖=1

𝑠−1
)
 𝑓

𝑌𝑠
(𝑗)(𝑌𝑠

(𝑗))]𝑛
𝑗=1   (19) 

where: 

𝑌 = {𝑌(𝑗)}  



 

 

 

 

 𝑌(𝑗) =
0;1

−1(𝑢𝑘
(𝑗))−𝜇′

𝜎′    with j=1,2,…,n. 

Also, probability density function from Y (Y is Independent): 

𝑃({𝑌𝑘 = 𝑦𝑘}𝑖=1
𝑘 ) =  ∏ [𝑐𝑠 ({𝑢𝑖

(𝑗)}
𝑖=1

𝑘
) ∏ 𝑓

𝑌𝑠
(𝑗)(𝑌𝑠

(𝑗))𝑘
𝑠=1 ]𝑛

𝑖=1     (20) 

 

According to Probability Integral Transformation (PIT), if X a continuous random variable with 

the cumulative distribution function 𝐹𝑋 then 𝑌 = 𝐹𝑋(𝑋)~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1).  It means the 

transformation is indeed following the original distribution of the data, the set of values of the 

corresponding cumulative distribution function will be close to the distribution of Uniform (0.1. 

Also, to check the distribution function is following uniform (0.1). We are using Kolmogorov 

Smirnov test 

𝐾𝑆𝑑𝑎𝑡𝑎 =
∑ (𝐹𝑒𝑠𝑡(𝑥𝑖)−𝐹𝑒𝑚(𝑥𝑖)) 2𝑇

𝑖=1

𝑇
 ;     𝐹𝑒𝑚(𝑥) =

∑ (𝐼𝑥𝑖≤𝑥)  𝑇
𝑖=1

𝑇+1
         (21) 

𝐹𝑒𝑠𝑡 is the distribution to be tested for compatibility 

Then constructed a confidence interval in the following way: 

for i:= 1 : Ninterval  
Generate data of Ninterval with size 𝑁𝑑𝑎𝑡𝑎   node of the estimated distribution 

with the estimate parameter, suppose the data is 

𝑤𝑖,𝑗, 𝑗 = 1, 2, … , 𝑁𝑑𝑎𝑡𝑎  

Calculate  𝐾𝑆(𝑖) =
∑ (𝐹𝑒𝑠𝑡(𝑤𝑖,𝑗)−𝐹𝑒𝑚(𝑤𝑖,𝑗)) 2

𝑁𝑑𝑎𝑡𝑎
𝑗=1

𝑁𝑑𝑎𝑡𝑎
 

endfor 

Sort KS(1) to KS(Ninterval), select upper limit and lower limit based on interval levels 

according the significance of level. The magnitued of  𝑁𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  is determined in such 

a way that  the test results are stable / convergent. 

 

4. The Step Construction of Copula  Binding 

4.1.1 Copula Univariate  

1. Perform a fitting distribution to know the distribution of data errors. 

a. Estimated distribution parameters desired 

b. Distribution checking 

i.  PIT (Probability Integral Transform) 

ii. Kolmogorov Smirnov 

c. If the distribution test results that the distribution does not match the data, 

then repeat process a. 

2. Estimated kernel parameters 

a. Select ℎ𝑗 (ℎ𝑗 = 𝑗 ∗ 0.01, 𝑗 = 1, 2, … , 𝑛 

b. Get the kernel 

    

Λ𝑇(𝑝, 𝑞) =  ℎ𝑗  𝑒

|𝑥𝑝−𝑥𝑞|
2

ℎ𝑗 dengan   𝑝, 𝑞 = 1,2, … , 𝑇 

 

c. Determine the lower triangular matrix L by Cholesky factorization on the Λ𝑇   matrix 

obtained above. 

Λ𝑇 = 𝐿𝐿′ 

d. Complete the equation 𝐿𝑣 = 𝑧. 

With  𝑧𝑗 = ϕ−1(𝑢𝑗)  , 𝑢𝑗 = 𝐹(𝑥𝑗)  in this case 𝑥𝑗  is our data 𝜖𝑖,𝑗 



 

 

 

 

Calculate 𝐿𝑗 = − ∑ log 𝐿𝑗𝑗  𝑇
𝑗=1 +  

1

2
𝑧′𝑧 −

1

2
𝑣′𝑣 

e. Select h  with criteria has the largest 𝐿𝑗 

f. Using the estimated of h obtained in step 5 to get the kernel  

 

3. Search for the cumulative distribution function of the marginal function by utilizing 

Copula Gaussian. 

Suppose 𝐾𝑘+1 = (
𝐾𝑘 𝒌𝑘

𝒌𝑘
𝑡 𝒌(𝑥𝑘 , 𝑥𝑘)

) and 𝜇𝑘+1 = (
𝝁𝑘

𝜇𝑘+1
) 

𝜇′ = 𝒌𝑘
𝑡 (𝒌(𝑥𝑘 , 𝑥𝑘))

−1
((

𝑧1

⋮
𝑧𝑘

) − 𝝁𝑘) 

𝜎′ = − 𝒌𝑘
𝑡 𝐾𝑘

−1𝒌𝑘
 − 𝒌(𝑥𝑘 , 𝑥𝑘) 

�̃�𝑘 = 𝐹(𝜖1,𝑘|Ω𝑘−1) = μ′,σ′(0;1
−1(𝑢𝑘

(𝑗))) 

In the same way, �̃�𝑘 = 𝐹(𝜖2,𝑘|Ω𝑘−1) 

4. Testing the PIT (by utilizing the KS test for uniform distribution) on the marginal 

cumulative distribution function obtained to determine the congruent compatibility of 

Gaussian used. If not suitable, other Copulas may be used. 

5. Looking at the characteristics of pair data �̃�𝑘  and �̃�𝑘 . One way is to look at the scatter 

plot. After that can be predicted what kind of copula suitable to be binding copula. 

 

4.1.2 Copula Bivariate  

For example, Copula gauss is used. From the data of �̃�𝑘  and �̃�𝑘, we can obtain the parameters 

of Kendall’s Tau (𝜏 )𝑎𝑛𝑑 Pearson’s Correlation Coefficient( 𝜌) 

For  𝑗 = 1, 2, … , 𝑛  do the following: 

1.  Generate as many 𝑛𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟  with pairs  𝑢�̂̃� = 𝐹(𝜖1,𝑡|Ω𝑡−1) and 𝑣�̂̃� =

𝐺(𝜖2,𝑡|Ω𝑡−1) which distributed Copula Gauss with parameter 𝜌.  

2. Find expectation, upper also lower quartile to gain prediction expectations and 95% 

confidence interval 

3. Perform the following process for the values obtained at no 2: 

a. Calculate   𝑧1,�̂� = Φ0,1
−1(𝑢�̂̃�) and  𝑧2,�̂� = Φ0,1

−1(𝑣�̂̃�) 

b. Calculate 𝜖𝑖,�̂� = 𝑡𝜇𝜖𝑖
,𝜎𝜖𝑖

,𝜈𝜖𝑖

−1 (Φ0,1
−1 (Φ𝜇′,𝜎′

−1 ( 𝑧𝑖,�̂�) )) for 𝑖 = 1, 2 

with 𝜇′ = 𝒌𝒊𝑘
𝑡 (𝒌𝒊(𝑥𝑘 , 𝑥𝑘))

−1
((

𝑧1

⋮
𝑧𝑘

) − 𝜇𝑘)  

and 𝜎′ = − 𝒌𝒊𝑘
𝑡 𝐾𝑖

−1𝒌𝒊𝑘
 − 𝒌𝒊(𝑥𝑘 , 𝑥𝑘) 

with  𝐾1 matrix kernel for data 1 and  𝐾2 for data 2 

c. Using  AR(1)-N.GARCH(1,1) to obtain a predicted value 𝑌𝑡 = 𝜇 + 𝛼𝑌𝑡−1 +
𝜎𝑡𝜖𝑡 , 𝜖𝑡~𝑁(0,1) 

𝜎𝑡
2 = 𝛼0 + 𝛽1(𝑌𝑡−1 − 𝜇 − 𝛼𝑌(𝑡−2) )

2
+ 𝛽2𝜎𝑡−1

2  

d. Obtained expectations and 95% of confidence interval 

 

 

5. CONCLUSION 



 

 

 

 

In this work, we have explained about compact model Copula Gaussian and AR(1)-

N.GARCH(1,1). Also, we give illustrated to build the model based on a combination of 

traditional time series ARIMA with copula. As we know that time series with heavy-tail 

marginal distribution and complex underlying dependency structure is urgently needed, 

especially in the area of financial. Further, the estimation of model parameters must be relatively 

accurate and straightforward to allow this tool to be used in a high-throughput. At the same time, 

copula functions allows the specification and estimation of the dependency structure to be easily 

separated from those of the marginal distributions. In a nutshell, Our approach is flexible 

intuitive. It allows us to study covariate effects on the strength of dependence directly. 

 

References 

Caraka, R. ., Supari, & Tahmid, M. (2018). Copula-Based Model for Rainfall and El- Niño in 

Banyuwangi Indonesia. Journal of Physics: Conference Series (JPCS), 1008(1). 

https://doi.org/:10.1088/1742-6596/1008/1/012025 

Caraka, R. ., Yasin, H., Sugiyarto, W., Sugiarto, & Ismail, K. M. (2016). Time Series Analysis 

Using Copula Gauss and AR(1)-N.GARCH(1,1). MEDIA STATISTIKA, 9, 01–13. 

https://doi.org/DOI: 10.14710/medstat.9.1.1-13 

Choroś, B., Ibragimov, R., & Permiakova, E. (2010). Copula Estimation. Copula Theory and 

Its Applications SE - 3, 198, 77–91. https://doi.org/10.1007/978-3-642-12465-5_3 

Genest, C., & Favre, A.-C. (2007). Everything You Always Wanted to Know about Copula 

Modeling but Were Afraid to Ask. Journal of Hydrologic Engineering, 12(4), 347–368. 

https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347) 

Kazianka, H. (2013). SpatialCopula: A Matlab toolbox for copula-based spatial analysis. 

Stochastic Environmental Research and Risk Assessment, 27(1), 121–135. 

https://doi.org/10.1007/s00477-012-0571-3 

Kolev, N., & Paiva, D. (2009). Copula-based regression models: A survey. Journal of 

Statistical Planning and Inference, 139(11), 3847–3856. 

https://doi.org/10.1016/j.jspi.2009.05.023 

Ma, J., & Sun, Z. (2011). Mutual information is copula entropy. Tsinghua Science and 

Technology, 16(1), 51–54. https://doi.org/10.1016/S1007-0214(11)70008-6 

Patton, A. (2013). Copula methods for forecasting multivariate time series. Handbook of 

Economic Forecasting, 2, 899–960. https://doi.org/10.1016/B978-0-444-62731-

5.00016-6 

 


