
Denial of Service Attacks Prevention using Traffic
Pattern Recognition over Software-Defined
Network
Steven Schmitt1, Farah I. Kandah2,*

1,2 Computer Science and Engineering Department
University of Tennessee at Chattanooga,
Chattanooga, TN 37403

AbstractRecent trends have shown a migration of software from local machines to server-based services. These service-
based networks depend on high up-times and heavy resistance in order to compete in the market. Along
with this growth, denial of service attacks have equally grown. Defending against these attacks has become
increasingly difficult with the growth of Internet of Things and the different varieties of denial of service
attacks. For this, our research offers a solution of implementing software-defined networking and real-time
metric based techniques to mitigate a denial of service attack within a smaller time window than other
comparable solutions. The use of our method offers both efficient attack handling and also flexibility to fit a
variety of implementations. The end result being a network that can automatically adapt against new attacks
based on previous network activity.

Received on 13 May 2018; accepted on 14 May 2018; published on 23 August 2018
Keywords: Denial of Service attack, Software-defined networks, prevention.

Copyright © 2018 Steven Schmitt et al., licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits
unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.23-3-2018.155334

1. Introduction
Networks are implemented with the core ideas of
network integrity, confidentiality, and availability. The
security of a network depends on the state of these
core ideas, and how they are implemented. As network
technologies see advancements in transfer speeds and
computational power, the ability to implement flexible
and effective security solutions has become difficult.
The availability of networks are under constant threat
by attacks focusing on bringing down the service or
network itself. Defending against denial of service
(DoS) attacks has become important in an environment
where users rely on these services on a daily basis. The
DoS attack in general seeks to bring down network
services by flooding a service with dummy traffic
with the goal of overloading the service, bring it
down and affect its availability. An example of such
attacks is presented in Fig. 1. As a service becomes

∗Corresponding author. Email: farah-kandah@utc.edu

unavailable due to DoS attack, the hosting companies
will be significantly affected through the loss in profit
and their number of customers. The development
of software-defined networking (SDN) has brought
network security solutions that will help in solving
these issues.

Figure 1. DoS vs DDoS

Software-defined networking is the process of vir-
tualizing network hardware to facilitate the flexibility
and scalability of software implementations. The idea

1

EAI Endorsed Transactions
on Ambient Systems Research Article

EAI Endorsed Transactions on
Ambient Systems

03 2018 - 12 2019 | Volume 6 | Issue 18 | e1

http://creativecommons.org/licenses/by/3.0/
http://doc.eai.eu/publications/transactions/latex/
mailto:<publications@eai.eu>

Steven Schmitt, Farah I. Kandah

is to connect hosts through the use of virtual switches
and virtual controllers that can be used to automate
network functions programmatically. A virtual switch
serves the same purpose as a hardware switch by cre-
ating a topology to connect hosts while handling basic
traffic flow. The virtual controller delegates flows to
the switches and handles network-wide operations. The
two elements of virtual controllers and virtual switches
allow complete control over a network that can adapt to
threats. In this work, we present a novel DoS mitigation
scheme based on SDN. This work serves to implement
a SDN that uses the adaptability and programmability
features to defend against different DoS attacks.

The remainder of this paper is organized as follows:
We will discuss the related work in Section 2 followed
by our motivations and contributions in Section 3. Our
problem statement will then be outlined in Section
4. This section will consist of detailed definitions for
both the simulations and technologies used as well
denial of service attacks. Our proposed denial of service
prevention scheme will be presented and discussed in
Section 5, followed by our analysis and performance
evaluation in Section 6. We will summarize and
conclude this paper in Section 7.

2. Related Works

The details of how denial of service attacks are
handled and defend against are outlined in [1]. There
are a variety of current solutions exist today that
involve specialized hardware switches, and server load
balancing. Solutions such as AutoSlice serve to handle
load balancing in order to reduce the overall strain
on the network [2]. This is accomplished by evenly
distributing traffic throughout the network when large
flows are detected. The downside of applying this
method to defend against DoS is that it can create
network-wide strain during larger denial of service
attacks. During a large DoS attack, the solution might
propagate the attack across the entire network.

Singh et. al. in [3] offered another solution by the
use of a buffer to create a waiting window before
blocking the traffic. In their proposed solution, as
soon as a suspicious traffic is identified, the authors
proposed to increase the queue buffer at the switches
and see whether the traffic keeps coming. During this
process the attacking hosts are requested to decrease
their traffic rate. If the attack persists, the host is
then blocked by the network. Unfortunately, this slowly
allow potential attacks to consume more bandwidth
over time. Although this prevention strategy offers a
solution to identify large legitimate traffic, it is still
vulnerable to large distributed attacks. This is because
of the large timing window the prevention algorithm
allows before blocking an attacking host.

Both solutions stated above also have a large increase
in processing overhead on the network controller. This
comes as a large cost for smaller networks that may
not be able to handle the increase in workload. The
costs are based on fundamental network architecture
problems involving limited bandwidth and security
implementations [4] [5].

For many companies a complex security solution for
DoS is not an option due to the lack of resources or the
incompatibility with their current systems. To lessen
the resource requirement in order to better secure
a network, cheaper solutions to monitoring networks
have been found such as sFlow [6]. Technologies such
as sFlow allow for low resource monitoring that can be
adapted to improve security needs [7] [8]. Monitoring
the network allows the polling of different metrics at
the switch or host level, such as the number of messages
exchanged between network entities, the bandwidth
consumption, the number of dropped packets, etc . . .
that can be used to recognize the traffic pattern in
the network, which can then be easily implemented
in scripting solutions. By nature a network is suppose
to transmit data, and the denial of service attack is
exploiting this core element, which makes it hard
to completely defended against [1][4][5]. The idea of
denial of service prevention is to identify and mitigate
attacks in a timely manner. This will minimize the time
frame in which the targeted network is affected. In this
work, we intend to refine this defense against denial of
service using more adaptable scheme that offers rapid
detection and mitigation.

3. Motivations
The current customer climate demands a high degree of
reliability and availability from network services that
are used on a daily basis. This exponential increase
in network traffic has put a strain on older network
architecture models that fail to handle large data
flows without down time. As we observed that current
solutions to denial of service attacks through the use
of load balancing and buffer limits for the networks
fall short of delivering quick identification and mitigation
of attacking hosts [1][3], we focused our work to
contribute a more rapid solution to denial of service
attack compared to the previously stated solutions as
well as lower processing workloads for the virtual
network devices.

4. Problem Statement
The main issue in current solutions to DoS attacks
involves decreased availability. During a DoS attack
affected networks are effectively cut off from the Inter-
net rendering the services being provided unusable
[1]. Our research seeks to improve on this solution

2 EAI Endorsed Transactions on
Ambient Systems

03 2018 - 12 2019 | Volume 6 | Issue 18 | e1

by allowing for increased service availability by rec-
ognizing traffic pattern through smartly analyzing the
network traffic and packets. This will improve the
overall network uptime while also maintaining network
performance during attacks.

Throughout our discussion, we will be using the
following definitions:

Definition 1. A Denial of Service (DoS) attack is a network
threat that seeks to affect the availability of a network or
service by introducing fake traffic to the target. 2

Definition 2. A Distributed Denial of Service (DDoS)
attack is a DoS attack where a multitude of attackers
are used to send a synchronized attack on a target. 2

Definition 3. A virtual switch is a software-based
implementation of a hardware switch in a network. It
often serves as a node to route traffic between hosts on
a network. 2

Definition 4. A virtual controller is a software-based
implementation of a hardware controller in a network.
A controller often serves as a primary point of control
that can designate work to network switches. 2

We define our Software-defined networking Denial
of service Mitigation (SDM) problem that our work aims
to solve as follows: Given a network under DoS attack, our
scheme seeks to detect and mitigate any DoS attack taking
into consideration the improvement of the efficiency and the
speed of mitigating denial of service attacks.

To achieve this we will use traffic pattern recognition
using metric based traffic analysis to rapidly identify
attacking hosts while allowing for legitimate traffic to
continue to be processed.

5. Software-defined networking Denial of service
Mitigation
Our research focuses on mitigating two different types
of denial of service attacks. This is done through a single
algorithm that uses live network metrics to gauge the
state of the network. By basing decisions off previous
network states, our DoS Mitigation Scheme is able to
defend against several attacks. Our Software-defined
networking DoS mitigation scheme is presented in
Algorithm 1. Our scheme begins with initializing the
network through identifying any OpenFlow switches
(S) on the network and their available ports (Lines 2-
5). By doing this we can map the network topology
allowing for better flow control. Once this is done the
execution phase of the scheme will begin (Lines 6-
18). This phase polls each OpenFlow switch for live
metrics. During normal traffic states these metrics
are used to set the aggregate threshold (Tr) for each
metric such as packet rate. Once this is complete, every
polling cycle will check the current metrics against the
metric thresholds. Any conflict during this step will

push the scheme into the update phase. This phase
consists of identifying the traffic flows that breached
the thresholds by tracing the packets back to the host.
Once found, the host (h) will be removed from the
OpenFlow switch’s flow tables and the switches will be
set to drop all packets from the host. This continues for
a set timeout interval (Ti) at which time the host can
re-enter the network.

Algorithm 1 SDM: Software Defined networking
DoS Mitigation Scheme

1: Set the controller (C) to listen for connections;
2: for each switch (Si) connected to C do
3: Assign switch ID
4: Identify available port(s)
5: end for
6: Define polling interval: I ← β;
7: Set Tr ←

∑
Rate

P orts
8: for every I do
9: for each switch (Si) connected to C do

10: if
∑
CurrRate
P orts > Tr then

11: Sethosts ← flow sources;
12: for each hi ∈ Sethosts do
13: Ti ← timeout for hi to rejoin
14: Block hi flow for Ti
15: end for
16: end if
17: end for
18: end for

5.1. Mitigating Single-Host Denial of Service
Attacks
One aspect of our DoS Mitigation Scheme focuses on
mitigating a denial of service attack that originates
from a single attacker. This attacker will have a
single target host with the goal of bringing down any
services running on the host. Since denial of service
attacks can be based in overworking common network
functionality there are various ways they could be
executed. Amongst all of these variation there are
common traits and characteristics of a single host denial
of service attack. These characteristics can then be used
along side monitoring network activity. In order to
properly handle denial of service attacks real network
activity must be identified versus malicious activity.
Our SDM scheme does this by monitoring packet rate,
packet size, and flow path.

To illustrate our algorithm, let us consider the
following example by defining a network flow that
contains common properties of a denial of service
attack. This network flow can then be monitored at the
network switch level through sFlow to gain real time
metrics that will allow us to recognize network traffic

3

Denial of Service Attacks Prevention using Traffic Pattern Recognition over Software-Defined Network

EAI Endorsed Transactions on
Ambient Systems

03 2018 - 12 2019 | Volume 6 | Issue 18 | e1

Steven Schmitt, Farah I. Kandah

patterns. Through the REST API and JSON handling,
we will be able to keep an up to date list of all network
flows and their load on the network. Once the current
flows of the network are mapped, thresholds can be
defined based on the network activities. The threshold
will be set to signify network flows that are acting
outside of normal network metric ranges. Note that, the
thresholds can be adapted based on the host network’s
common activity. This makes our SDM Scheme be
adapted across a variety of networks settings.

Let us consider the packet rate of each flow on the
network as the first threshold to be monitored, and let
us define a network flow with a packet rate exceeding
1000 packets per second as being malicious. Note that,
any flow that passes this threshold is collected by sFlow
and sent off to the Floodlight Controller for analysis.
Besides that packet rate, we use packet size, which is
compared across packets to check for variance. Without
this variance, it can be assumed that the network flow
could be malicious. With this comparison along with
the packet rate monitoring threshold, our SDM Scheme
is able to rapidly identify and stop a single host denial
of service attack by detecting large increases of packet
rate over a short time period.

Attacking
host

OpenFlow
controller

Target
host

Large DoS flow
entering network

1

Trigger sent
to controller

3

Packet rate threshold met
Packet size threshold met

2

Update flow table
dropping DoS flow

4

OpenFlow
switch

Figure 2. DoS Attack Mitigation Scheme

This scheme is presented in Fig. 2, which outlines
a generalized idea of how our SDM scheme handles
a denial of service flow entering the network. The
important part of our SDM scheme is the ability for
other flows to still function during the mitigation
process, which allows for regular network activity to
continue while the attack is being handled. In step 1
of the flow chart we see a large DoS flow entering the
network. The flow is then handled by the OpenFlow
switches (step 2), where they can detect when a
threshold is met. Once a threshold is met, a message
will be sent to the Floodlight controller (step 3), which
in turn replies with instructions to all network switches

to drop the detected flow (step 4). With this, our SDM
scheme can minimize the amount of malicious traffic
the target host receives.

5.2. Mitigating Distributed Denial of Service
Attacks

Attacking
hosts

OpenFlow
controller

Target
host

Large aggregate
DDoS flow

entering network
1

Trigger sent
to controller

3

Aggregate packet rate
threshold met
Aggregate packet size
threshold met

2

Update flow table
dropping DDoS flow

4

Cluster of
OpenFlow
switches

Figure 3. DDoS Attack Mitigation Scheme

Another form of denial of service attack is the
distributed denial of service attack. This attack follows
the same principle of a single host denial of service
attack, but instead of using a single host, the attack
is distributed across multiple attackers. Spreading the
attack across multiple hosts makes it difficult to identify
the source of the attack. Conventional methods of
blacklisting an attacker’s IP address no longer work due
to the large amount of sources [1]. Our SDM scheme
can further detect a distributed attack by focusing on
aggregating the flow data instead of singling out a
single flow. This can be done by tracking the same
metrics previously tracked, such as packet rate and
packet size. With this, the thresholds are also adjusted
to better handle aggregate network data. The threshold
for our SDM scheme for packet rate can then both
monitor a single flow exceeding the threshold as well
as the summation of multiple smaller flows exceeding
the threshold.

We will use Fig. 3 to provide a visualization of
how our SDM scheme handles distributed denial of
service attack. Similar to Fig. 2, step 1 shows a large
DDoS flow from multiple attacking hosts entering the
network. Once this attack triggers the threshold across
the OpenFlow switches in step 2 a message can then be
sent to the Floodlight controller in step 3. This JSON
message contains all suspect flows that have entered
the network during the time frame of the attack. The
Floodlight controller then replies to drop all suspect

4 EAI Endorsed Transactions on
Ambient Systems

03 2018 - 12 2019 | Volume 6 | Issue 18 | e1

flows blocking all communications for a short period of
time with the attacking hosts.

Another aspect of our SDM scheme is the timing
window of the metrics captured. For this, a constant
buffer of metrics will be kept and refreshed with the
most current sFlow data. By only focusing on current
sFlow metrics, it allows normal network flows to not
be flagged as suspect. Once our defined thresholds
are triggered by the aggregate metrics, flows will then
be dropped by the Floodlight controller. The selected
dropped flows will be chosen based on their packet rate
and packet size. Once a flow is dropped it will then
be allowed to reconnect with the network after a set
amount of time.

6. Analysis and Performance Evaluation
In this section we will present the performance
of our proposed SDM scheme and discuss how it
handles both types of denial of service attacks. In our
implementation, we used Mininet to build the network
topology [9], which is presented in Fig. 4.

Figure 4. Test network architecture - Mininet

For gathering results sFlow was used to capture
real-time data for the network. The D-ITG traffic
generator was used to create scripts that simulate
both normal network activity, single-host denial of
service, and distributed denial of service attacks [10].
The network typologies created in Mininet consists
of simple tree-based typologies along with a larger
topology to simulate the distributed denial of service
attack.

In Fig. 4 OpenFlow switches are denoted as s1
through s6 while hosts are denoted as h1 through h16.
For this example c0 represents the remote Floodlight
controller used for our network. For the sake of this
research ping floods will be used to test the resilience of
the network to denial of service attacks. These attacks
will be combined with UDP flows to show that our
algorithm is able to mitigate a variety of denial of
service attack types.

6.1. Analysis and Evaluation of a Single-Host DoS
Attack

Figure 5. Unprotected DoS Flow

Using the above topology in Fig. 4, our SDM algorihm
was put into place with a packet rate threshold of
1000 packets per second. In this test individual flows
will be monitored to see if each reach the designated
threshold. Along with the packet rate threshold, packet
size is also monitored to gauge how much variance
each flow has. The first run of our algorithm consisted
of an isolated flow where a single DoS attack is sent
through the network without legitimate traffic. For this
the attacking host sends a ping flood to the target
host through several OpenFlow switches. The resulting
network flow is presented in Fig. 5.

As seen in Fig. 5, once the denial of service attack
begins, it quickly reaches an upwards of 15,000 packets
per second. This heavy traffic on a switch disrupts any
normal network traffic that may be on the switch. Fig.
6, also shows further behavior of the denial of service
attack flow. The majority of the packets during the
denial of service attack are under the Internet Control
Message Protocol (ICMP) protocol. This helps further
identify the attack as a ping flood. The overall effect
of the denial of service attack on the network load is
shown in Fig. 7.

Figure 6. Unprotected DoS Flow Packet Analysis

As seen in the preceding figures a single-host denial
of service attack can be enough to generate substantial
network load. We can now compare these results with
the results of our denial of service prevention algorithm
(SDM). Our results for this are presented in Fig. 8. It can
be seen that as soon as the packet rate approaches the
threshold of 1000 packets per second the flow begins

5

Denial of Service Attacks Prevention using Traffic Pattern Recognition over Software-Defined Network

EAI Endorsed Transactions on
Ambient Systems

03 2018 - 12 2019 | Volume 6 | Issue 18 | e1

Steven Schmitt, Farah I. Kandah

Figure 7. Unprotected DoS Flow Network Load

to be mitigated. From this point a JSON message is
produced containing the source and the destination for
the flow along with any metrics pertaining to the flow
itself. Upon receiving the JSON message the Floodlight
controller can then push an update to all OpenFlow
switch flow tables allowing for the denial of service
traffic to be dropped and the host to be blacklisted.

Figure 8. Protected DoS Flow

In this example our scheme is able to quickly handle
the ping flood produced by the attacking host. For
the attacking host to continue communicating within
the network a JSON message will need to be sent to
remove the host from being blacklisted. For our SDM
this functionality is automated and it occurs after a set
amount of time. To further test our SDM scheme and
its performance in identifying DoS flows, the same ping
flood was sent during normal network operations. D-
ITG traffic generator was used to send a stream of UDP
data packets across the network. During this time the
ping flood was sent to the target host to disrupt the UDP
traffic flow.

Fig. 9 outlines our scheme’s performance during
the attack. Once the ping flood begins, a large influx
of ICMP packets enters the network. Our algorithm
quickly identifies this flow as malicious, and it is able
to smartly drop the packets while maintaining the
UDP data flow. The use of sFlow metrics and the

Floodlight controller allows for fine-grained control
over network flows allowing normal network traffic to
remain untouched.

Figure 9. Protected UDP Flow

In comparison to the prevention scheme presented
in [3], our solution is able to quickly identify and
mitigate attacking hosts. By using a metric-based
approach we were able to avoid the waiting times
that are implemented by Singh et.al.’s algorithm that
requests hosts to verify that they are sending legitimate
traffic. Along with this, Singh et.al.’s scheme causes
increased overhead for the virtual controller. During
larger scale attacks this overhead can lead to further
delays and network strain. Our SDM scheme avoids this
by performing the detection and processing through
an sFlow server, and only communicating with the
Floodlight Controller when flow handling updates are
needed.

Figure 10. Average Mitigation Time: SDM vs EP

As seen in Fig. 10, on average our method of denial
of service mitigation performs faster than Singh et.al.’s
method. This is due to the added processing time
Singh et.al.’s method takes to identify and mitigate
flows. Before a flow is dropped, Singh et.al.’s method
allows for at least a 100 second response time from
the attacker. We argue in our scheme that this adds too
much delay in mitigating the attack, which could lead
to a decrease in the network performance during the
attack.

Overall, our single-host denial of service prevention
algorithm was successful in identifying and mitigating
large denial of service flows. This was done through
the use of highly adaptable software-defined network
techniques. In the following section a similar algorithm

6 EAI Endorsed Transactions on
Ambient Systems

03 2018 - 12 2019 | Volume 6 | Issue 18 | e1

Figure 11. Synchronised attack - Protection Enabled

is implemented to handle distributed denial of service
attacks.

6.2. Analysis and Evaluation of a Distributed DoS
Attack
To simulate a distributed denial of service attack
several hosts on our test network were scripted to
send a synchronized attack on a single host using
various traffic types. A D-ITG script was used to
synchronize the attack across multiple hosts. Hosts
were chosen across the network to involve multiple
network switches in the simulation. This allowed us to
test the ability of our system to collect aggregate switch
data while watching for spikes. Both ICMP and UDP
traffic were used in our simulated attack to further test
the ability of our algorithm to identify suspect flows of
various traffic types. Along with this the D-ITG script
produced a uniform distribution for packet rate during
the simulation. Other network traffic distributions can
further be tested to probe for weaknesses in detection.
Due to processing constraints, fluctuations in packet
rate from each attacking host can be expected, but on
average were set at a fixed rate of 5000 packets per
second.

The idea behind our mitigation scheme is to use the
sudden increase of network activity as an indicator
of which flows are suspect. For this the Floodlight
controller for our network will keep an aggregate total
for several metrics that will update with only the most
current values. This will create a timing window to
monitor the network. The same type of script we used
in our single-host denial of service attack can be used to
select suspect flows and send triggers to drop them once
identified. A threshold of 20,000 packets per second
was used to trigger the mitigation script. This threshold
was chosen based on normal network activity, and can
be adjusted based on an individual network’s needs. For
our simulation 20,000 packets per second allows for
normal network traffic to continue without triggering
mitigation. Fig. 11 displays our distributed denial of
service script in action against a multi-host attack on
a single target.

Once our script is implemented with sFlow, we can
see that the aggregate packet rate sees a spike once
the distributed denial of service begins. Once this
threshold window is detected, suspect network flows
are dropped and blocked for a set period of time. As
seen in Fig. 11, once the aggregate packet rate drops
below the threshold, the rate at which flows are dropped
decreases. This is done to avoid dropping legitimate
network traffic. Even if attacking flows still persist the
attack as a whole has been mitigated.

Table 1 shows a sample of the data collected by sFlow
and outlines the collection of the aggregate packet rate
across all network switches. Mean packet rate is shown
as approximate values due to fluctuations in packet
rate caused by hosts performance. Network switches
are shown as sFlow agents labeled s1 through s6 in
our example. Each sFlow agent sends its metrics to
the remote sFlow instance where it is analyzed further.
Based on our topology presented in Fig. 4, we can
see that each network switch excluding s1 had an
attacking host, and that the attacking flows were unable
to maintain their flows for the target at 10.0.0.1. For our
attack the subnet 10.2.0.0/16 consisted of all attacking
hosts across multiple OpenFlow switches. Once an
individual flow is identified, a blocking signal can then
be sent to the Floodlight controller which can then issue
orders to drop packets pertaining to the suspect flow.
By acting at the switch level, our SDM scheme is able to
stop the distributed denial of service attack at the first
switch it encounters.

The values and thresholds used in our model are
specific to the simulated network we created. For our
work to be adapted to a new network, new thresholds
and values will need to be adjusted to match the
common traffic load of the network.

Since our method is based on a variety of real-
time metrics, it allows for a large variety of traffic
types to be identified. Even more fine tuning can be
added to increase the versatility in the ability for our
model to detect suspect network flows. By relying on
real-time network metrics our research successfully
mitigated denial of service attacks. Further work and
study could help improve the understanding of more

7

Denial of Service Attacks Prevention using Traffic Pattern Recognition over Software-Defined Network

EAI Endorsed Transactions on
Ambient Systems

03 2018 - 12 2019 | Volume 6 | Issue 18 | e1

Steven Schmitt, Farah I. Kandah

Table 1. Sample Network Flows

Flow number Protocol IP Src IP Dest Agent Mean packet rate
5 UDP 10.2.0.7 10.0.0.1 S3 ∼5000
6 UDP 10.2.0.12 10.0.0.1 S6 ∼5000
7 ICMP 10.2.0.5 10.0.0.1 S3 ∼5000
8 UDP 10.2.0.3 10.0.0.1 S2 ∼5000
9 ICMP 10.2.0.14 10.0.0.1 S5 ∼5000
10 UDP 10.2.0.13 10.0.0.1 S6 ∼5000
11 UDP 10.2.0.9 10.0.0.1 S4 ∼5000

Total ∼35,000

advanced attacks to find the key indicators of their
occurrence. Once this behavior is found it could quickly
and efficiently be implemented in our type of mitigation
model.

7. Conclusion
Recent trends have shown a migration of software
from local machines to server-based services. These
service-based networks depend on high up-times and
heavy resistance in order to compete in the market.
Along with this growth of network services, denial
of service attacks have equally grown. With a simple
set of tools, attackers could bring down one of these
services. Our research in the use of software-defined
networking to mitigate and detect denial of service
attacks has shown that the adaptability and flexibility
metrics based solutions allow for a complete solution
to denial of service attacks. By relying on real-time
metrics, our network was able to adapt to large flows of
data quickly and effectively while maintaining services
on unaffected flows.

References
[1] Christos Douligeris and Aikaterini Mitrokotsa. Ddos

attacks and defense mechanisms: Classification and
state-of-the-art. Comput. Netw., 44(5):643–666, April
2004.

[2] Zdravko Bozakov and Panagiotis Papadimitriou.
Autoslice: Automated and scalable slicing for software-
defined networks. In Proceedings of the 2012 ACM

Conference on CoNEXT Student Workshop, CoNEXT
Student ’12, pages 3–4, New York, NY, USA, 2012. ACM.

[3] S. Singh, R. A. Khan, and A. Agrawal. Prevention
mechanism for infrastructure based denial-of-service
attack over software defined network. In International
Conference on Computing, Communication Automation,
pages 348–353, May 2015.

[4] D. Kreutz, F. M. V. Ramos, P. E. VerÃŋssimo, C. E.
Rothenberg, S. Azodolmolky, and S. Uhlig. Software-
defined networking: A comprehensive survey. Proceed-
ings of the IEEE, 103(1):14–76, Jan 2015.

[5] Kamal Benzekki, Abdeslam El Fergougui, and Abdelbaki
Elbelrhiti Elalaoui. Software-defined networking (sdn):
a survey. Security and Communication Networks,
9(18):5803–5833, 2016. SCN-16-0386.R1.

[6] sFlow Team. sFlow. http://www.sflow.org/index.

php, 2017. [Online; accessed March-2017].
[7] W. Wang, X. Zhang, W. Shi, S. Lian, and D. Feng.

Network traffic monitoring, analysis and anomaly
detection [guest editorial]. IEEE Network, 25(3):6–7, May
2011.

[8] Alisha Cecil. A summary of network traffic monitoring
and analysis techniques. 2010.

[9] Mininet Team. Mininet. http://mininet.org/, 2017.
[Online; accessed March-2017].

[10] Alessio Botta, Alberto Dainotti, and Antonio Pescapè.
A tool for the generation of realistic network workload
for emerging networking scenarios. Computer Networks,
56(15):3531–3547, 2012.

8 EAI Endorsed Transactions on
Ambient Systems

03 2018 - 12 2019 | Volume 6 | Issue 18 | e1

http://www.sflow.org/index.php
http://www.sflow.org/index.php
http://mininet.org/

	1 Introduction
	2 Related Works
	3 Motivations
	4 Problem Statement
	5 Software-defined networking Denial of service Mitigation
	5.1 Mitigating Single-Host Denial of Service Attacks
	5.2 Mitigating Distributed Denial of Service Attacks

	6 Analysis and Performance Evaluation
	6.1 Analysis and Evaluation of a Single-Host DoS Attack
	6.2 Analysis and Evaluation of a Distributed DoS Attack

	7 Conclusion

