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Abstract 

With the proliferation of relatively cheap Internet of Things (IoT) devices, smart environments have been 
highlighted as an example of how the IoT can make our lives easier. Each of these ‘things’ produces data 
which can work in unison to react to its users. Machine learning makes use of this data to make inferences 
about our habits and activities, such as our buying preferences or likely commute destinations. However, this 
level of human inclusion within the IoT relies on indirect inferences from the usage of these devices or 
services. Activity recognition is already a widely researched area and could provide a more direct way of 
including humans within this system. This research explores the feasibility of using a cost effective, 
unobtrusive, single modality ground-based sensor matrix to track subtle pressure changes to predict user 
activity, in an effort to assess its ability to act as an intermediary interface between humans and digital 
systems such as the IoT. 
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1. Introduction

Computerised technology has become an integral part of a 
modern society, producing an increasingly ubiquitous and 
pervasive technological infrastructure with an increasing 
popularity of mobile devices. Despite all these devices 
with internet connectivity already in use, the Internet of 
Things (IoT) promises to further envelop the entire globe 
with additional interconnected devices. Currently, most of 
the devices consisting of the IoT are used in industrial 
applications; highly automated systems, smart cities and 
buildings, as well as manufacturing and supply chain 
management [1].  

The IoT has been described as being connectivity for 
anyone at any time and place, essentially a new dynamic 
network of networks [2]. If this IoT definition given by 
the United Nations is a true description of what the IoT is 
perceived to be, the IoT cannot be limited to the domain 
of industrial applications only but must exist in more 
mundane and common aspects of society as well. For this 
to occur, it means the inclusion of an entity that is 
consistently overlooked in IoT discussion; people. As 
Shin [3] notes, the discussion of the IoT so far has been 
predominantly focused on technical aspects, such as 
network development and other general design issues. 
Even IoT solutions focused on including people, for 
example the design of products, services, and 
applications, are often driven by technological 
opportunities rather than an analysis of the underlying 
needs [4].  

Incorporating people into the IoT requires a modality 
shift in human and machine interfaces. For example, 
many current interfaces between humans and the IoT exist 
in the confines of object interaction, or through a user-
interface on a smartphone app. These neglect the implied 
ubiquity of the IoT and limit accessibility to the potential 
offered by large numbers of interconnected devices.  

Furthermore, these interfaces do not address the 
invisibility and subsequent era of automation and 
autonomy that the IoT will facilitate. In fact, it is 
suggested that interfaces which demand our attention and 
time are simply ‘digital chores’ which have to be attended 
to [5]. Rather, what is required to achieve an automated 
and autonomous future is an interface that alleviates the 
need for conscious interaction. Therefore, it seems 
necessary that the interface between humans and the IoT 
should be created with the same attributes that define the 
IoT; invisibility, ubiquity, autonomy, and communication. 
The research outlined in this paper is motivated by an 
interest to explore the efficacy of such an interface, 
namely by designing and implementing a single-modality 
ground-based activity recognition sensor that considers 
the findings of relevant literature in its iterative 
development. Arguably, this goal is directed towards the 
concept of ambient systems which are populated by 
autonomous devices interconnected to one another that 
supply a variety of functionality that is eventually used by 

the users [6]. To that end, whilst the research in this paper 
is focused on the evaluation of a specific, ground based 
interface, the possibility of interaction with other devices 
should not be ignored. In this case, by recognising human 
activities at a desk it is possible to trigger other devices 
that can respond to the human’s actions within a specific 
environment facilitated by the IoT. 

This paper is structured as follows. Section 2 provide 
an overview of related research that has informed this 
work. Section 3 described the physical environment used 
in the evaluation and section 4 outlines the machine 
learning approaches used in this study. Section 5  

2. Background and Related Work

There is an ever evolving attempt to define the IoT, the 
definition given by Atzori et al. [7] in its current iteration 
is that it leverages the availability of interconnected, 
heterogeneous devices and augmented physical objects to 
provide shared information on potentially a global scale.  

The IoT shares concepts with existing technological 
frameworks, and this adds to the difficulty in 
understanding the IoT paradigm [7]. The underlying 
technologies include RFID platforms, pervasive 
computing platforms, cyber-physical systems, sensor 
networks and M2M systems. One of the most obvious 
features that converge amongst these technologies is that 
of pervasiveness. In this terminology, no longer are the 
computerized technologies of tomorrow limited to the 
currently set of screens, tablets or phones. 

Mark Weiser [8] anticipated the ubiquity of modern 
technology with the observation that the most profound 
technologies are those that are invisible and woven in to 
the fabric of everyday life in such a way that they become 
part of everyday life. Weiser argues that the apparent 
invisibility of technology is a fundamental consequence of 
human psychology rather than a property of the 
technology itself [8]. Whenever people become 
sufficiently accustomed to something then they cease to 
be aware of it on a conscious level.  

Therefore, truly ubiquitous computing means more 
than being physically invisible or unseen, but more 
importantly can be interacted with unconsciously [9]. 
Satyanarayanan discusses complete and literal invisibility 
by introducing the concept of minimal user distraction 
[10], arguing that a pervasive computing environment 
needs to continuously meets user expectations to allow 
them to interact with the technology almost at a 
subconscious level. 

The importance of such a subconscious level becomes 
clear when considering the definition of the IoT as the 
“intersection of people (meatspace), systems (cyberspace) 
and physical world (atomspace)” [7]. While not all 
definitions of the IoT include humans as part of the 
system, it seems only logical that a system aimed at 
creating a utopian ubiquitous computing environment at 
the very least includes humans as a factor of that 
environment, and must therefore account for the addition 
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of biological agents within this digital system along with 
all this entails. 

There have been numerous studies highlighting the 
need and recognition of the human importance within the 
IoT [11-13]. Atzori et al. [7] noted the importance saying 
“Particular attention has to be paid to the design of 
effective (better if “intelligent”) interfaces both between 
humans and things and between things” (p. 135).  One 
way in which to create a harmonious intermediary is to 
provide an interface to a technological system or service, 
such as the IoT using a surface that everyone interacts 
with naturally during their daily activities. Cheng, 
Sundholm, Zhou, Hirsch, & Lukowicz [14] suggest that 
the  vast majority of human activities are associated with 
certain types of surface contact and therefore, it seems 
logical that a floors role of being a potential interface to 
smarter environments and the IoT is researched 
thoroughly. Before the turn of the century in 1997, the 
idea of incorporating technology into floor systems using 
piezoelectric wires [15] and pressure sensitive tiles [16] 
were proposed. Both were fundamentally limited to the 
current technologies’ capabilities, and though some of the 
principles remain relevant, investigation of newer 
approaches is needed. 

More recent research has investigated smart floors in 
applications ranging from entertainment [17], to elderly 
healthcare and monitoring [18], mental health [19], 
identification and tracking [20], indoor navigation [21], as 
well as uses as a non-human interface for robots [22] and 
livestock [23]. Others have looked at the intricacies of 
human anatomy, and in particular the feet, in regard to 
human computer interaction [24]. 

A lot of this work is aimed at identifying users based 
on gait pattern recognition, for example Chang et al. [17] 
have used a solution that involves LCD panels on the 
floor, LED lights and multiple pressure sensors within a 
steel-frame. However, such fabricated solutions requiring 
bespoke structural flooring elements would not seem to be 
an eloquent or viable option for a ubiquitous smart 
solution, although it must be acknowledged that their 
application was aimed at engaging entertainment and 
therefore necessitated a display, differing from being 
simply a surface interface. Other implementations involve 
invasive and expensive multi-camera systems in 
conjunction with simple floor sensors to enable location 
services [25]. A similar concept using glass panels and 
optical interface such as the GravitySpace tracking system 
[26] have the same inhibiting features of being expensive,
unsuitable as a floor used in everyday activities, and the
use of cameras being viewed as invasive by users.

There is also an implementation using multiple RFID 
tags being placed underneath ceramic floor tiles, with 
RFID scanners placed in peoples shoes [27]. While 
cheaper than some implementations, requiring people to 
alter their wardrobe or wear special equipment to allow 
them to participate in a smart environment is not an 
efficient solution considering the paradigms of the IoT, 
ambient intelligence, and the accompanying ubiquity and 

invisibility, as the same functionality could be used by 
tracking smartphone movement.  

Al-Naimi & Wong [20] summarise the current 
paradigms of smart floors across three categories: 

1. Tagged tracking including Radio frequency,
Ultrasonic, Infrared based approaches.

2. Non-tagged tracking including smart floor, machine
vision, and wireless distributed Pyroelectric Infrared
sensor (PIR) approaches.

3. Multimodal tracking including machine vision with
laser scanners, smart floor with machine vision, and
smart floor with Radio Frequency Identification
(RFID) approaches

It is easily argued that an everyday smart floor concept 
may require as little deviation from the current, non-smart 
flooring systems as possible. Taking into account 
inclusivity, cost, simplicity, and ubiquity, it can be further 
argued that non-tagged tracking architectures are mostly 
likely to appropriate as a floor based interface between 
humans and the IoT. Multimodal approaches offer greater 
precision but also suffer from increased complexity and 
higher costs [20]. Including visual elements into a 
multimodal approach challenges user preference and 
inhabitant's privacy are known to be the main weaknesses 
in combining tagged based approaches and machine 
vision [20]. In light of this, the research described in this 
paper places emphasis on non-tagged architectures. 

Mozer [28] proposed the idea of a sensor-based home 
environment that would recognize the activities of its 
inhabitants and adapt accordingly. In such a context, 
activity recognition could aim to recognize common 
human activities in real-life settings which facilitates a 
range of societal and individual benefits [29].  

Some of the benefits of activity recognition have been 
identified in the objectives of various research, ranging 
from energy efficiency in buildings [30] to patient 
rehabilitation [31]. Klack, Möllering, Ziefle, & Schmitz-
Rode [32] used piezoelectric sensors embedded in the 
floor to monitor the elderly and their movement, and from 
this deduce any abnormal activity that may be occurring, 
indicating the possible need for assistance.  

However, the task of accurate activity recognition is 
challenging because human activity is complex and highly 
diverse [29] and numerous approaches have been 
investigated [33-36] including a variety of smart chair 
[37, 38] and cushion [39, 40] options. Despite the 
challenges, the objectives of activity recognition in 
relation to smart floor architectures have all been 
achieved to varying degrees.  

Activity recognition using technology is not a new 
topic for researchers [41], and amongst recent literature, 
more common methods used in this endeavour have 
ranged from mobile devices, such as smartphones and 
wearables, [42-47] as well as more unique methods such 
as the analysis of eye movement [48]. However, fixed 
implementations such as those that are surface based or 
use cameras [43, 49-52] seem to also be common in the 
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literature, especially when analysing whole body or limb 
movement to recognise activity. Additionally, there are 
few solutions that embrace the principles of the IoT to 
allow the smart floor to potentially interact with other 
objects. 

In regard to the importance of activity recognition in 
IoT and smart environments it has been noted that how 
users interact with the IoT-based home environment is 
critical in developing context-aware smart homes. 
Because of this, activity recognition becomes the an 
essential inference mechanism for IoT-based context-
aware smart homes [53].  

Interestingly, before the notion of the IoT and ambient 
systems developed momentum, researchers were already 
looking at the implications of tagged objects within an 
environment being an indicator of human activity. Tapia, 
Intille, & Larson, [54] highlight the efficiency of this 
method by saying that activity recognition can be thought 
of how people move things as opposed to how people 
move. However, a system relying on analysis of object 
and human interaction to recognise human activity may 
be more suitable in a multimodal approach, alleviating 
any deficiency in the activity recognition system due to 
the absence of human and object interaction, but allowing 
more accuracy in recognition of certain activities where 
objects are involved.  

This only promotes the importance of a more general 
and inclusive system, such as a smart floor, where object 
use is arbitrary to successful activity recognition, and 
where all interaction, whether indirectly or directly, 
involve the ground due to gravity as some parts of the 
body need to be in contact with a supporting surface [14] 
and through additional objects the ground. 

A smart floor, acting as an interface between humans 
and the IoT though, would leverage this and have the 
ability to identify, track, and recognise human activity. 
Importantly the development and suitability of a smart 
floor in activity recognition needs to take into accoun 
inherent unique features including transparency, 
reliability, durability and multitasking [52]. 

In this regard, activity recognition through a singular 
modality smart floor can be achieved by analysing the 
vibrations, changes in centre of gravity and balance shifts 
that propagate throughout the body, which in turn 
influences the pressure distribution of the bottom of the 
feet on the ground [14].  

As a result of the literature in this area, it can be argued 
that that a ground-based interface can be considered a 
suitable candidate for a human IoT interface and that 
activity recognition is a vital extension in providing 
digitisation of biological, analogue mechanics via the 
ground-based interface, allowing the required interface for 
humans in the IoT. 

3. Evaluation Scenario

This work involved the development of a ground-based 
sensor with the ability to be utilised in activity 

recognition. The development process involved several 
iterations of practical experimentation resulting in a final 
system with the potential to identify activities within a 
specific scenario. This is shown in Figure 1.  

Figure 1. Sensor placed underneath chair 

The final system consists of a custom pressure mat 
developed using materials that do not impede normal use 
of an office chair. The physical implementation consists 
of a copper tape matrix constructed with 15mm wide 
copper tape spaced approximately 3mm apart, producing 
64 rows and 58 columns and a total of 3968 individual 
nodes. Data acquisition from the mat produces a two-
dimensional array of pressure readings that are used in the 
activity recognition process. The acquisition process 
includes a calibration of the sensor to compensate for 
steady state errors and results in each node having 1024 
potential values due to the 10-bit analogue/digital 
conversion. Pressure data is collected from each node on 
the mat which allows the pressure distribution over the 
entire surface to be analysed. The array of pressure values 
is used directly as the features for classification, though it 
is worth noting that in many cases the array is sparse with 
many zero values. A typical distribution is presented 
visually in Figure 2 though the raw data can also be 
analysed numerically.  
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Figure 2. Example of pressure map produced by the 
system with associated physical interaction inset 

The use case for evaluation is that of a typical office 
environment. No generalisations are intended to be 
discovered that would have application in multiple 
environments. However, the use-case should in theory 
provide an insight into the suitability for such an artefact 
in other environments, though not yet fully addressing it’s 
potential to interact with other objects through the IoT. As 
such, and according to the restrictions described in the 
previous section regarding some factors of IoT usability, 
an office environment which features no extra peripherals 
other than the artefact itself are permitted. This adheres to 
the notion of invisibility and pervasiveness previously 
discussed. Considering these aspects have led to the 
assumption that a floor based sensory system would be 
the most appropriate approach.  

The decision to use this approach is also influenced by 
the need for the artefact to not inhibit normal human 
motion or activity. In the given scenario of an office 
environment, on average approximately 75% of the time 
spent in the workplace office involves sitting at a desk, 
typically in front of a computer [55]. As evidenced in the 
literature review, most activity tracking approaches tend 
to involve spatial tracking, where variation in location are 
easier to define. However, this type of tracking would not 
be suitable in the given scenario where most of the time is 
spent in one general location. Indeed, some differentiate 
between two types of recognition; activity recognition 
involving high-level, possibly multi-user tasks; and 
secondly involving a single-user performing a single task 
[56, 57] while others create yet more rubrics from which 
to define classes of activity recognition [58].  

According to these definitions then, the artefact in this 
research would be more aligned to action recognition and 
atomic actions within the restricted environment. 
However, in the current use-case of this research, it is not 
important to differentiate between the terms as may be the 
need in larger environments, as no perceived large spatial 
movements are being assessed. Furthermore, while it may 
be useful in disseminating literature, it would be irrational 
to disregard the relevant knowledge within 
implementations simply because of the various use of 

terminology, as most seem to use the terminology 
interchangeably [59]. 

Accompanying the premise that the majority of time 
being spent in an office workplace is seated in front of a 
desk, activity recognition in this scenario using a ground-
based sensor would have to accommodate indirect 
contact, typically through a chair. As discussed in the 
literature review, there are examples of a ground-based 
activity recognition sensors, and those with sensors 
implemented in the chair, yet indirect examples are rare. 
Therefore, in this use-case, the ability to infer human 
activity indirectly is of interest and contributes to the 
knowledgebase within activity recognition. 

The use-case has also influenced the choice of 
activities that are to be recognised. Since the physical 
dimensions of the ground sensor are of an appropriate size 
for an office desk and chair setting at slightly larger than 
on square meter, only single user activities are researched 
in this paper. While multi-user implementations are 
important, within the given scenario these situations are 
less likely to be occur. This does not negate that larger 
scale implementations would need to accommodate multi-
user environments and high level activities but are not 
covered as they are beyond the scope of this paper.  

Given that single-user activities are being assessed 
within a small space and based on a general observation 
made, the types of activities for recognition are as 
follows: 

• Neutral (N)– Sitting upright on the chair
• Relaxed (X) – Leaning back on the chair
• Typing (T) – Using the computer keyboard with two

hands while seated
• Mouse (M) – Using the mouse of the computer

(right hand only) while seated
• Left (L) – Any activity that requires the user to

interact to the left of the keyboard
• Right (R) – Any activity that requires the user to

interact to the right of the keyboard
• Stand (S) – The user is no longer seated but still

within the sensors space
• Away (A) – The user is no longer in the space

It is important to note that these actives are mutually 
exclusive and do not account for all activities observed in 
this environment. However, these have been selected 
because they offer the potential for identifying when a 
person may act in a way that might be indicative of 
interaction with other IoT enabled objects. For example, a 
transition from sitting to standing could be used to change 
the lighting in an environment. Similarly, being away 
might be used to trigger other devices to enter a low 
power standby mode. 

Furthermore, combinations of activities are categorised 
into either left or right, and could have been further 
divided into more specific activities. However, if the 
recognition of these simple activities is successful, it is 
likely that more simple activities could be added to for 
recognition, and higher-level activities in this 
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environment (e.g. talking on the phone) could be inferred, 
and thus result in increased and consistent function both 
in environment and recognition mutability. Otherwise, 
these actions were also chosen to represent a different 
range of variance between expected sensor readings, from 
spatially similar actions (e.g. mouse and keyboard use) 
and spatially distinct actions (e.g. left and right). 

4. Classifier Selection

There are two categories of data collected from the 
sensor. The first, staged mode data, contains an equal 
number of occurrence of instances for each of the 
activities identified in the previous section. The second 
type of data is free mode data, with variance between the 
number of occurrences between activities, mimicking 
real-world scenarios e.g. where a user may be using the 
mouse more than relaxing over a period of time. Also, 
instance numbers between datasets vary while the feature 
vectors for these instances is constant and equal the 
number of electrodes in the sensor. Analysis of the 
datasets is initially undertaken in WEKA to select 
appropriate algorithms for classification. Many different 
datasets were created (>100) and from these, seven were 
chosen as being representative of the majority of the 
datasets, based on capture mode, instances, and file size.  

The use of multiple datasets with various algorithms is 
to ensure completeness in evaluation. The variation 
between instance totals was used to evaluate algorithm 
accuracy under differing scenarios. This is important as 
part of an activity recognition sensor in real-world 
scenarios. For example, if computation for activity 
recognition classification in a real-world implementation 
is done via an embedded solution, energy, computational 
and storage limitations dominate performance evaluation, 
effecting such things as model complexity, data storage 
availability, and classification latency.  

However, if classification modelling and classification 
itself are performed remotely by more powerful 
computing systems, then data transferal latency becomes 
a bigger issue. As can be seen in Table 1, despite 
containing more instances dataset four has reduced in file 
size compared to dataset three because of consideration of 
these limitations.  Since the machine learning algorithm 
for activity recognition in this artefact is decoupled from 
the sensor itself and does not assume suitability of any 
particular algorithm (apart from those suitable for 
classification), different scenarios can be evaluated to 
predict the best routes for future research given both lab 
and real-world implementations. 

Table 1. Overview of the seven datasets 

Dataset Mode Instances File Size (MB) 

1 Staged 400 8.1 

2 Staged 1200 23.9 

3 Staged 2800 55.7 

4 Staged 4000 37.4 

5 Free 3966 32.9 

6 Free 5516 45.9 

7 Free 17096 153 

While not an exhaustive analysis of the data or suitable 
algorithms, there are some general aspects of the data to 
note. The first aspect that is apparent is the sparse vector 
representation, with many of the nodes always 0, 
indicating they never have any pressure on them at all. 
This means, when combined with the high feature space, 
any chosen algorithm would benefit from feature selection 
or should use dimensionality reduction to improve 
accuracy if manual data pre-processing is to be avoided. 
In this regard, a decision tree or a related ensemble 
approach may be useful. Furthermore, in the staged mode 
data sets there are obvious clusters formed within data 
points of the same class. Therefore, since the data is 
linearly separable, a linear classifier such as Naïve Bayes 
may provide good accuracy. However, this same attribute 
is not so well-defined in the recording mode, as 
transitions between activities cause more variation in 
vector values. Therefore, a Support Vector Machine 
capable of handling non-linearity in the data may be more 
useful in this regard. On the basis of this evaluation, these 
three approaches are considered as candidates for further 
investigation. 

4.1. J48 Decision Trees 

A statistical classifier based on the ID3 and further C4.5 
algorithms developed by Ross Quinlan, J48 is an open 
source Java implementation [60]. Simply put, a decision 
tree is created. Built top-down, a training dataset is split 
into subsets that contain instances of similar values. 
Splitting the dataset on attributes to create subsets that are 
the most homogeneous and decrease entropy provide what 
is known as information gain. The attributes with the 
highest information gain are chosen as the attributes to 
split the data on. When a branch has an entropy of 0, this 
leaf node signals that no further splitting is needed along 
this branch. However, any entropy value other than 0 
signals uncertainty of target values, and another split of 
the subset will occur and the process of splitting 
continued. This process creates the decision tree model. 
New data can be provided to this model and it will predict 
the appropriate classification of each instance.     
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The J48 algorithm has been used extensively in a wide 
range of research applications, including analysing e-
governance data [61], mining software repositories [62], 
predicting fish stocks [63] and fault analysis [64] to name 
but a few. In general, decision trees are considered simple 
and fast to implement, given that they formulate the most 
important features of the data automatically during the 
search for highest information gain. However, they can 
also be problematic in overfitting, where models fit the 
training data so precisely that new data highlights any 
inflexibility in the model. This overfitting is exaggerated 
with the tree complexity. As each dataset in this research 
contains over 3000 different attributes (each electrode) for 
each instance (with some datasets with over 10,000 
instances), tree depth is likely to be large increasing 
overfitting. This could present itself as an issue in 
realising a more general model applicable across unseen 
datasets, which would be the case in real-world 
implementations of an activity recognition sensor. 
Furthermore, assuming the decision tree uses a greedy 
approach to choosing optimal nodes, optimal local 
choices are guaranteed. Ignorance of the rest of the tree, 
however, means that the local optimum may not be the 
best choice globally, and can lead to suboptimum decision 
trees, and in some cases the worst possible solution in 
relation to tree depth, requiring techniques such as tree 
pruning to resolve these issues [65].  However, as an 
indicator of the sensors appropriateness in relation to 
linearity, drift, hysteresis, homogeneity, and repeatability, 
testing with a decision tree should allow some of these 
important elements of any sensor to be explored and will 
be discussed later (Giovanelli & Farella, 2016). 

4.2. Random Forest 

Random forests is an ensemble machine learning method 
using decision trees, first implemented by Tin Kam Ho 
and extended by Leo Breiman and Adele Cutler [66]. 
Random forests, as the name suggests, uses multiple 
decision trees created from a differing random subsample 
of the training data. Classification of a new data point 
happens independently on each tree, with each tree 
predicting the appropriate class. Assuming a majority 
vote, the class predicted by the majority of trees for the 
data point is chosen as the prediction.  

Further, while there are implementations of decision 
tree models that grow with the introduction of new data, 
online random forests enable easier inclusion of new data 
into the model by having the ability to generate new 
decision trees with subsets of training data that include 
these new data points [67]. Decision trees that are 
underperforming and classifying consistently far from the 
majority could also be dropped. These aspects strengthen 
the ability for the classifier to evolve and would be an 
important aspect in long-term activity recognition 
installations. However, creating multiple decision tree 
instances obviously adds to the compute time required for 
model creation. 

Beside this, the core benefit of using Random Forest 
classification instead of a single decision tree is to prevent 
the overfitting problem mentioned above, creating a more 
general model and increasing accuracy in unseen data 
[66].  The Random Forest approach has been applied to a 
range of application areas, including gene selection [68], 
remote sensing [69] and land cover classification [70]. 

For the data in this research, this approach will aid in 
realisation of a more general model that may help in real 
world applications of an activity recognition sensor and is 
tested to show any improvement against single decision 
tree models. 

4.3. Naïve Bayes 

Naïve Bayes, based on the Bayes’ theorem named after 
Thomas Bayes, is a probabilistic classifier used in 
machine learning. Because it is a class conditional 
independent algorithm, it assumes that the occurrence of a 
feature is independent of the occurrences of other features 
and does not consider any correlation between features, 
therefore naive.  [71].  This is done by calculating class 
probabilities and conditional probabilities, or the 
frequency of each feature value for a given class value, 
divided by the frequency of instances with that class as 
the value. However, the feature values in this research are 
numerical and thus continuous, where traditional Naïve 
Bayes algorithms expects categorical values. Because 
WEKA is being used to implement these algorithms, it is 
important to note that a Gaussian distribution is assumed 
for numerical attributes by default. Otherwise, converting 
numerical attributes to nominal attributes can be achieved 
via supervised discretization, among others.  

Implementing this algorithm to allow for continuous 
data has its disadvantages though. For example, when 
using supervised discretization, information from the data 
can be lost as values are “binned”. This same issue is also 
apparent in decision trees too. Furthermore, the 
assumption that the data follows a Gaussian distribution 
may be erroneous, however there is allowance for non-
Gaussian distribution among features values using a 
kernel estimator among others. Knowledge of the data 
distribution is key in ensuring appropriate use of the 
Naïve Bayes algorithm.  The Naïve Bayes algorithm is 
also widely utilised, with many applications including 
heart disease prediction [72], text classification [73] and 
location prediction [74]. 

In relation to the data in this research, as each class is 
represented at least once (at least in staged mode), 
evaluation will not suffer from the zero-occurrence issues 
sometimes apparent with Naïve Bayes. Because the 
staged mode data points for any given class have little 
deviation from the mean, Naïve Bayes should perform 
well with. However, the free mode data having higher 
deviation among data points of the same class, may 
perform poorly. However, given the IoT and invisibility 
paradigm, a Naïve Bayes approach may be suitable in this 
application because they able to converge faster than 
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other algorithms, meaning training data size can be 
smaller than other algorithms and model creation is rapid. 
It also tends to have an advantage over other algorithms 
when the number of classes is large, and while the 
datasets here only have a small number of classes, a real-
world implementation where many different activities are 
possible would need to accommodate for this.  

4.4. Support Vector Machines 

An algorithm that may prove useful in evaluation of 
AR capabilities of the sensor, as well as its difference in 
approach from the other algorithms mentioned, is Support 
Vector Machines. Unlike the probabilistic method of 
Naïve Bayes, Support Vector machine (SVM) are a non-
probabilistic linear classification algorithm that uses 
regression to form boundaries between data points. This 
boundary indicates the separation between one class and 
another. SVM create this boundary by simply selecting a 
few of the data points (support vectors) for defining 
boundaries of classes (or hyperplanes in higher 
dimensions) and proceeds to find the boundary that fits 
with the highest margin between the points of different 
class. Traditionally, this is a linear boundary. However, 
kernel manipulation can create boundaries (or 
hyperplanes) that are non-linear, and able to fit more 
complex data with high dimensionality making it very 
versatile, although choosing the appropriate kernel 
function is not always clear. This flexibility also bodes 
well for datasets that cannot be linearly separated, which 
is typically evident among the real-world datasets. There 
are other benefits too. Unlike Naïve Bayes which makes 
distribution assumptions, SVM is likely to be beneficial 
when data does not follow a Gaussian distribution. Unlike 
decision trees, SVM is resilient to overfitting because the 
dependence is only on the support vectors to calculate the 
boundaries rather than every data point. This also entails 
efficient memory usage, especially in larger datasets.  It 
does have its disadvantages though. As well as needing an 
appropriate kernel function choice, large data sets can 
mean training of the model takes longer than other 
algorithms.  

As with other ML algorithms, the SVM is widely used 
in a diverse set of application areas that include, but are 
not limited to, face detection [75], fault diagnosis [76] and 
cooling load prediction [77]. 

It should be noted that the default mechanism for 
implementing SVM in WEKA is via John Platt’s 
sequential minimal optimization algorithm (SMO). The 
following therefore applies: replaces missing values; 
nominal attributes are transformed into binary attributes; 
attributes are normalized; multi-class datasets are 
classified using pairwise classification. 

5. Results

This section will detail the results of executing the 
machine learning algorithms given the specific dataset. 
Again, this is not a comprehensive evaluation of all 
algorithms, but rather an insight into suitable algorithms 
for AR given specific types of data with respect to IoT 
applications. WEKA allows an efficient way of 
comparing algorithms, and unless otherwise stated, the 
default settings of WEKA in this regard are used. There is 
also no attempt to compare the solutions from the 
algorithms, though this valuable exercise will be 
undertaken in future work. 

5.1. Accuracy 

Each of the staged and free datasets are evaluated using a 
randomized training set and test set split of 60% and 40% 
respectively. Each evaluation is completed ten times per 
algorithm per dataset. For the results that follow, the first 
four rows relate to the staged mode datasets (1 – 4), with 
free mode datasets visible in the last three rows (6 - 7), 
unless otherwise stated. Table 2 presents results for 
classification accuracy 

Table 2. Percentage correctly classified with a 
significance level of 0.001 (two-tailed confidence 

level of 99.9%)  

Dataset J48 Random 
Forest 

Naïve 
Bayes 

SVM 

1 99.88 100.00 100.00 100.00 
2 99.79 100.00 100.00 100.00 
3 99.78 100.00 99.67 100.00 
4 99.18 99.90 97.13 99.99 
5 95.23 98.04 54.47 97.88 
6 95.68 98.11 53.62 97.50 
7 94.81 97.12 35.30 97.14 

All algorithms performed well where frequency of 
instances across the classes were identical (staged mode), 
with no significance difference in correct classifications 
among the smaller datasets. Whilst the performance of the 
algorithms given different training or test sets is not 
presented in this paper, generally there is little variation in 
performance for different classification scenarios.  

Given the relatively high classification accuracy, there 
is little insight to be gained by investigating classification 
accuracy by specific activity. The results show that J48 
decision trees perform universally well for the given 
dataset, able to correctly classify between 99.88% and 
94.81% irrespective of instance number or instance 
frequency. As the input data is generally sparse, such 
classification accuracies could be considered reasonable 
as actions will likely produce distinct hotspots in the 
pressure map. Errors in classification are likely to occur 
when hotspots occur in slightly different locations than 
the training data contains. 
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Referring to the comparison in Table 2 which shows 
there is no significant difference between algorithms on 
lower instance datasets, there is a significant difference in 
correct classification among the free mode datasets 
consisting of more instances. Both Random Forest and 
SVM outperform J48 with this type of dataset. However, 
there is no significant difference between the Random 
Forest and SVM in accuracy.  

Because this is a multi-class classification problem and 
class balance needs to be taken into account, the Kappa 
metric reflects very good performance in most cases 
against random classification as shown in Table 3. Here, 
almost all algorithms have very high kappa values > 0.93 
regardless of the dataset. 

Table 3. Kappa statistic for each algorithm across all 
datasets when using a two-tailed significance of 

0.001 and 10-fold cross-validation 

Dataset J48 Random 
Forest 

Naïve 
Bayes 

SVM 

1 1.00 1.00 1.00 1.00 
2 1.00 1.00 1.00 1.00 
3 1.00 1.00 1.00 1.00 
4 0.99 1.00 0.97 1.00 
5 0.94 0.97 0.45 0.97 
6 0.93 0.97 0.38 0.96 
7 0.93 0.96 0.24 0.96 

However, this is not true for Naïve Bayes and the free 
mode datasets. Interestingly with the free mode datasets, 
Naïve Bayes kappa metric ranges from 0.45, 0.38, to 0.24 
respectively as instance numbers increase. Accuracy 
drops dramatically to below 54% for the free mode 
dataset, despite having less instances then the largest 
staged mode dataset where it correctly classified 97.13% 
instances. This makes Naïve Bayes by far the worst 
performing algorithm in real-world cases due to the nature 
of the free mode data. Furthermore, it begins to 
incorrectly classify at a faster rate than the others with a 
lower Kappa value across four of the datasets. These 
values are probably due to the Gaussian distribution 
assumption used as the default in WEKA for continuous 
features. 

Further investigation using supervised discretization 
shows that Naïve Bayes is able to correctly classify 
significantly better, achieving almost 79.57% for correct 
classification of dataset 5 and 75.60% for dataset 7, a 
dramatic improvement from the Gaussian implementation 
of 54.66% and 35.90% respectively, as shown in Table 4 
and Table 5. In both cases, the use of supervised 
discretization produces lower values for mean absolute 
error (MAE) and root mean squared error (RMSE). 

Table 4. Comparison of Gaussian and Supervised 
Discretization Naïve Bayes with dataset 5  

Distribution Kappa MAE RMSE Correctly 
classified 

(%) 
Gaussian 0.4506 0.1132 0.3364 54.6658 
Supervised 
Discretization 

0.7476 0.0512 0.2255 79.57 

Table 5. Comparison of Gaussian and Supervised 
Discretization Naïve Bayes with dataset 7  

Distribution Kappa MAE RMSE Correctly 
classified 

(%) 
Gaussian 0.2362 0.1615 0.4019 35.905 
Supervised 
Discretization 

0.6879 0.061 0.2466 75.6069 

Table 6 shows the confusion matrix that arises from 
applying Naïve Bayes with supervised discretization to 
the most complex dataset, using the activity labels from 
section 3. A total of 6837 instances were used as test data, 
with the remaining instances being used as a training set. 
Even with supervised discretization, it is clear Naïve 
Bayes does still not perform as well as the others in 
classification, and specifically is struggling to distinguish 
between neutral (N), relaxing (X), typing (T) and mouse 
(M). 

Table 6. Confusion matrix for Supervised 
Discretization Naïve Bayes using dataset 7 

N X T M L R S A 
N 1407 22 117 144 174 0 44 0 
X 42 1088 93 28 43 70 7 0 
T 0 0 906 127 0 0 0 0 
M 220 7 444 1445 51 14 0 0 
L 1 2 2 2 81 0 0 0 
R 0 0 0 0 0 35 0 0 
S 0 0 0 0 0 0 69 11 
A 0 0 0 0 0 0 2 139 

 For a few classes there is a high recall value but with 
low precision, indicating that while it may be identifying 
the majority of true positive cases correctly but also 
including false positive results too as it assumes a wide 
distribution of data points.  

5.2. Efficiency 

Because the proposed solution is to be implemented in 
real-world scenarios in the context of an activity 
recognition interface for the IoT, the value of efficiency 
discussed here is concerned with more than just the 
algorithms accuracy. Considering the possibility of real-
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time activity recognition and embedded solutions, or 
alternatively remote computation, there is a need to assess 
algorithms performance on training time, classification 
time, CPU usage, and model size. Using the 10-fold 
evaluation results, WEKA provides some metrics that 
enable this analysis. This is also not a statistical analysis 
of the metrics here, but rather a general observation of the 
values to guide further investigative work in the future. 

Time taken to train the model is important to consider. 
Depending on the strategy, model training time may be 
insignificant if is only done sporadically.  For the given 
scenario, for example, data acquisition could be 
consistently active during the day as activity recognition 
occurs, with models updated overnight while the 
workplace is empty and used in the consecutive days.  

For other scenarios, however, where online model 
training is done for constant improvement during the day, 
the time taken to compute the models becomes a bigger 
factor. This is not meant to be an indicator of the actual 
time it would take an algorithm to perform classification, 
as this is too dependent on hardware configuration and 
algorithm implementation. Rather, it is valuable in 
comparing the algorithms with each other in relation to 
accuracy, and helpful in establishing the use of an 
appropriate algorithm given factor other than accuracy 
only.  

The time taken to train each algorithm, indicated by the 
CPU time spent during training, are shown in Table 7.  

Table 7. Comparison of CPU time (seconds) taken 
for model training 

Dataset J48 Random Forest Naïve Bayes SVM 
1 0.22 0.17 0.14 0.13 
2 1.36 0.38 0.65 0.45 
3 4.01 1.18 2.95 1.24 
4 8.42 1.97 4.84 1.99 
5 13.81 6.23 3.88 7.32 
6 36.85 9.14 5.30 29.52 
7 274.68 27.00 28.64 420.41 

These results may seem comparatively insignificant 
considering that the slowest training of a model took only 
420 seconds. However, this needs to be considered in 
terms of two aspects. The first is hardware capability, as 
these results were completed on a high clock-speed, high-
core count water-cooled computer system. While remote 
model training, such as those completed here would cope 
with the variance shown in training time, an enclosed 
energy efficient embedded system without this computing 
power (and preferred in some IoT applications) would be 
orders of magnitude slower. Furthermore, this data has 
been collected from a single user in approximately a 
square meter of space. If a larger installation covering 
hundreds of square meters, with possibly hundreds of 
users simultaneously creating data (the essence of the IoT 
being available to anyone, anywhere) then this disparity in 

training time becomes increasingly important as data 
exponentially grows. This is without considering that only 
are limited range of activities are accounted for in this 
testing when there are possibly hundreds or thousands of 
activities that could be implemented. In the context of this 
research, the difference between Random Forest and 
SVM for the largest dataset is greater than 15 times 
slower, which is not significant at datasets of this scale, 
but could be in real-world applications. Thus, it is the 
comparison to each other that is being considered here, 
rather than just the actual CPU time spent training. 

It is fairly obvious that time spent increases as the 
datasets become larger, and as complexity of the data 
increases from staged mode data to free mode data. 
Interestingly, this is not necessarily true for Naïve Bayes, 
where training time increases seemed only to correspond 
with instance numbers, as seen in the decrease of training 
time of the smallest free mode dataset and the largest 
staged mode dataset. This is apparent too in the free mode 
datasets, where Naïve Bayes was comparatively fast at 
training in two of three datasets, and only slightly slower 
for the largest dataset. 

However, it must be remembered that there was a 
marked drop in accuracy between data modes, and while 
it was the worst performing algorithm overall for 
accuracy, on the smallest staged mode data where 
accuracy among the algorithms was similar, it is a very 
fast algorithm to train being only slightly slower than the 
SVM. It is important to consider that at this low instance 
number Naïve Bayes could potentially outperform the 
other algorithms when training time is included as a 
metric for performance. However, in future work where 
more activities are to be classified, datasets are only likely 
to grow larger rather than smaller, and so the performance 
of algorithms on these smaller datasets may be irrelevant 
and is another factor in consideration of the importance of 
training time. 

As well as training time, an evaluation of efficiency 
should also cover the time required to apply the classifier. 
Again, this is not an in-depth analysis but provides a good 
observation of the values in comparison to each of the 
algorithms. Of further note is that the values given 
indicate the length of testing all instances in the dataset, 
not per-instance, meaning classification of a single 
instance would be faster than those shown. However, it is 
the comparative values that are being discussed here 
rather than the actual values, as these are too hardware 
and dataset dependant to provide any generalization about 
classification performance. The results are shown in Table 
8. 

Table 8. Comparison of CPU time (seconds) taken 
for classification 

Dataset J48 Random Forest Naïve Bayes SVM 
1 0.00 0.00 0.09 0.00 
2 0.00 0.00 0.26 0.02 
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3 0.00 0.01 0.62 0.04 
4 0.00 0.01 0.89 0.07 
5 0.00 0.03 0.88 0.05 
6 0.00 0.04 1.22 0.07 
7 0.01 0.10 3.87 0.36 

It is evident that J48 decision trees are by far the fastest 
algorithm in testing, followed by Random Forest, SVC, 
and Naïve Bayes. Decision trees being the fastest 
algorithm for classification is unsurprising in optimally 
sized trees, where classification is but a simple choice of a 
path. Likewise, Random Forest using the same procedure, 
but having some extra steps, such as the majority vote, 
means it is unsurprisingly efficient in classifying a new 
instance too. Naïve Bayes, while very fast at training 
compared with the other models, is much slower than the 
others at classifying. As seen with the improvements 
possible in testing time with SVM, it still lags slightly 
behind both of these. Therefore, when considering 
classification time, especially if data transferal latency for 
remote computation is to be considered, a decision tree-
based implementation seems the most efficient. However, 
most approaches other than Naïve Bayes offer sufficient 
potential to classify activities in real time. 

Another metric that should be considered is model size. 
This is particularly of interest with an embedded 
implementation, which may become relevant in a true IoT 
implementation. Such an implementation would have 
lower computational capability which may exacerbate 
slow training and classification times as discussed earlier, 
but will also be affected by storage limitations. Results in 
Table 9 show the serialized model size. 

Table 9. Model size (Java Serialized Objects) of 
each algorithm and dataset 

Dataset J48 Random 
Forest 

Naïve 
Bayes 

SVM 

1 204565.0 355692.7 2987017.5 856795.2 
2 204565.0 494114.9 3093029.3 803025.0 
3 204565.0 801807.9 3548124.3 881950.2 
4 207102.8 1026173.3 3821126.5 980416.2 
5 240443.6 5199984.2 2881481.2 707916.2 
6 247750.0 6359232.3 2796980.0 657036.2 
7 364325.0 17227015.2 4526798.9 1090934.4 

It is evidently clear that J48 decision trees consistently 
create the smallest model regardless of the dataset type or 
size. However, for the Random Forest approach, each 
training model size gets larger with size, and there is a 
marked increase in model size between the two different 
types of data, with an enormous model for the larger 
dataset in comparison to the other models. Naïve Bayes 
rather interestingly starts with a much larger model that 
the other algorithms in the smaller datasets, but more or 
less remains around this size and even decreases for the 
smaller free mode dataset that consists of more instances, 
increasing in size for the largest dataset. After Naïve 

Bayes, SVC has the largest model for the smaller datasets, 
shrinking for the first few free mode datasets, and 
increasing for the last. 

Therefore, if model size is a factor in assessing 
algorithm suitability and assuming free mode type of 
datasets in a real-world implementation, a decision tree or 
SVM implementation may be an optimal solution. 

6. Conclusions

In relation to an activity recognition sensor acting as an
interface to the IoT, machine learning is an important 
component of the system, and accuracy of classification is 
the most important metric to consider in machine 
learning. Without accurate classification, it would not be 
performing its main objective, making discussion of the 
other metrics futile.  

However, selecting the correct algorithm based on 
accuracy is dependent on the datasets. Assuming a real-
world implementation with moderately sized datasets and 
averaging accuracy performance on the free mode 
datasets, then of the algorithms tested the Random Forest 
(98.25%) or SVM (97.92%) approach is best, followed 
closely in performance by a J48 decision tree (96.09%). 
Naïve Bayes (77.29%) is much lower than these other 
algorithms even after limited tuning.  

Considering the other metrics in relation to free mode 
datasets, however, show that Naïve Bayes averaged 12.61 
seconds to train, while Random Forests took only slightly 
longer at 14.12 seconds on average. J48 decision trees 
averaged 108.45 seconds, while SVM took the longest at 
152.42 seconds. For both J48 and SVM, as the instance 
numbers increased, the training time needed also 
increased dramatically, distorting these averages, and 
while Naïve Bayes and Random Forests training time did 
increase too, the increase in time to train was more linear. 
If considering this metric in correlation with the accuracy, 
a Random Forest approach may seem to be the optimal 
choice. 

If consideration of time taken to classify is more 
important in offering a responsive real-time activity 
recognition classification system, then a J48 Decision tree 
was easily the faster of the algorithms (0.03 sec), followed 
by Random Forest (0.06 sec), SVM (0.16 sec), and Naïve 
Bayes (1.99 sec). While hardware used would affect these 
values, with the system and sensors current 
implementation, a request to the microcontroller followed 
by a full pass of the sensor and consequent write to serial 
was observed to take 0.04 to 0.05 seconds. Ignoring the 
overheads due to processing and writing to file, only one 
algorithm is able to complete a classification within this 
time. This means it could be possible to classify an 
existing instance while issuing a reading from the sensor, 
and have this classification completed before the next 
sensor reading is presented. However real time 
classification was not attempted here, and the discussion 
of these metrics are used to inform further investigation. 
Likewise, with the models not limited by the constraints 
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of hardware or real-time classification problem, model 
size is less of a concern. However, considering the large 
variation between the serialized model size of each 
algorithm, it is important component for any future 
investigation. It showed that while a Random Forest 
approach is one of the better algorithms in accuracy and 
time taken for training and classification, the models 
produced are relatively large in comparison, possibly 
having consequences for embedded implementations or 
where hardware restrictions exist. 
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