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Abstract: Because the planning and design of urban logistics systems do not incorporate 
terminal logistics distribution into unified solutions, less consideration is given to the 
collaborative distribution environment of multiple distribution subjects. This oversight 
results in low overall efficiency and service quality of logistics distribution. 
Simultaneously, considering the impact of reducing energy consumption and episodic 
sites on logistics distribution, electric unmanned vehicles with high efficiency, low cost, 
and noncontact features have become the main vehicle of terminal logistics distribution. 
Therefore, this paper considers urban terminal distribution, constructs a multiagent 
collaborative distribution model with electric unmanned vehicles as the carrier, and 
designs an improved Tabu Search algorithm to solve the model. In simulation, our 
optimization model can fully realize the advantages of energy savings, emission 
reduction and cost reduction of electric unmanned vehicles compared to operation using 
the traditional single distribution and single source vehicle distribution models. The 
solution provided here can also reduce the promotion of terminal distribution in logistics 
activities and promote the green, low carbon and sustainable development in cities. 

Keywords: Electric Unmanned Vehicle Logistics; Multiple distribution subjects; 
Collaborative distribution; Terminal delivery; Path optimization 

1. Introduction 

End-of-line delivery is a logistics distribution process designed to deliver goods to the 
terminal (i.e., customer). It is also known as "last mile delivery". The time and cost of 
end-of-line delivery account for more than 30% of the entire logistics process[1]. This occurs 
because of its small single batch size, multiple delivery categories, and multiple access 
nodes[2]. Due to the complexity of the system and other characteristics, the existing urban 
logistics system has not included end-to-end distribution in unified planning, resulting in a 
single distribution entity and duplicate distribution paths, reducing the overall efficiency of 
logistics activities. Simultaneously, most urban logistics transportation vehicles use gasoline 
and are thus highly dependent on fossil fuels, severely affecting green, low-carbon, and 
sustainable development of logistics distribution systems. Therefore, it is necessary to 
coordinate multiple distribution entities and carry out joint distribution path optimization, 
reduce losses in the process of end-to-end logistics distribution. Moreover, it is necessary to 
actively promote the distribution of electric unmanned vehicles, reduce the dependence on 
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fossil fuels for urban terminal distribution, reduce energy loss during the distribution process, 
and cause environmental pollution in the city. 

Collaborative distribution refers to the process of collaborative distribution among multiple 
distribution entities to improve distribution efficiency and reduce the duplication of 
distribution paths. For example, there are several different distribution enterprises in the same 
city or region, and each enterprise can use distribution centers, equipment and facilities to 
implement joint distribution for different customers. We have also used large-scale 
neighborhood search algorithms to solve the problem. Ke Jianchao[3] designed a hybrid 
heuristic algorithm consisting of K-means clustering algorithm and improved NSGA-II 
algorithm to optimize the MOCVRPTWA model, which can reduce costs and ensure customer 
satisfaction in logistics network design when the expected time window is not satisfied in 
multi-party collaborative delivery mode. The third is the research on the practical demand for 
innovative collaborative delivery models among multiple entities. Yang Mengke[4] and Li 
Naiwen[5] then established a collaborative distribution model with multiple distribution entities, 
despite only solving batch distribution was for demand points within a limited area, the 
superiority of the collaborative distribution model was proved. 

The VRP problem has been derived from pure electric unmanned vehicles, which are used as 
logistics transportation vehicles for delivering goods. In logistics, this formulation is called the 
pure electric logistics vehicle routing problem. Ye C[6] divided EVRP models into four types: 
EVRP considering load and battery life constraints, EVRP with a time window and 
considering charging strategies, the study of vehicle routing problems for hybrid fleets, and 
EVRP combined with charging/swapping station location. In recent years, research on this 
type of problem has mainly included innovation in path planning under different constraint 
conditions.  Abhinav Gupta[7] considered VRP along with additional constraints of capacity 
and time-windows (CVRPTW), he aimed to provide a fast and approximately optimal 
solutions to large-scale CVRPTW problems, and presented a deep Q-network with 
encoder-decoder based reinforcement learning approach to solve CVRPTW. Messaoud E[8] 
solved the Electric Vehicle Routing Problem with Stochastic Travel Times (EVRPSTT) by 
proposing a Chance Constrained Programming (CCP) Model, as well as a new scheme based 
on an Improved Large Neighborhood Search (ILS) algorithm and a Monte Carlo Sampling 
(MCS) procedure.Jie Wanchen[9] and Zhen Cao[10] have also established a multi vehicle 
electric vehicle path planning problem model in our research on the charging and power 
consumption of electric vehicle batteries. S Fujimura[11] proposed an attention-based 
end-to-end DRL model to solve VRP which embeds edge information between nodes for rich 
graph representation learning.The third type of research on pure electric logistics vehicle 
routing is to start exploring VRP problems by combining external complex conditions. Wang 
Yong[12]After designing a 3D-K-means spatiotemporal clustering algorithm that takes into 
account customer geographic location and demand time windows, a multiobjective particle 
swarm optimization (MOPSO) hybrid algorithm based on Clarke Wright (CW) conservation 
algorithm (CW-MOPSO) is proposed. Pasha J[13] designed a customized multi-objective 
mixed meta heuristic solving algorithm that directly considers the specific properties of the 
problem. 

In summary, end-of-line delivery is a crucial aspect of the entire logistics activity, and the 
quality of its service will determine customer satisfaction with the entire delivery process. 
However, currently, most research on end-of-line delivery issues is focused on single 



distribution centers, and the delivery path is a closed loop. Few studies have involved the 
collaborative allocation of vehicles by multiple delivery entities before delivery, and most of 
the research models on electric unmanned vehicles only consider factors such as range 
constraints, load constraints, or time window constraints that affect the vehicles themselves, 
without considering the actual application conditions of vehicle-to-vehicle collaborative 
allocation. Based on the above background, this paper constructs an EVRPDD (Electric 
Vehicle Routing Problem with Dynamic Demands) model for multiagent collaborative 
distribution needs and constructs target models for allocation and distribution stages. An 
improved Tabu Search algorithm with good local search ability was designed to solve the 
model[14]. Tabu Search algorithm is one of the most general theory and mature algorithms in 
artificial intelligence algorithms, which conforms to four criteria for good heuristics: accuracy, 
rapidity, simplicity, and adaptability[15]. Therefore, this work has certain significance for 
comprehensively improving efficiency in "last mile" delivery. 

2. Model establishment 

2.1 Problem Description 

Here, the problem of collaborative distribution among end-of-life distribution entities is 
divided into two stages. The process of adjusting the ownership of goods between distribution 
entities is denoted the allocation process, and the process of end-of-life distribution by 
distribution entities is denoted the distribution process. Using electric unmanned vehicles as 
vehicles, the delivery path is semiopen, signifying that the unmanned vehicles in the delivery 
stage can return to any nearby delivery entity for the optimization of the entire end-to-end 
pickup and distribution path. The objective is to minimize the sum of shipping costs, charging 
costs, and mileage costs while considering both the deployment and distribution stages. The 
optimization objective is to minimize the cost of picking up accessories from the entire 
terminal and reduce the cost of end-to-end distribution in the entire logistics process. There are 
multiple different distribution entities in the same area, each with warehousing functions. 
Before starting the distribution task, each distribution entity contains a certain number of 
unmanned delivery vehicles. The demand for each delivery service and the location of the end 
demand point are known. After the delivery task is completed, the unmanned delivery vehicle 
returns to a nearby distribution center. During the delivery process, if the battery of the 
unmanned vehicle is insufficient to complete the remaining mileage, then it can go to the 
charging station to replenish the battery, fully charge it, and then continue to deliver to the 
next customer node. 

Certain assumptions are made regarding the above issues, as follows: 

1. During the delivery and allocation phase, vehicles may not return to the original center 

2. Assuming that the remaining battery charge is directly proportional to the range that can be 
driven 

3. Each end demand point has only one logistics vehicle for service. 

4. When the delivery vehicle departs from the distribution center, its load capacity does not 
exceed its upper limit. 



5. Each distribution entity simultaneously serves as a distribution center that is responsible for 
loading and unloading goods from transport vehicles. Initially, each distribution center has 5 
unmanned distribution vehicles, with a maximum capacity of 10 distribution vehicles. 

2.2 Mathematical models 

According to the problem description, the entire distribution process is divided into two stages 
(distribution and allocation), which are modelled tseparately. 

(1) Delivery stage model: 

Equation (1) represents the total cost consists of distribution cost, allocation cost, and charging 
cost; Equation (2) indicates that the delivery cost is determined by the number of dispatched 
vehicles and the total mileage traveled; Equation (3) represents the charging cost; Equation (4) 
ensures that vehicles are available for service at each demand point; Equation (5) represents 
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the conservation of traffic at the service point, ensuring that the vehicle leaves after delivery; 
Equations (6) and (7) ensure that the vehicle departs from the distribution center and 
ultimately returns to the distribution center; Equations (8) and (9) represent mileage 
constraints to ensure that the remaining range of the electric unmanned vehicle at any node is 
not zero, and the vehicle always follows the shortest path; Equation (10) indicates that when 
departing from the distribution center, the power of the distribution vehicle is full; Equation 
(11) indicates that the loading capacity of the delivery vehicle at any node does not exceed the 
vehicle capacity; Equation (12) indicates that the transport vehicle is only fully charged at a 
fixed charging station; Equation (13)1 variable, represented as the initial route; Equation (14)1 
variable, represented as the initial charging plan 

(2) Allocation stage model: 
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Equation (15) represents that the allocation cost is composed of the fixed departure cost of the 
allocated vehicles and the operating cost of the allocated vehicles; Equations (16) and (17) 
indicate that all goods have been detected, and each item of goods has only one vehicle 
serving it; Equations (18) and (19) ensure that each allocation vehicle departs from the 
distribution center and returns to the distribution center; Equation (20) indicates that the 
delivery vehicle ensure its loading capacity does not exceed the vehicle's capacity at any node; 
Equation (21) is a binary variable that represents the validity of a given virtual freight 
transportation route 

(3) Variable and parameter definitions 

0C Total cost  1C Delivery cost  2C : Allocation cost  3C Charging cost 

1u Distribution center delivery unit distance cost (yuan/km) 

2u Unit distance cost of allocation between distribution centers (yuan/km) 

3u Single charging cost (yuan/time) 



1f Single dispatch cost of delivery vehicles in the distribution center (yuan) 

2f Single dispatch cost of vehicles allocated by the distribution center (yuan) 

M The collection of distribution centers where the end demand point begins to belong 

'M Collection of distribution centers assigned to end demand points (starting point) 

''M Collection of distribution centers (endpoints) assigned to end demand points 

F Charging Station Collection 

mN Collection of end demand points belonging to distribution center m 

'm
mN

The collection of end demand points belonging to distribution center m but assigned to 
distribution center m ' 

K Collection of vehicles during the delivery phase 

'K Collection of vehicles in the deployment phase 

ijd Distance traveled between point i and point j 

jq
Weight of goods at demand point j 

maxW Loading capacity of delivery vehicles 

max'W : Adjusting the loading capacity of vehicles 

ijkx 1 decision variable, when the vehicle travels from point i to point j, it is 1; otherwise, it is 
0 

jky
1 decision variable, 1 when vehicle k is charged at point j, otherwise 0 

'mmd The distance between distribution centers m and m ' 

3. Algorithm Design 

3.1 Attribution allocation 

(1) Generate the initial solution 

Because the final result and solving speed of taboo search algorithms largely depend on the 
quality of the initial solution, a heuristic rule is used to generate the initial solution for the cost 
stage based on the ratio of the demand at the end demand point and the distribution distance 
from the distribution center. Thus, the demand points closer to the distribution center and with 
larger distribution volumes are served earlier. 



(2) Taboo search algorithm logic 

Define two operations: "move" and "exchange". Use A and B to refer to two distribution 
entities. Move refers to changing one or more distribution points belonging to distribution 
entity A to distribution entity B for distribution. Exchange refers to the exchange of one or 
more distribution points belonging to distribution entities A and B. 

3.2 Distribution Path Planning 

(1) Encoding 

The transportation vehicle used in this study is an electric unmanned vehicle, which needs to 
consider not only the problem of distribution points but also the problem of charging stations 
when the remaining mileage of the electric vehicle is insufficient due to distance constraints. 
Therefore, the problem needs to be able to show the order of vehicle visits to the stations, 
which can be encoded in natural number order. 

(2) Decoding 

Decoding is the reverse of encoding. The end effector used in this article is an unmanned 
delivery vehicle, so the above encoding needs to determine the remaining mileage on the 
subpath. If the remaining mileage is not enough to reach the nearest charging station from the 
next node, then proceed to the nearest charging station to the current node for charging. 

(3) Neighborhood movement 

Combining the current solutions to generate neighborhoods, these movement methods can be 
divided into two categories: inter path operations and intrapath operations. These operations 
are detailed in Table 1. 

Table 1 Neighborhood movement method 

category type Specific operations Before moving After moving 

Between paths 
(two randomly 
selected nodes 
are not in the 
same path, 

(Delivery by 
different 
vehicles) 

(Bold display in 
distribution 

center) 

Front 
insertion 

Insert delivery point i 
in front of delivery 

point j 

1 234 11 567 
1…1 

1 24 11 53671…1 

Backward 
insertion 

Insert delivery point i 
after delivery point j 

1 234 11 567 
1…1 

1 24 11 5637 1…1 

exchange 
Swap delivery points i 

and j 
1 234 11 567 

1…1 
1 264 11 537 1…1 

Reverse 
order 

Flip (including 
delivery point i and 

delivery point j) 

1 234 11 567 
1…1 

1 765 11 234 1…1 

Change 
distribution 

center 

Swap the returned 
distribution centers to 

other optional 
distribution centers 

1 234 11 567 
1…1 

1 23421 567 1…1 

Within the path 
(two randomly 
selected nodes 

in the same 
path) 

Front 
insertion 

Insert delivery point i 
in front of delivery 

point j 
1 234567 1…1 1 245367 1…1 

Backward 
insertion 

Insert delivery point i 
after delivery point j 

1 234567 1…1 1 245637 1…1 



(Bold display in 
distribution 

center) 

exchange 
Swap delivery points i 

and j 
1 234567 1…1 1 264537 1…1 

Reverse 
order 

Flip (including 
delivery point i and 

delivery point j) 
1 234567 1…1 1 765432 1…1 

(4) Determination of candidate set 

Select a certain number of feasible solutions from the neighborhood as the candidate set. 

(5) Evaluation of solutions 

The process of evaluating of the solution includes updating the current solution, finding the 
optimal solution from the neighborhood of the current operation, and moving the iteration 
toward a more optimal solution. The evaluation standard applied in this stage is the lowest 
total delivery cost, which includes the sum of the driving cost, departure cost, and charging 
cost. 

(6) Taboo rules 

The taboo length is a fixed constant that determines how many iterations the taboo object will 
not appear repeatedly. The taboo object is the route scheme corresponding to the optimal 
solution of nontaboo objects in the candidate set in each iteration. 

(7) Stop criteria 

An upper limit on the number of iterations is assigned a fixed value. 

4. Case simulations 

4.1 Example Overview 

There are four express delivery companies in a certain area, with coordinates [5,5], [20,10], 
[20,25], [5,20]. In one day, all four express delivery companies have 10 delivery tasks in the 
morning, and these delivery points are distributed within the urban area of 30 km x 30 km. 
The algorithm assumes that the distance between delivery points is the Euclidean distance, and 
delivery vehicles deliver at an average speed. The coordinates of the delivery points are as 
follows: The distribution centers to which each distribution point belongs and the distribution 
quality of each distribution point are shown in the table below. Currently, the four delivery 
companies adopt a joint distribution mode. Each delivery company has 5 delivery unmanned 
vehicles and 1 distribution vehicle at the station before the start of the task today. The delivery 
unmanned vehicle has a transportation fee of 50 yuan/vehicle, a maximum driving distance of 
60 km, a driving cost of 1 yuan/kilometer, a maximum load capacity of 100 kg, and an 
average driving speed of 30 km/h. The transportation cost for the allocated vehicle is 100 
yuan/vehicle, with a maximum driving distance of 200 km, a driving cost of 2 yuan/kilometer, 
a maximum load capacity of 200 kg, and an average driving speed of 40 km/h. 

The coordinates of the distribution center and distribution points are shown in Figure 1. 



 

Figure 1 Distribution Point Coordinate Map    Figure 2 Coordinate diagram of charging station 

There are a total of 20 charging stations within the urban area, as shown in Figure 2. The 
charging time for unmanned vehicles is 30 minutes each time, and the charging cost is 15 
yuan/time. The coordinates of the charging stations are shown in the Appendix. To prevent 
vehicles from being too concentrated at a certain distribution station, a virtual parking system 
is established, with a maximum of 10 unmanned vehicles distributed in each distribution 
center. The average waiting time for delivered goods to arrive at the distribution point is 5 
minutes. 

4.2 Comparative analysis 

(1) The situation of traditional single mileage vehicle delivery 

To verify the effectiveness of the algorithm, the case where the traditional single mileage 
delivery vehicle is used by the delivery subject for separate delivery is first analyzed. This 
delivery vehicle has a load capacity of 100 kg, a travel cost of 1 yuan/kilometer, a maximum 
travel distance of 80 km, and a fixed departure cost of 50 yuan. The mileage saving method is 
used for optimization, and 400 iterations are executed.  

A total of four delivery routes were generated, with a total delivery cost of 925.5 yuan. The 
iterative optimization situation is shown in Figure 3, and the single mileage vehicle delivery 
route is shown in Figure 4. 

 

Figure 3 Iterative Optimization Diagram           Figure 4 Single Mileage Vehicle Roadmap 



(2) The situation of using rechargeable electric vehicles for delivery 

This section investigates the use of rechargeable electric vehicles without coordinated 
distribution among delivery entities. The delivery vehicle has a capacity of 100 kg, a travel 
cost of 1 yuan/kilometer, a fixed travel cost of 50 yuan, a maximum travel distance of 100 
kilometers, and an average speed of 30 km/h. There are 20 charging stations, with a charging 
time of 30 minutes and a charging cost of 15 yuan/time. The taboo search algorithm is used 
for optimization, based on 100 neighborhood searches and a maximum of 100 iterations. The 
taboo length is 80. 

The results show that four distribution centers independently used rechargeable electric 
vehicles for distribution, and a total of six electric vehicles were each dispatched for 
distribution and charged once, yielding a total distribution cost of 764 yuan. The iterative 
optimization situation is shown in Figure 5, and the roadmap is shown in Figure 6. 

 
Figure 5 Non collaborative optimization iteration diagram  

 
Figure 6 Collaborative Roadmap 

*Charging station 

(3) The situation of using electric unmanned vehicles for collaborative delivery 



The distribution mode Includes a delivery cost for unmanned vehicles of 50 yuan/vehicle, with 
a maximum driving distance of 60 km, a driving cost of 1 yuan/kilometer, a maximum load 
capacity of 100 kg, and an average driving speed of 30 km/h. The transportation cost for the 
deployment vehicle is 100 yuan/vehicle, with a maximum travel distance of 200 km, a travel 
cost of 2 yuan/kilometer, a maximum load capacity of 200 kg, and an average travel speed of 
40 km/h. In this stage, an improved taboo search algorithm is used to optimize the delivery 
and deployment stages, with a neighborhood search frequency of 100 times, a maximum 
number of iterations of 1000 times, and a taboo search length of 80. 

Simulation results generated a total of 5 delivery paths, with a total delivery cost of 630 yuan. 
The iterative optimization situation is shown in Figure 7, and the roadmap is shown in Figure 
8. 

 

Figure 7 Collaborative Iteration Optimization Diagram  

 
Figure 8 Collaborative Path Diagram 

*Charging station 

Table 2 Each delivery vehicle path 

 Access sequence 
Car1 3→26→8→43→16→19→24→15→7→14→32→29→4 
Car2 2→41→40→5→44→38→6→34→2 
Car3 3→11→37→35→42→31→12→30→3 



Car4 4→39→28→27→20→18→25→13→33→22→1 
Car5 2→36→9→10→17→21→23→4 

According to Table 2, a total of 5 unmanned vehicles were dispatched from the 4 distribution 
centers for distribution operations.  

Table3 Allocation Route Table 

Starting point for 
deployment 

Number of tasks 
Loading and unloading 
volume (1 for loading 
and 2 for unloading) 

volume of goods loaded 
and unloaded 

4 0 0 0 
4 8 1 49 
4 9 1 40 
1 3 1 9 
1 2 1 49 
1 1 1 36 
3 9 2 40 
3 6 1 9 
3 2 2 49 
2 5 1 26 
2 6 2 9 
2 1 2 36 
2 4 1 41 
2 8 2 49 
3 7 1 35 
3 4 2 41 
4 3 2 9 
4 5 2 26 
4 7 2 35 
4 0 0 0 

From Table 3, it can be seen that the deployment of vehicles. 

In this example, to verify the effectiveness of the algorithm, vehicles with the same load and 
mileage constraints were used in both the collaborative and non collaborative modes. The 
corresponding results are shown in Table 4. The collaborative delivery mode reduced driving 
costs by 55.3%, and the optimization amplitude of the total cost was 15.8%. 

Table 4 Optimization Results Analysis Table 

 
Driving 

cost 
Dispatching 

cost 
Charging 

cost 

Allocation 
of driving 

costs 

Allocation 
of dispatch 

costs 
Total cost 

Center1 133  100 0 0 0 233  
Center2 77  50 0 0 0 127  
Center3 98  50 30 0 0 178  
Center4 125 100 0    

Total cost 
before 

collaboration 
434  300 30 0 0 764  

Total cost 
after 

collaboration 
194  250  30 86  100  660  



Optimization 
amplitude 

55.3% 16.6%    15.8% 

Through case analysis and comparison with other literature, the experimental results show that 
the multiagent end-to-end collaborative delivery model established by myself can effectively 
reduce delivery costs compared to traditional delivery models, fully demonstrating the 
superiority and practicality of the collaborative delivery model proposed in this paper. 
Simultaneously, this model and report also provide practical concepts for logistics enterprises 
to optimize the "last mile" delivery path and reduce the proportion of end-to-end logistics 
costs 

5. Conclusion 

The collaborative distribution mode offers certain advantages over a single distribution mode 
approach in solving terminal distribution problems, reducing costs and increasing efficiency. 
This paper considers the lowest total transportation cost as the objective function and, upon 
considering the load and mileage constraints, constructs target models of the deployment and 
distribution phases in the terminal collaborative distribution process with multiple distribution 
agents. In the model solution, the initial solution is produced based on the heuristic algorithm. 
Based on the principle of limited service for points with close proximity and high quality of 
goods and constrained by vehicle load, an initial allocation plan for ownership is generated. 
Then, encoding and decoding are performed to obtain an initial solution of the delivery plan, 
and an improved taboo search algorithm is used for optimization of the solution. Examples 
from the MDVRP standard case library are used, and mathematical software is developed to 
test the proposed model. The corresponding simulation results verify the universal 
applicability and superiority of the innovative delivery model based on this model, which can 
better plan and more efficiently utilize logistics resources. As a result, the overall efficiency of 
logistics distribution is improved, and the use of nonrenewable energy is reduced, promoting 
green, low-carbon, and sustainable development of cities. The establishment of mathematical 
models is explored, as is the optimization of these models, which are also applicable to the 
solution of VRP problems 
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