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Abstract. In today's competitive environment, achieving high levels of product quality is crucial for both 

manufacturing and service industries. This pursuit of quality is essential for maintaining a competitive edge in the 

market and ensuring customer satisfaction. The study systematically explores various statistical quality tools, and 

the review delves into the theoretical foundations of each tool, highlighting their specific applications and efficacy 

in the 3D Printing industry. By integrating the quality tools into the broader quality management framework, the 

study provides valuable insights by offering a strategic roadmap for optimizing quality control processes. It 

advocates the informed use of statistical quality tools as indispensable instruments in achieving and sustaining 

excellence in 3D Printing. The 3D printing process was identified as out of control from the results of various 

quality control tools, and optimization of process parameters was carried out to enhance the quality of the product. 
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1 Introduction 
 

Statistical quality control (SQC) refers to the use of statistical methods in the monitoring and maintenance of the 

quality of products and services. The primary objective of statistical quality tools is to provide organizations with the 

means to make data-driven decisions, leading to the prevention or early detection of defects, errors, or deviations in 

their processes. Quality control (QC) tools are often referred to as a set of techniques and methods used in quality 

management and process improvement. 3-D printing is an additive manufacturing technique in which an object is 

manufactured layer by layer. The output parameters such as surface roughness (μm), tensile strength (N/mm²), and 

elongation (mm) are considered for the study. The outputs are based on the layer height (mm) during the 3-D 

printing process. The statistical quality control helps to optimize the 3-D printing process. SQC involves inspecting 

a random sample of output from the process for characteristics. The 3D printing process is analyzed by the usage of 

seven QC tools, to obtain the optimum combination of the input parameters to attain the desired output. 

 
2 Literature review 

 

Raveendran et al.(2023) highlighted the role of distinguishing 'special' and 'routine' variations in patient-specific 

quality assurance (PSQA), advocating a two-stage approach for tailored Tolerance and Action Limits. Incorporating 

Shewhart’s and time-weighted control charts in routine Linac Quality Assurance (QA) offers deeper insights. 

Moreover, leveraging statistical process control (SPC) tools in image review modules or dedicated clinical software 

enhances QA efficiency, emphasizing the need for prudent tool selection aligned with data and process drift [1]. 

Ritchie et al.(2023) introduced a novel temporal histogram model and synthesizer that accurately captures individual 

household electricity and hot water usage behavior. Using a substantial dataset, the model demonstrates high 

accuracy in characterizing usage behavior and predicting future consumption [2]. Rohani and Teng (1995) 

highlighted the crucial role of quality control tools, specifically the "seven basic QC tools," in enhancing both 

product quality and process efficiency within a competitive market. In a case study of a plastic injection molding 

company, the successful deployment of these tools led to a substantial reduction in monthly defect rates [3]. Rooyen 
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et al. (2023) employed ANOVA-simultaneous component analysis (ASCA) to analyze the impact of roasting and 

wheat type on shortwave-infrared (SWIR) spectra of whole wheat and flour. Employing a full factorial design, the 

research examines various factors and interactions, revealing significant effects on spectral data, notably on protein 

structures and starch in wheat [4]. A study by Abbasi and Mahmoudi (2021) proposed a novel approach utilizing 

statistical control charts and transfer function indices to objectively classify faults in FRA results, specifically 

targeting short circuits, axial displacement, and radial deformation. Experimental findings indicate improved fault 

detection and classification accuracy, affirming the efficacy of this method in enhancing visual fault identification 

and precise determination of diverse faults within power transformers [5]. Srinivasu et al. aim to control quality 

aspects across methods, machinery, products, and equipment, utilizing the "seven basic QC tools" to achieve cost-

effective objectives. However, the success of these tools as problem-solving assets relies significantly on robust top-

management commitment [6]. Pavol Gejdoš (2015) delves into the historical evolution of statistical tools 

emphasizing their role in continuous process improvement through Statistical Process Control and Process 

Capability Indices. It underscores the significance of these tools in enhancing processes via continuous monitoring 

and sample inspection, aligning with Total Quality Management principles[7]. A study by Irena Ograjensek (2016) 

emphasized the critical role of statistical quality control and improvement tools in enhancing the quality of services, 

which constitute a significant portion of developed economies' GDP. It advocates for a broad interpretation of these 

tools, extending beyond traditional control charts to encompass a wide array of statistical methods [8]. Cohen et 

al.(2023) investigated the impact of quality tools on companies' performance within French industries, focusing on 

Lean and Six Sigma methodologies. The findings highlight the efficacy of specific tools: One Piece Flow and 

GEMBA for quality improvement, Value Stream Mapping and Takt Time for cost reduction, and KANBAN for 

enhancing productivity [9]. Jennings and Drake (1997) introduced a novel approach by applying statistical quality 

control charts to monitor machine tool performance parameters. It incorporates a unique measurement normalization 

method, employing a "normalization chart" to compensate for parameter inter-dependence. By calculating residuals 

based on deviations from this chart, the study utilizes statistical control charts to monitor machine tool conditions 

[10]. Research on 3D printing quality control needs comprehensive studies integrating various statistical methods 

with specific technologies. There is a scope for improvement in real-time monitoring and control. Holistic 

approaches considering multiple quality dimensions are needed. Advanced statistical methodologies tailored to the 

unique challenges of 3D printing quality control require further exploration. 

 
3 Methodology 

 

The statistical analysis was performed using quality tools including control charts, histograms, scatter plots, 

regression analysis, analysis of variance, and a two-factor factorial experiment. While the optimization is carried out 

using the Taguchi method. The data obtained during the 3-D printing process was assessed with statistical quality 

tools. The results from each quality tool show whether the process is under control and to optimize the process. The 

graphs and results were obtained from Minitab statistical software and Microsoft Excel. 

 
4 Results and Discussion 

 
 Taguchi Method 

 

The obtained data was refined and organized to form the L30 orthogonal array shown in Table 1. Three factors - 

Print speed (mm/sec), Material, and Fan speed (rpm) of levels three (40, 60, and 120 mm/sec), two (PLA and ABS), 

and five (0, 25, 50, 75, and 100 rpm) respectively were taken into consideration. The output factor was chosen as 

Surface roughness (in µm) for which the process parameters are to be optimized. The Taguchi Method utilizes 

orthogonal arrays to conduct experiments efficiently. These arrays allow for the study of multiple factors 

simultaneously, reducing the number of experiments needed to identify critical parameters affecting product quality. 

Design of Experiments (DOE) forms the backbone of the Taguchi Method, providing a systematic approach to 

optimize design parameters. By planning and conducting experiments, manufacturers can comprehensively evaluate 

the critical factors. The Signal-to-Noise (S/N) ratio is a pivotal concept in the Taguchi Method. It assesses the 

quality characteristics of a product or process in the presence of variations or "noise" factors. From the response 

graphs, the optimal combination is A1 B2 C3, i.e. Print speed = 40 mm/sec from Figure 1, Print Material = ABS 

from Figure 2, and Fan speed = 50 rpm from Figure 3 respectively. 
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Table 1. L30 Taguchi orthogonal array 

Print Speed 

(mm/sec) 

Material Fan Speed (rpm) Surface 

Roughness (μm) 

S/N Ratio 

40 ABS 0 25 -27.9588 

40 ABS 25 32 -30.1030 

40 ABS 50 40 -32.0412 

40 ABS 75 68 -36.6502 

40 ABS 100 92 -39.2758 

40 PLA 0 60 -35.5630 

40 PLA 25 55 -34.8073 

40 PLA 50 21 -26.4444 

40 PLA 75 24 -27.6042 

40 PLA 100 30 -29.5424 

60 ABS 0 75 -37.5012 

60 ABS 25 92 -39.2758 

60 ABS 50 118 -41.4376 

60 ABS 75 200 -46.0206 

60 ABS 100 220 -46.8485 

60 PLA 0 126 -42.0074 

60 PLA 25 145 -43.2274 

60 PLA 50 88 -38.8897 

60 PLA 75 92 -39.2758 

60 PLA 100 74 -37.3846 

120 ABS 0 120 -41.5836 

120 ABS 25 144 -43.1672 

120 ABS 50 265 -48.4649 

120 ABS 75 312 -49.8831 

120 ABS 100 368 -51.3170 

120 PLA 0 180 -45.1055 

120 PLA 25 176 -44.9103 

120 PLA 50 128 -42.1442 

120 PLA 75 138 -42.7976 

120 PLA 100 121 -41.6557 



  

Fig. 1. Response graph for print speed (mm/sec). Fig. 2. Response graph for material 
 

 

Fig. 3. Response graph for fan speed (rpm). 

 

 Individual Moving Range Chart 

 

The tensile strength readings are taken based on the layer height during the 3-D printing process. An I-MR 

chart provides process variation over time in a graphical method. The data is then fed into Minitab software and the 

obtained I-MR chart helps to identify when the process goes out of control and indicates where to focus on the 

source of the assignable cause. For individual chart UCL = 42.17, LCL = 2.01, CL = 20.08 as well as for moving 

range chart UCL = 27.14, LCL = 0, CL = 8.31 respectively (in N/mm²). It monitors any points that are moving out 

of control, identifies the special cause for variation, and tries to eliminate those causes to keep the process under 

control. The Individual chart implies that 4 out of 5 points have more than one standard deviation from the center 

line (on one side of CL). The test failed at 7, 26, 27, 44, and 46 reading points. The moving range chart implies that 

one point is more than the standard deviation of 3.00 from the center line. The test failed at the 41
st
 reading point. 

Further, this result is used to optimize the process by identifying the special causes of variation and eliminating those 

to keep the process under control. The process under the I-MR chart is out of control for the data sets taken. 

 

Fig 4. Individual moving range chart for tensile strength (N/mm²) 



 Two-factor factorial experiment 

 
A two-factor experiment, also known as a two-way experiment, is a type of experimental design used in 

scientific research and statistics. In a two-factor experiment, researchers investigate the effects of two independent 

variables (factors) on a single dependent variable. It is affected by the level of the two factors. The bed temperature 

(℃) & print speed (mm/sec) were chosen as independent variables and the impact of the independent variables on 

tension strength (dependent variable) was assessed using a two-factor factorial experiment. ANOVA table is 

generated and the F value for bed temperature, print speed, and the combined effects of both were calculated. The 
inferences that are derived from a two-factor experiment are the percentage contribution shown in Table 2, the 

optimum contribution shown in Table 3, and the interaction plot which is shown in Figure 5. The percentage 

contribution of each source of variation is determined to understand the significance of the independent variable 
over the dependent variable (output parameter: tension strength (N/mm²)). The observation shows that the bed 

temperature (℃) has the highest significant effect. 
Table 2. Percentage Contribution 

Bed temperature (℃) 17% 

Print speed (mm/sec) 13% 

Temperature & speed 15% 

 
Table 3. Optimum Combination 

Bed temperature (℃) 22.1 14.5 15.33 22 15.16 

Print speed (mm/sec) 26.5 37 25 
  

 
The observation shows that level 1 of bed temperature (℃) is 60℃ and level 2 of print speed (mm/sec) which is 60 

mm/sec is the optimum combination. An interaction plot is a graphical tool for checking potential interactions. 

 

Fig 5. Interaction plot between bed temperature (℃) and print speed (mm/sec) 

Parallel lines indicate that there is no significant interaction. A severe lack of parallelism indicates a significant 

interaction. Moderate lack of parallelism suggests a possible significant interaction may exist. 

 
 Correlation 

 

Correlation is a statistical measure that quantifies the degree and direction of the relationship between two 

or more variables. The correlation coefficient (r) indicates the extent to which the pairs of numbers for these two 

variables lie in a straight line. In this study, the considered r values above 0.4 is to be relatively strong. The focus 

was on identifying input factors that demonstrated a correlation strength above a moderate level. This threshold is 



essential to pinpoint the most influential factors. For each combination, the correlation coefficient r is determined to 

quantify the strength and direction of the relationship. The input factors were selected to exhibit correlation where 

the values are above the predefined threshold for each of the three output factors. 

 

 Results for roughness (μm) 

 

Layer Height (r = 0.8) indicates a strong positive correlation, meaning higher layer heights are associated with 

rougher surface finishes. Nozzle Temperature (r = 0.349) suggests a moderate positive correlation. 
 

 Results for tensile strength (N/mm
2
) 

 

Layer Height (r = 0.388) indicates a moderate positive correlation. Wall Thickness (r = 0.4) suggests a moderate 

positive correlation. Infill Density (r = 0.358) This means that denser infill patterns contribute to slightly stronger 

tensile properties. Nozzle Temperature (r = -0.406) implies a moderate negative correlation. 
 

 Results for elongation (mm) 

 

Nozzle Temperature (r = -0.527) indicates a strong negative correlation. In other words, higher nozzle temperatures 

are associated with reduced elongation properties. Layer Height (r = 0.508) Higher layer heights result in 

significantly greater elongation properties. 

 
 Multiple linear regression 

 

It is a powerful statistical method used to explore and model the complex relationships between 

multiple independent variables (also known as input or predictor variables) and a single dependent variable 

(the output or response variable). 

 

 Results for roughness (μm) 

Roughness = -476 + 1232 layer height + 2.330 nozzle temperature. (1) 

 
Equation (1) represents a mathematical model that expresses roughness as a function of layer height (mm) 

and nozzle temperature (℃). The coefficient for layer height (1232) is positive, indicating that an increase in layer 

height is associated with a substantial increase in roughness. The probability value generated is 0 for the equation 
indicating that the model is highly statistically significant. A low p-value in the ANOVA table suggests that the 
model provides a good fit for the data. The overall fit of the model using metrics like R-squared (R²) or adjusted R-
squared is also assessed. The R square value generated is 76.37%, a higher R² value indicates a better fit of the 
model to the data. 

 

 Results for tensile strength (N/mm
2
) 

 

Tensile Strength = 61.7 + 56.8 layer height - 0.2789 nozzle temperature + 1.160 wall thickness + 0.1508 infill 

density. (2) 

 

Equation (2) represents a mathematical model that predicts tension strength based on the combination of 

the four input factors. A one-unit increase in layer height is associated with an increase in tension strength of 56.8 

units, while a one-unit increase in nozzle temperature is associated with a decrease in tension strength of 0.2789 

units. 

 

 Results for elongation (mm) 

 

Elongation = 7.23 + 6.21 layer height - 0.02805 nozzle temperature . (3) 

 

The coefficients in equation (3) indicate the impact of each input factor on elongation while holding the 

other factor constant. 



 

Fig 6. Normal probability plot 
 

The normal probability plot in Figure 6 is a graphical representation to assess whether the residuals (the 

differences between the actual and predicted values) of your model follow a normal distribution. A probability plot 

shows residuals closely following a straight line suggesting the model fits the data well. For tension strength, it is 

found that the combination of layer height, wall thickness, nozzle temperature, and infill density significantly affects 

this key mechanical property. For elongation, it is identified that the combination of layer height and nozzle 

temperature plays a vital role in determining this property. 

 
 One-way analysis of variance 

 

The comparison of test results between bed temperature and roughness strength revealed a noteworthy 

outcome based on the F table analysis. The statistical assessment indicates a significant variance among the 

treatment means, specifically at a 5% significance level. This substantiates that manipulating bed temperature yields 

discernible effects on the roughness parameter. The tabulated F value of 3.9381111, being lower than the calculated 

F value of 51.30623, confirms the statistical significance, underlining the impactful relationship between bed 

temperature and the resultant roughness strength. Table 5 gives the levels of the factors that should be maintained to 

attain highly confirming output which is determined by considering the mean value of observations at each level of 

the independent variables. 
Table 4. Summary Table 

Groups Count Sum Average Variance 

Bed temperature (℃) 50 3500 70 51.02041 

Roughness (μm) 50 8529 170.58 9807.759 

 

Table 5. ANOVA table 

Sources of 

variation 

Sum of squares Degree of 

freedom 

Mean squares F(Calculated) P-value F(Tabulated) 

Between 

groups 

252908.4 1 252908.4 51.30 1.4774E-10 3.93 

Within groups 483080.2 98 4929.39 
   

Total 735988.6 99 
    



 Histogram 

 

The histogram is plotted for three different parameters which include roughness, tensile strength, and 

elongation and the results are discussed below. 
 

Fig 7. The histogram for Surface Roughness (μm) Fig 8. The histogram for Tensile Strength (N/mm2) 
 

 

Fig 9. The histogram for Elongation (mm) 
 

The Figure 7 histogram plot QC tool shows that the average surface roughness of the dataset is 170.6 µm, 

with a standard deviation of 99.03 µm. The majority of the data points fall between 160 µm and 240 µm, with a few 

outliers below 160 µm and above 320 µm. The Figure 8 histogram plot QC tool in the image shows the frequency 

distribution of tension strength in a normal population. The mean tension strength is 20.08 N/mm², with a standard 

deviation of 8.926 N/mm². The majority of the data points fall between 10 N/mm² and 30 N/mm², with a few outliers 

below 10 N/mm² and above 40 N/mm². The Figure 9 histogram plot QC tool in the image shows the frequency 

distribution of elongation in a normal population. The frequency distribution is approximately normally distributed, 

with a mean elongation of 1.672 mm and a standard deviation of 0.7882 mm. The majority of the data points fall 

between 0.8 mm and 2.4 mm, with a few outliers below 0.8 mm and above 3.2 mm. 

 
5 Conclusion 

 

The findings of this study serve as a critical assessment of the control status of the 3D printing process 

based on the parameters investigated. This evaluation is essential in determining the stability and reliability of the 

3D printing operations under scrutiny. This paper emphasizes the pivotal role of implementing quality tools within 

the 3D printing process, as this significantly contributes to the assurance and enhancement of overall product quality. 

The adoption of these tools facilitates manufacturers in proactively identifying and addressing potential issues at the 

early stages of the production cycle, resulting in a notable reduction in defects and a simultaneous increase in 

operational efficiency. This research underscores the strategic importance of quality tools for optimizing 3D printing 

outcomes and ensuring the production of high-quality products. 



References 
 

[1] “Moving towards process-based radiotherapy quality assurance using statistical process control,” Phys. Med., vol. 112, p. 

102651, Aug. 2023. 

[2] “Predicting residential water and electricity usage profiles with a temporal histogram model,” Sustainable Cities and 

Society, vol. 99, p. 104884, Dec. 2023. 

[3] R. G. Carey and R. C. Lloyd, Measuring Quality Improvement in Healthcare: A Guide to Statistical Process Control 

Applications. Quality Press, 2001. 

[4] “Effect of wheat roasting conditions and wheat type on short-wave infrared (SWIR) spectral data of whole and milled wheat 

by ANOVA-simultaneous component analysis,” Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 303, p. 123160, Dec. 

2023. 

[5] “Application of statistical control charts to discriminate transformer winding defects,” Electric Power Systems Research, 

vol. 191, p. 106890, Feb. 2021. 

[6] S. A. Lim and J. Antony, Statistical Process Control for the Food Industry: A Guide for Practitioners and Managers. John 

Wiley & Sons, 2019. 

[7] P. Gejdoš, “Continuous quality improvement by statistical process control,” Procedia Econ. Finance, vol. 34, pp. 565–572, 

2015. 

[8] Ograjenšek, Irena. "Applying statistical tools to improve quality in the service sector." Developments in Social Science 

Methodology 18 (2002): 239-251. 

[9] “A statistical analysis of critical quality tools and companies’ performance,” J. Clean. Prod., vol. 255, p. 120221, May 2020. 

[10] K. F. Martin, “Machine tool condition monitoring using statistical quality control charts,” Int. J. Mach. Tools Manuf., vol. 

37, no. 9, pp. 1243–1249, Sep. 1997. 

http://paperpile.com/b/6jPP8S/ouJ8g
http://paperpile.com/b/6jPP8S/ouJ8g
http://paperpile.com/b/6jPP8S/71CGZ
http://paperpile.com/b/6jPP8S/71CGZ
http://paperpile.com/b/6jPP8S/4xPA8
http://paperpile.com/b/6jPP8S/4xPA8
http://paperpile.com/b/6jPP8S/bADJu
http://paperpile.com/b/6jPP8S/bADJu
http://paperpile.com/b/6jPP8S/bADJu
http://paperpile.com/b/6jPP8S/TwMTg
http://paperpile.com/b/6jPP8S/TwMTg
http://paperpile.com/b/6jPP8S/as5FR
http://paperpile.com/b/6jPP8S/as5FR
http://paperpile.com/b/6jPP8S/KCVV
http://paperpile.com/b/6jPP8S/KCVV
http://paperpile.com/b/6jPP8S/rRrF9
http://paperpile.com/b/6jPP8S/ZNFjX
http://paperpile.com/b/6jPP8S/ZNFjX

