IOWA Unemployment Insurance Claimants: A Comparison between α-Sutte Indicator and Other Forecasting Methods

Ansari Saleh Ahmar¹, Abdul Rahman², Heri Nurdiyanto³, Darmawan Napitupulu⁴, Dahlan Abdullah⁵, Muhammad Ikhsan Setiawan⁶, Janner Simarmata⁷, Rahmat Hidayat⁸, Wahyudin Albra⁹, Robbi Rahim¹⁰

{ansarisaleh@unm.ac.id, abdul.rahman@unm.ac.id, herinurdiyanto@gmail.com, darwan.na70@gmail.com, dahlan@unimal.ac.id, ikhsan.setiawan@narotama.ac.id, rahmat@polinpdg.ac.id, wahyuddin@unimal.ac.id, usurobbi85@zoho.com}

Department of Statistics, Universitas Negeri Makassar, Makassar, Indonesia¹ Department of Mathematics, Universitas Negeri Makassar, Makassar, Indonesia² Department of Informatics, STMIK Dharma Wacana, Metro Lampung, Indonesia³ Research Center for Quality System and Testing Technology, Indonesian Institute of Sciences, Indonesia⁴ Department Informatics, Universitas Malikussaleh, Lhokseumawe, Indonesia⁵ Department of Civil Engineering, Narotama University, Indonesia⁶ Universitas Negeri Medan, Medan, Indonesia⁷ Department of Information Technology, Politeknik Negeri Padang, Indonesia⁸ Department of Management, Universitas Malikussaleh, Aceh, Indonesia⁹ Sekolah Tinggi Ilmu Manajemen Sukma, Medan, Indonesia¹⁰

Abstract. This UI program if it isn't managed well so that can affect the insurance company performance and can make the company loss. One of the ways to know the development of this insurance claim for each month is that by forecasting the people who are interested in this insurance. The aim of this study is forecasting unemployment insurance claimants in IOWA, USA. This research uses ARIMA, NNETAR, Robus Exponensial Smooting, Theta Model, and α -Sutte Indicator forecasting method. The use of this method is intended to be compared the level of accuracy from various forecasting methods. To see the quality of the forecast, so that it will be used a comparison based on MSE score. The lower MSE Score, the better accuracy level that they have. The result of this study is α -Sutte Indicator is more appropriate in forecasting data unemployment insurance claim in IOWA. The accuracy level of α -Sutte Indicator is better if it is compared to any other methods.

Keywords: Forecasting, unemployment insurance claimants, a-Sutte Indicator, ARIMA

ICASI 2018, April 23-24, Medan, Indonesia Copyright © 2018 EAI ISBN: 978-1-63190-162-1

1 Introduction

The thing that becomes the main problem of a country is the high level of unemployment or no jobs. This problem makes every country feel confused to find the solution. The higher unemployment is caused by lots of age productive citizens who don't have a job. This is caused by the inappropriate competence that they have with the necessary competence. Besides, the high number of dropout becomes one of the causes of the high number of employment in a country.

The unemployment becomes the common matter from almost every area. The workers are labors from a company that have outsourcing status can possibly be fired because there is no clear working contract between the company and the labor. Outsourcing labor can also be fired at any time and of course different from permanent employee. Outsourcing labor doesn't have the right to receive pension allowance and other allowances.

According to Iqbal and Dad [1], Offshore outsourcing is a phenomenon that has been going for a long time and many multinational companies use this strategy to reduce operational costs. Outsourcing is a process of handover of one or more business process to outside vendors that are provided by the third parties to run the business process, for instance at cleaning service and security.

In big cities, most of the workers pick job insurance. In other words, this worker insurances himself/herself so that later on if he/she doesn't work so that they can claim the insurance. In big cities for example in IOWA United States, the worker who resigns from the job and has the ability to work, they can get temporary salary through Unemployment Insurance (UI) program. This UI program will give job seekers a payment to help them in covering living expenses temporarily while looking for a new job.

This UI program if it isn't managed well so that can affect the insurance company performance and can make the company loss. One of the ways to know the development of this insurance claim for each month is that by forecasting the people who are interested in this insurance. By the existence of the data forecasting result, the insurance company can form a plan and make a decision towards the issue in the future. The method that is often used in forecasting i.e. ARIMA [2–5], ARIMA-AO [6], Holt-Winters [3], Neural Network Time Series [7, 8], α -Sutte Indicator [9], and other methods [10].

The forecasting about unemployment insurance has been researched by other academicians, for instance: Mandy conducts a research about unemployment insurance forecast towards Tennessee case study [11], Barnichon conducts a research about The Ins and Outs of forecasting unemployment based on labor force flows [12], and the last one by Huang who discusses about forecasting the US unemployment rate with job openings index, this research uses ARIMA, ARIMAX, and VAR method in its forecasting process [13].

a-Sutte Indicator

 α -Sutte Indicator is a new forecasting method that is currently developed by using 4 previous data. The uses of previous data is intended to accommodate the unstable data movement. Thus, the formula of α -Sutte Indicator mathematically is as follows [4, 14]:

where: $\delta = a_{t-4}$ $\alpha = a_{t-3}$ $\beta = a_{t-2}$ $\gamma = a_{t-1}$ $\Delta x = \alpha - \delta = a_{t-3} - a_{t-4}$ $\Delta y = \beta - \alpha = a_{t-2} - a_{t-3}$ $\Delta z = \gamma - \beta = a_{t-1} - a_{t-2}$ $a_t = \text{data at } t \text{ time}$ $a_{t-k} = \text{data at } (t-k) \text{ time}$

2 Methods

This research uses ARIMA, NNETAR, Robus Exponensial Smooting, Theta Model, and α -Sutte Indicator forecasting method. The use of this method is intended to be compared the level of accuracy from various forecasting methods. To see the quality of the forecast, so that it will be used a comparison based on MSE score. The lower MSE Score, the better accuracy level that they have.

This research will use dataset unemployment insurance claim in IOWA, USA. This dataset is acquired from the website that is provided by Iowa Workforce Development - Labor Market Information Division [15]. This dataset consists of 221 data i.e. January 2000 – May 2018. In the process of data forecasting so that R Package will be used that is sutteForecastR and RcmdrPlugin.sutteForecastR [16–18].

3 Result and Discussion

In conducting the forecast, the first step that has to be done is by doing a data plotting to see the data characteristics.

Fig. 1. Plotting data unemployment insurance claim in IOWA

In figure 1, it can be seen that the data is unstable (stationer) in its average or even its variance. In addition, it can be seen that the sudden increase of the unemployment data happens around 2009 - 2010.

After conducting the data plotting, the next step is data forecasting by using R Package i.e. sutteForecastR help. This package is R Package from α -Sutte Indicator method. sutteForecastR is R package which compare several forecasting methods i.e., α -Sutte Indicator, ARIMA, Holt-Winters, NNETAR, Robust Exponential Smooting, and Theta Model. Thus, the result is as follows.

> library(sutteForecastR)
> alpha.sutte(data3.ts)
\$Tes_Data
[1] 14144 21765 30013 30802 27294 19957 13372

\$Forecast_AlphaSutte

[1] 10841.09 13817.73 25177.79 37009.90 37335.17 29648.98 17058.78

\$Forecast_AutoARIMA

	_					
Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95	
215	14602.75	10406.42	6 18799.0	8 8185.	0242 21020	.48
216	19813.94	12239.414	4 27388.4	8 8229.	6997 31398	.19
217	24126.93	13493.65	7 34760.2	21 7864.	7405 40389	.12
218	24966.10	12269.50	3 37662.7	0 5548.	3292 44383	.88
219	23094.99	9643.228	36546.7	6 2522.2	2932 43667.	.69
220	21534.68	7968.247	35101.1	1 786.6	126 42282.7	74
221	22478.58	8890.035	36067.1	3 1696.0	5930 43260.	47
\$Foreca	ast_HoltW	inters				
Point	Forecast	Lo 80	Hi 80	Lo 95	5 Hi 95	
215	10859	4175.339	17542.66	637.	2225 2108	0.78
.						

216 9607 -5338.120 24552.12 -13249.5894 3	32463.59

217 8355 -16652.970 33362.97 -29891.3893 46601.39

218 7103 - 29504.919 43710.92 - 48883.9812 63089.98

219 5851 -43716.357 55418.36 -69955.7309 81657.73 4599 -59159.063 68357.06 -92910.5428 102108.54

220 221

3347 -75735.144 82429.14 -117598.7026 124292.70

\$Forecast_NNETAR

Poir	nt Forecast
215	14276.26
216	23856.43
217	32637.93
218	34066.50
219	31116.34
220	23586.88
221	18517.00

\$Forecast_Robust_exponential_smoothing

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95	
21	5 11251.067	8860.04	40 13642	2.09 759	4.3130 14	907.82
21	6 10389.391	7111.13	96 13667	.64 537	5.7381 15	403.04
21	7 9527.715	5633.473	84 13421	.96 3571	.9861 154	483.44
21	8 8666.040	4304.977	4 13027	.10 1996	.3704 153	335.71
21	9 7804.364	3076.047	4 12532	.68 573	.0276 150	35.70
22	0 6942.689	1919.757	6 11965	.62 -739	.2215 146	524.60
22	1 6081.013	818.940	8 11343.	09 -1966	.6319 141	28.66

\$Forecast_Theta

Poin	t Forecast	Lo 80	Hi 80	Lo 95	Hi 95
215	12105.72	4988.126	3 19223.	31 1220	.302 22991.13
216	12100.31	2035.019	3 22165.	60 -3293	3.223 27493.84
217	12094.90	-232.305	3 24422.1	1 -6757	.934 30947.74
218	12089.49	-2144.620	0 26323.	61 -967	9.704 33858.69
219	12084.09	-3830.057	4 27998.	23 -1225	4.496 36422.67
220	12078.68	-5354.334	3 29511.	69 -1458	2.813 38740.17
221	12073.27	-6756.490	04 30903.	03 -1672	4.363 40870.90

\$AutoARIMA

Series: al_mi_10 ARIMA(3,0,3) with non-zero mean

Coefficients:

ar2 ar3 ma1 ma2 ma3 ar1 mean 1.7561 -1.6458 0.7203 -0.2534 0.7853 0.2832 27674.463 s.e. 0.0642 0.0856 0.0589 0.0847 0.0480 0.0782 2308.836

sigma² estimated as 10721757: log likelihood=-2035.73 AIC=4087.46 AICc=4088.16 BIC=4114.38

\$HoltWinters Holt-Winters exponential smoothing with trend and without seasonal component.

Call: HoltWinters(x = al_mi_10, gamma = FALSE)

Smoothing parameters: alpha: 1 beta : 1 gamma: FALSE

Coefficients: [,1]

a 12111 b -1252

\$NNETAR Series: al_mi_10 Model: NNAR(13,7) Call: nnetar(y = al_mi_10)

Average of 20 networks, each of which is a 13-7-1 network with 106 weights options were - linear output units

sigma² estimated as 491972

\$Robust_exponential_smoothing
ROBETS(M,A,N)

Call: robets(y = al_mi_10)

Smoothing parameters: alpha = 0.9956beta = 0.0021

Initial states: sigma = 0.18331 = 25060b = -1309

sigma: 0.2253

robAIC robAICc robBIC 4675.355 4675.412 4682.087

\$Theta_Model

Theta

Call:

forecast::ets(y = y, model = "ANN", opt.crit = "mse")

Smoothing parameters: alpha = 0.9999

Initial states: l = 20421.7235

sigma: 5553.885

AIC AICc BIC 4842.634 4842.748 4852.732

Fig. 2. Output Result of sutteForecastR

From the output result of sutteForecastR, it can be seen that the acquired model for unemployment insurance claim forecasting i.e. ARIMA(3,0,3) with non-zero mean; HoltWinters(α =1, β =1); NNAR(13,7); ROBETS(M,A,N); Theta (α =0.9999). Therefore, the comparison result of accuracy level of this forecasting method is displayed on table 1.

Table 1. The comparison of Forecasting Accuracy Level from Various Forecasting Methods

Metode	Mean Squared Error (MSE)
α-Sutte Indicator	4708563,194
ARIMA(3,0,3) with non-zero mean	75761678,297
Holt-Winters(α =1, β =1)	250262050,138
NNAR(13,7)	289303209,136

Metode	Mean Squared Error (MSE)
ROBETS(M, A, N)	220646298,135
Theta (α=0.9999)	96594696,765

From the table 1, it can be seen that α -Sutte Indicator method has higher accuracy than other methods; this can be seen from the MSE score from MSE and from α -Sutte Indicator that is smaller than any other methods. If it is based on accuracy level, the forecasting method that has the best accuracy simultaneously is α -Sutte Indicator; ARIMA(3,0,3) with non-zero mean; Theta (α =0.9999); ROBETS(M,A,N); HoltWinters(α =1, β =1); NNAR(13,7). The forecasting result from various forecasting methods can be seen in picture 3.

Fig. 3. The Comparison of Forecasting Result from Various Forecasting Methods

4 Conclusion

Dataset unemployment insurance claim in IOWA is a dataset that has unpredictable fluctuation level and of course, in forecasting it needs the appropriate method. Based on the result that is acquired by doing the forecasting using various forecasting methods, it is known that α -Sutte Indicator is more appropriate in forecasting data unemployment insurance claim in IOWA. The accuracy level of α -Sutte Indicator is better if it is compared to any other methods.

References

- Iqbal, Z., Dad, A.M.: Outsourcing: A review of trends, winners & losers and future directions. Int. J. Bus. Soc. Sci. 4, (2013).
- [2] Ahmar, A.S.: A comparison of α-Sutte Indicator and ARIMA methods in renewable energy forecasting in Indonesia. Int. J. Eng. Technol. 7, (2018).
- [3] Rahman, A., Ahmar, A.S.: Forecasting of primary energy consumption data in the United States: A comparison between ARIMA and Holter-Winters models. In: AIP Conference Proceedings (2017).
- [4] Sutiksno, D.U., Ahmar, A.S., Kurniasih, N., Susanto, E., Leiwakabessy, A.: Forecasting Historical Data of Bitcoin using ARIMA and α-Sutte Indicator. J. Phys. Conf. Ser. 1028, 012194 (2018).

- [5] Kurniasih, N., Ahmar, A.S., Hidayat, D.R., Agustin, H., Rizal, E.: Forecasting Infant Mortality Rate for China: A Comparison Between α-Sutte Indicator, ARIMA, and Holt-Winters. J. Phys. Conf. Ser. 1028, 012195 (2018).
- [6] Ahmar, A.S., Guritno, S., Abdurakhman, Rahman, A., Awi, Alimuddin, Minggi, I., Tiro, M.A., Aidid, M.K., Annas, S., Sutiksno, D.U., Ahmar, D.S., Ahmar, K.H., Ahmar, A.A., Zaki, A., Abdullah, D., Rahim, R., Nurdiyanto, H., Hidayat, R., Napitupulu, D., Simarmata, J., Kurniasih, N., Abdillah, L.A., Pranolo, A., Haviluddin, Albra, W., Arifin, A.N.M.: Modeling Data Containing Outliers using ARIMA Additive Outlier (ARIMA-AO). J. Phys. Conf. Ser. 954, (2018).
- [7] Haviluddin, Agus, F., Azhari, M., Ahmar, A.S.: Artificial neural network optimized approach for improving spatial cluster quality of land value zone. Int. J. Eng. Technol. 7, (2018).
- [8] Surahman, Viddy, A., Gaffar, A.F.O., Haviluddin, Ahmar, A.S.: Selection of the best supply chain strategy using fuzzy based decision model. Int. J. Eng. Technol. 7, (2018).
- [9] Ahmar, A.S., Rahman, A., Mulbar, U.: α- Sutte Indicator: a new method for time series forecasting. J. Phys. Conf. Ser. 1040, 012018 (2018).
- [10] Ahmar, A.S., Rahman, A., Arifin, A.N.M., Ahmar, A.A.: Predicting movement of stock of "Y" using sutte indicator. Cogent Econ. Financ. 5, (2017).
- [11] Mandy, D.M.: Forecasting unemployment insurance trust funds: The case of Tennessee. Int. J. Forecast. 5, 381–391 (1989).
- [12] Barnichon, R., Nekarda, C.: The Ins and Outs of Forecasting Unemployment: Using Labor Force Flows to Forecast the Labor Market. Brookings Pap. Econ. Act. 83–132 (2012).
- [13] Huang, X.: Forecasting the US Unemployment Rate with Job Openings Index, http://digitalcommons.uri.edu/theses/699, (2015).
- [14] Ahmar, A.S.: A Comparison of α-Sutte Indicator and ARIMA Methods in Renewable Energy Forecasting in Indonesia. Int. J. Eng. Technol. 7, 20–22 (2018).
- [15] State of IOWA: Iowa Unemployment Insurance Claimants by Age, https://data.iowa.gov/Economy/Iowa-Unemployment-Insurance-Claimants-by-Age/7uss-66ak.
- [16] Ahmar, A.S.: RcmdrPlugin.sutteForecastR: a plugin in Rcmdr for Forecasting Data. J. Phys. Conf. Ser. 1028, 012224 (2018).
- [17] Ahmar, A.S.: sutteForecastR: Forecasting Data using Alpha-Sutte Indicator, https://cran.r-project.org/web/packages/sutteForecastR/index.html.
- [18] Ahmar, A.S.: RcmdrPlugin. sutteForecastR:'Rcmdr'Plugin for Alpha-Sutte Indicator, https://cran.r-project.org/web/packages/RcmdrPlugin.sutteForecastR/index.html.