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Abstract

Cognitive radio applications require flexible waveforms to overcome challenges such as opportunistic
spectrum allocation. In this context, filtered multicarrier modulations are particularly justified to fit time-
frequency characteristics of the channel.

In our theoretical framework, a multicarrier signal is described as a Gabor family the coefficients of which are
the symbols to be transmitted and the generators are the time-frequency shifted pulse shapes to be used. In
this article, we consider non-rectangular pulse shapes and an increased signaling density such that inter-pulse
interference is unavoidable.

Such an interference is minimized when using a tight Gabor frame. We show that, in this case, it can be
approximated as an additive Gaussian noise, allowing us to compute theoretical bit-error-probability. This
result allows to predict the convergence of a coded system using iterative decoding. We also study the
relevancy of such a system in an interference cancellation context.
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1. Introduction
In most of current communication systems, the linear
part allows for perfect symbol reconstruction: the
synthesis and analysis families used in the transmitter
and the receiver form biorthogonal frames (also
known as Riesz bases). In a single-carrier bandlimited
communication scenario, this requires the Nyquist
criterion to be respected [1]. In other words, the
transmission rate must be lower than the bilateral
bandwidth of the transmitted signal.

With an increasing need of spectral efficiency
driven by overcrowded frequency bands, the main
strategy relies on an increase of constellation size
given a constant transmission power, bandwidth and

∗Corresponding author. Email: alexandre.marquet@gipsa-
lab.grenoble-inp.fr

symbol rate (below the Nyquist limit). This choice
induces a decrease in the minimum Euclidean distance
between transmitted signals, thus becoming more
sensitive to noise and consequently increasing bit-error-
probability [2].

A more unusual way to improve spectral efficiency
is to increase the symbol rate until the Nyquist
criterion is overridden, leading to unavoidable inter-
pulse interference (IPI). This idea has been proposed
by J. Mazo under the denomination “faster-than-
Nyquist” (FTN) [3]. He showed that an increase up
to approximately 25% of the Nyquist symbol rate
keeps the minimal Euclidean distance between signals
unchanged. As a consequence, considering the work
of G.D. Forney on the optimal detection in presence
of inter-symbol interference, one can preserve an
acceptable bit-error-probability at the price of a greater
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computational complexity at the receiver side [2] (e.g.,
maximum likelihood approaches).

FTN transmission techniques can be extended to
multicarrier modulations [4]. In this case, denoting
F0 the inter-carrier spacing and T0 the multicarrier
symbol duration, it can be shown that if the density
ρ = 1/(F0T0) of the system is strictly greater than one,
then the synthesis and analysis families, respectively
used for transmission and reception, can no longer be
biorthogonal but can still form overcomplete frames [5].
This leads to IPI both in time and/or frequency.
Numerous studies focus on the realization of coded
multicarrier FTN systems using, in particular, serial or
parallel concatenations [6] as well as turboequalization
techniques [7]. Studies of these latter systems over
additive white Gaussian noise (AWGN) channels show
great performance, confirming their relevance, even
if their intrinsic complexity makes their design and
performance comparison particularly demanding in
terms of simulation time.

In cognitive radio applications, multicarrier wave-
forms are widely used due to their flexibility in terms
of frequency allocation combined with high spectral
efficiency schemes (i.e., overlapping orthogonal pulse
shapes) [8, 9]. Here, the FTN context introduces the
density as a new degree of freedom: a trade-off between
spectral efficiency and decoding computational com-
plexity can be set according to application’s require-
ments (e.g., energy consumption, throughput. . . ) and
channel’s conditions (e.g., thermal noise power, time-
frequency selectivity, synchronization impairments. . . ).
Besides, since FTN systems relax the orthogonality con-
straint, it enables new optimizations criteria for pulse
shapes design such as: frequency localization intended
for white spaces opportunistic filling ; peak-to-average
power ratio to alleviate power amplification efficiency
issues. . .

In this article, we study a linear multicarrier
system operating with overcomplete Gabor frames,
as it plays a fundamental role in practical systems,
including decision feedback and iterative structures
(e.g., turboequalizers). Our work includes guidelines
for the design of such systems over an AWGN channel,
based on the parameters of the linear part of the system.
First of all, we focus on the closed-form expression of
the bit-error-probability of our linear system provided
that tight frames are used, as prescribed in [10] in order
to maximize the signal to interference plus noise ratio
(SINR). Secondly, we show how the bit-error-probability
closed-form expression of the linear system can be
used to guide the design of more complex structures
(including iterative receivers such as turboequalizers).
Finally, we investigate the behavior of interference
cancellation receivers for FTN multicarrier systems.

The structure of this article is as follows. Part 2 details
the input-output relations of the system in presence

of noise, based on the frame theory. This theoretical
framework allows for the determination of the SINR,
and the theoretical bit-error-probability, based on the
assumption of normality of the interference, that are
assessed by means of simulations. Part 3 shows how
coded multicarrier FTN systems based on tight frames
can be used together with soft-decoding algorithms,
and an example of how our closed-form expression of
the error probability can predict their performances
is presented through simulations using low-density
parity check (LDPC) codes. The last part analyzes the
relevance of interference cancellation techniques and
also validates the relevance of using tight frames in this
context. Finally, conclusions and insights are presented
in Part 5.
Notation: Uppercase bold letters denote sets (e.g.,

I) with cardinality |I|. Particularly, let C be the set
of complexes, R the set of reals and Z the set of
integers. Vector spaces use calligraphic letters (e.g.,
H). Lowercase bold letters denote vector families (e.g.,
g). Plaintext, either lowercase or uppercase denote
functions, vectors (e.g., f (t)) or scalars. We use (·)∗
to denote complex conjugate, Pr{·} probability, E(·)
expectation, δ(·) Dirac delta function.

Let x(t), t ∈ R and y[k], k ∈ Z be two complex-
valued functions. For each case, we define for p ∈ {1, 2}
the spaces Lp(R) = {x : R→ C/

∫ +∞
−∞ |x(t)|p dt < +∞} and

`p(I) = {y : I→ C/
∑
k∈I |y[k]|p < +∞}, with I a countable

set. The inner product is defined by

〈x1, x2〉
def=

∫ +∞

−∞
x∗1(t)x2(t) dt ∀x1(t), x2(t) ∈ L2(R)

(1)
and the L2-norm is given by ‖x1‖ =

√
〈x1, x1〉.

2. Optimal linear multicarrier system in presence of
white Gaussian noise
2.1. Input-outputrelation
Let us denote c = {cm,n}(m,n)∈Λ ∈ `2(Λ) with Λ ⊂ Z2, a
sequence of zero-mean, independent and identically
distributed (IID) coefficients taking their values in
a finite alphabet A ⊂ C, with variance σ2

c . The
multicarrier signal is then written as:

s(t) =
∑

(m,n)∈Λ
cm,ngm,n(t) ∀t ∈ R (2)

with g = {gm,n}(m,n)∈Λ a Gabor family, with parameters
F0, T0 > 0 and the elements of which are given by the
generator g(t) ∈ L2(R) such that:

gm,n(t) = g(t − nT0)ej2πmF0t . (3)

As a result, the information carried by c is regularly
spread in the time-frequency plane (Fig. 1) with a
minimum distance F0 in frequency and T0 in time.
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Figure 1. Representationof a transmittedsignal in the time-
frequencyplane.Here, the generatorg and the parametersof the
lattice allow fora separation in the frequencydomain,but not in
the timedomain.

In a real case scenario, we usually have Λ =
{0, . . . ,M − 1} × {0, . . . , K − 1} where M,K are strictly
positive integers representing respectively the number
of subcarriers and the number of multicarrier symbols
to be transmitted. Such a restriction to a finite
signaling set induces the convergence of the sum in (2).
Nevertheless it can still contain a large amount of terms,
so it is important to make it stable. Denoting Hg =
Vect(g) the closure of the linear span of the family g1,
the stability of (2) is guaranteed when g is a Bessel
sequence, which means that we can find an upper
bound Bg > 0 such as:∑

(m,n)∈Λ

∣∣∣〈gm,n, x〉∣∣∣2 ≤ Bg ‖x‖2 ∀x ∈ Hg . (4)

In order to retrieve the data c from the knowledge of
s(t), it is furthermore necessary (and sufficient) for g to
be a linearly independent family. Hence g should be a
Riesz basis ofHg , in other words a linearly independent
family for which we can find 0 < Ag ≤ Bg such that:

Ag ‖x‖2 ≤
∑

(m,n)∈Λ

∣∣∣〈gm,n, x〉∣∣∣2 ≤ Bg ‖x‖2 ∀x ∈ Hg . (5)

In this case, the density ρ of g is necessarily lower
than or equal to one [11]. On the contrary, in order
to improve the spectral efficiency of the system
(for a fixed number of bits per symbol), this article
focuses on the case where ρ > 1. However, this
increase in spectral efficiency is counterbalanced by
an induced interference. In a linear receiver, this
interference can be considered as a noise leading to
an increased error probability. Indeed, when ρ > 1,
g is necessarily a linearly dependent Gabor family.
Yet, it can also be an overcomplete frame of L2(R),

1The closure of a normed vector space E contains all the elements of
E, together with its limit elements. For example, the closure of the set
of the rational numbers is the set of the real numbers.

i.e., a linearly dependent family for which (5) is valid
not only for x ∈ Hg , but for every x ∈ L2(R), which
guarantees that (2) is always stable and Hg = L2(R).
However, g cannot be a basis of L2(R). Thus, it is
possible that

∑
(m,n)∈Λ cm,ngm,n(t) =

∑
(m,n)∈Λ c

′
m,ngm,n(t)

with cm,n , c
′
m,n. But there exist dual frames ǧ with

bounds Aǧ and Bǧ such that for all s(t) ∈ L2(R), s(t) =∑
(m,n)∈Λ

〈
ǧm,n, s

〉
gm,n(t) =

∑
(m,n)∈Λ

〈
gm,n, s

〉
ǧm,n(t).

Among all of the dual frames, one is called
the dual canonical dual frame and is such that
Aǧ = 1/Bg and Bǧ = 1/Ag . What is more, a frame
g is said to be tight when Ag = Bg . And, in this
case, the canonical dual frame is ǧ = 1/Agg so that
s(t) = 1

Ag

∑
(m,n)∈Λ

〈
gm,n, s

〉
gm,n(t) for all s(t) ∈ L2(R) if g

is a tight frame.

A linear receiver is considered as a first stage of a
more complete FTN system (necessarily non-linear in
order to yield acceptable performance). In this context,
the symbols ĉ = {ĉp,q}(p,q)∈Λ estimated by this linear
stage are given by:

ĉp,q =
〈
ǧp,q, r

〉
∀(p, q) ∈ Λ (6)

where ǧ = {ǧm,n}(m,n)∈Λ is a reception family, r(t) = s(t) +
n(t) is the signal seen by the receiver and n(t) is
a zero-mean white Gaussian complex circular noise
independent from the symbols, with bilateral power
spectral density γn(f ) = 2N0 for f ∈ R : E(n(t)) = 0 and
E(n∗(t)n(t′)) = 2N0δ(t − t′).

2.2. Interferenceand noise analysis

By rewriting (6), we can clearly identify the interference
and noise terms:

ĉp,q = cp,q
〈
ǧp,q, gp,q

〉
︸           ︷︷           ︸
c̃p,q :useful signal

+
∑

(m,n)∈Λ\{(p,q)}
cm,n

〈
ǧp,q, gm,n

〉
︸                             ︷︷                             ︸

ip,q :interference

+
〈
ǧp,q, n

〉
︸  ︷︷  ︸
np,q :noise

. (7)

We already showed in [10] that the signal to interference
ratio (SIR) is maximized when ǧ and g are dual
canonical Gabor frames, and the SINR is maximized
when g is a tight Gabor frame and ǧ = 1/Agg. This leads
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to the following expressions:

Es =
1
2
σ2
c ‖g‖2 =

σ2
c Ag
2ρ

, (8)

σ2
i = E

(
|ip,q |2

)
= (ρ − 1)σ2

c , (9)

σ2
n = E

(
|np,q |2

)
= 2

ρ

Ag
N0, (10)

with Es the per-symbol energy, σ2
i the variance of the

interference and σ2
n the variance of the filtered noise.

The SINR is then written as

SINR =
1

ρ − 1 + N0
Es

. (11)

We can see from (7) that the interference term ip,q
is a random variable independent from the noise and
corresponding to the sum of a large number of random
variables c̃m,n which are zero-mean, independent,
following the same kind of law but with different
variances σ2

c̃m,n
:

c̃m,n = cm,n
〈
ǧp,q, gm,n

〉
, (12)

and
σ2
c̃m,n

= σ2
c

∣∣∣∣〈ǧ , gm−p,n−q〉∣∣∣∣2 . (13)

All the conditions for applying the central limit
theorem are thus not fulfilled but, as shown by our
simulations in Part 2.3, the Gaussian approximation is
accurate for the sake of error-probability estimation.
That is why in the following, we will assume the
interference ip,q to be a normal zero-mean complex
circular random variable independent from the noise.
This is analogous to a case where the symbols would
have been transmitted through an AWGN channel
characterized by a signal-to-noise ratio given by (11).
It is interesting to note that the noise term np,q is zero-
mean and Gaussian, but not necessarily white.

Simulations. The simulations presented in this part
consist in the transmission of K = 5000 multicarrier
symbols over M = 128 subcarriers with a QPSK
constellation. They were run for various generators
generating tight frames or not. Tight frames are
obtained using the duality principle of Wexler-Raz
theorem [5, theorem 9.3.4]. Indeed, this theorem
states that g and ǧ generate dual Gabor frames
with time-frequency parameters T0, F0 if and only
if they generate biorthogonal Riesz Gabor sequences
with time-frequency parameters 1/F0, 1/T0. What is
more, g generates a tight Gabor frame with time-
frequency parameters T0, F0 if and only if it generates
an orthogonal Gabor sequence with parameters 1/F0,
1/T0. Thus, orthogonal generators used in the case ρ <
1 correspond to tight frame generators when ρ > 1.

Table 1. Proprietiesof the generators used in our simulations.

Transmission
generator g

Reception
generator ǧ

Canonical
dual frames

Tight frame with
‖g‖ = 1/

√
ρ

TFL ǧ = g Yes Yes
OBE ǧ = g Yes Yes

SRRC
(α = ρ − 1)

ǧ = g Yes Yes

RECTT0 ǧ = g Yes Yes
RECTρT0 RECTT0 No No
RECTρT0 ǧ = g No No

0 2 4 6 8 10 12 14 16 18 20
0
1
2
3
4
5
6
7
8
9

10
11
12

Es/N0

SI
N

R
(d

B
)

Theoretical (tight frame)
g = ǧ : TFL
g = ǧ : OBE
g = ǧ : SRRC α = ρ − 1

g = ǧ : RECTT0
g = ǧ : RECTρT0
g : RECTρT0 , ǧ : RECTT0

Figure 2. SINR as a functionof Es/N0, withρ = 16/15.

Thus, the orthogonal generators obtained [12] form
tight frames, as shown in [10]. The interest of these
generators is that they have minimal length which
reduces the complexity of the system and also allows
that interference is spread over few symbols. Moreover,
they maximize the time-frequency localization (TFL) or
minimize the out-of-band energy (OBE). For the same
reasons, the square-root-raised-cosine (SRRC) with roll-
off factor α = ρ − 1 as well as the T0-width rectangular
(RECTT0

) generator yield tight frames. When such a
generator is used both in transmission and reception,
it is sufficient to set its norm to 1/

√
ρ in order to

obtain tight frames with Ag = 1. By contrast, although
the RECTρT0

and RECTT0
generates dual frames, they

are not canonical dual so that using one of them
for transmission and the other for reception does not
lead to a pair of tight frames. Finally, the rectangular
generator of width ρT0 (RECTρT0

) does not form
canonical dual frames when used both in transmission
and reception. This is summarized in Table 1.

Figure 2 exhibits the perfect prediction of the SINR
by (11) when the generators used in transmission and
reception form tight frames.

2.3. Errorprobabilityapproximation
We now restrict our analysis to the case where the
symbols c are taken from a quadrature phase-shift
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keying (QPSK) constellation. In that case, given the fact
that both the noise and the interference are considered
Gaussian, the bit error probability for a transmission
through an AWGN channel is given by

Pe = Q
(√

SINR
)

= Q


√

1

(ρ − 1) + N0
2Eb

 (14)

where Q(·) is the complementary cumulative distribu-
tion function (CCDF) of a standard normal distribution
and Eb = Es/2 the per-bit energy.

Simulations. In this part, we discuss the relevance of
the Gaussian approximation of the interference. To
this extent, we measure 3.6 × 106 realizations of the
interference ip,q term by performing a transmission
of M = 64 subcarriers over K = 50000 multicarrier
symbols for different values of ρ, using a QPSK
constellation and tight frames. The variance of the
obtained samples is then normalized thus giving
standardized versions of ip,q depending on ρ with
comparable empirical probability density functions and
cumulative distribution functions (CDF). The behavior
described here has been observed to be similar with
both the real and the imaginary part of ip,q, and for
various generators forming tight frames.

Considering a transmission over a noise-free perfect
channel (SINR = 1/(ρ − 1)), zero-mean IID bits, and
denoting Fi,ρ(·) the CDF of the interference given a
density of ρ, we can express the bit-error-probability as:

Pe(ρ) = 1 − Fi,ρ
(√

SINR
)

= 1 − Fi,ρ
(√

1
ρ − 1

)
. (15)

In order to assess the Gaussian approximation, we
compare the values of the functions Pe(ρ) and
Q

(√
1/(ρ − 1)

)
for various ρ on Figure 3. Even though

the interference cannot be characterized by a Gaussian
distribution, we can see that the relative approximation
error is negligible, except for ρ close to one, in this
context of error probability estimation. Our simulations
furthermore revealed that the Gaussian approximation
then constitutes an upper bound for the bit-error-
probability. This result ensures that the Gaussian
approximation can be safely used for multicarrier
FTN communication system design and engineering,
provided that tight frames are used.

In terms of performance, for this kind of non-coded
multicarrier FTN system, Figure 4 shows that the bit-
error-rate (BER) rapidly rises with the density. We can
also see on Figure 5 that a lower-bound of the BER
appears when the power of the noise becomes negligible
compared to the one of the interference. The limits of
the Gaussian approximation of the interference is also
highlighted by both figures at strong values of Eb/N0
and when ρ is close to one (see when Eb/N0 ≥ 14dB

16/15 8/7 4/3 8/5
10−5

10−4

10−3

10−2

10−1

ρ

Q
(√

1/(ρ − 1)
)

Pe(ρ) = 1 − Fi,ρ
(√

1/(ρ − 1)
)

Figure 3. Comparisonof the real CCDF of the interference
varyingon ρ and its Gaussian approximation.

16/15 8/7 4/3 8/5
10−5

10−4

10−3

10−2

10−1

ρ

B
E

R Theoretical (tight frame)
g = ǧ : TFL
g = ǧ : OBE
g = ǧ : SRRC α = ρ − 1
g = ǧ : RECTT0
g = ǧ : RECTρT0
g : RECTρT0 , ǧ : RECTT0

Figure 4. BER as a functionof ρ, withEb/N0 = 20 dB.

and ρ = 16/15). In addition, and in accordance with
the expression of the SINR, the performance gets worse
if the frames used are not tight nor canonical dual.
Theses results confirm the needs to develop non-linear
detectors allowing for a more efficient IPI mitigation.

3. Use in a system with iterative decoding
3.1. Hypothesisfor log-likelihoodratio computation
In this section, we take advantage of a LDPC code
to mitigate both interference and noise. For optimal
performance, decoding algorithm for these codes work
with soft inputs in the form of log-likelihood ratios
(LLR):

L
(
bl

(
cp,q

)
|ĉp,q = ĉ

)
= ln

Pr

{
bl

(
cp,q

)
= 0|ĉp,q = ĉ

}
Pr

{
bl

(
cp,q

)
= 1|ĉp,q = ĉ

} , (16)

where bl (c) is the lth bit of the symbol c, and ĉ ∈ C
is an observation of the random variable ĉp,q. Given
that events cp,q = c and cp,q = c′ (c , c′) are mutually
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10−5
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10−2

10−1

Eb/N0 (dB)

B
E

R

Theoretical
(tight frame)

Theoretical
(orthogonal)

g = ǧ : TFL

g = ǧ : OBE g = ǧ : SRRC
(α = ρ − 1) g = ǧ : RECTT0

g = ǧ : RECTρT0
g : RECTρT0 ,
ǧ : RECTT0

Figure 5. BER as a functionof Eb/N0, withρ = 16/15.

exclusive, probability for the lth bit of a symbol cp,q to
take one particular value b ∈ {0, 1} can be obtained as:

Pr

{
bl

(
cp,q

)
= b|ĉp,q = ĉ

}
=

∑
c∈A,bl (c)=b

Pr

{
cp,q = c|ĉp,q = ĉ

}
.

(17)
The probability in the sum can be further decomposed,
introducing the probability density function (PDF)
fĉp,q (·) of ĉp,q, the conditional PDF fĉp,q |cp,q=c(·) of ĉp,q
given cp,q = c, and thanks to Bayes’s theorem:

Pr

{
cp,q = c|ĉp,q = ĉ

}
=

Pr

{
cp,q = c

}
fĉp,q |cp,q=c(ĉ)

fĉp,q (ĉ)
. (18)

Here, combining (17) and (18) in (16) and using the
hypothesis that the transmitted symbols cp,q are IID

with uniform distribution, so that Pr

{
cp,q = c

}
= 1/ |A|,

we obtain:

L
(
bl

(
cp,q

)
|ĉp,q = ĉ

)
= ln

∑
c∈A,bl (c)=0 fĉp,q |cp,q=c(ĉ)∑
c∈A,bl (c)=1 fĉp,q |cp,q=c(ĉ)

. (19)

In order to compute the PDF in the sums of (19), we
define the random variable νp,q = np,q + ip,q ∈ C. Let us
consider the noise and the interference as two zero-
mean, independent complex circular Gaussian random
variables: np,q ∼ CN (0, σ2

n ) and ip,q ∼ CN (0, σ2
i ). Then

νp,q is also a complex circular random variable: νp,q ∼
CN (0, σ2

ν ), with σ2
ν = σ2

n + σ2
i . Furthermore, from (7),

we can write ĉp,q = cp,q
〈
ǧp,q, gp,q

〉
+ νp,q, so that the law

of ĉp,q conditionally to cp,q = c is a linear transformation
of the Gaussian random variable νp,q. Its PDF is then

written as follows:

fĉp,q |cp,q=c(ĉ) =
1

πσ2
ν

exp
−
∣∣∣∣ĉ − c 〈ǧp,q, gp,q〉∣∣∣∣2

σ2
ν

. (20)

Considering transmission and reception generators
leading to tight frames, we can exploit (8), (9) and (10):

σ2
ν = (ρ − 1)σ2

c +
ρ

Ag
2N0 (21)

〈
ǧp,q, gp,q

〉
=

1
ρ
. (22)

As a conclusion, combining (22) and (20) into (19) gives
the following expression of the LLR:

L
(
bl

(
cp,q

)
|ĉp,q = ĉ

)
= ln

∑
c∈A,bl (c)=0 exp

−|ĉ−c/ρ|2
σ2
ν∑

c∈A,bl (c)=1 exp
−|ĉ−c/ρ|2

σ2
ν

, (23)

under these constraints:

1. the input symbols are IID with uniform distribu-
tion;

2. interference and noise are independent with zero-
mean complex circular Gaussian distribution;

3. transmission and reception generators form a
tight frame.

3.2. Semi-analyticalperformanceassessmentmethod
BER curves of systems using powerful coding schemes
such as turbocodes or LDPC are characterized by a so-
called “convergence threshold” [13] which is the Eb/N0
value from which the coded system achieves better
performance than the uncoded one. Given an AWGN
channel, it is also possible to characterize the coded
system by a curve presenting the BER at the output
of the decoder (denoted as “output BER” - BERout)
varying with the BER at the input of the decoder
(denoted as “input BER” - BERin) as in Figure 6. On this
kind of curve, the convergence threshold is found at a
given input BER. As a consequence, and thanks to the
expression of the bit-error probability (14), it is possible
to find the optimal density ρ allowing the coded system
to converge given an arbitrary value of Eb/N0.

Simulations. As an example, Figure 6 shows that a
coded system using the LDPC code of rate 1/2 specified
in the DVB-S2 specification [14] has its convergence
threshold for an input BER of approximately 0.15. On
Figure 7, we can see that when used with a multicarrier
FTN system using tight frames, the coded system
converges as expected when the input BER goes below
0.15, at Eb/N0 = 2 dB.
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4. Interference cancellation based on a
pseudo-genie receiver

From the expression of the bit error probability (14),
as expected, the FTN linear system shows worse
performance compared to the orthogonal case. Besides,
from the expression of the received signal (7), one can
notice that the performance of the orthogonal system
can be retrieved by removing the interference induced
by the FTN system, enabling a spectral efficiency
improvement while keeping the BER unchanged.

Such an interference cancellation (IC) is usually
performed by estimating the received symbols, then
computing the interference term from those estimates
and subtracting it to the received signal. Consequently,
one should keep in mind that symbols at the IC’s output
depend on those at the output of the linear receiver [15].

Given that this estimation might not be perfect, it
is interesting to assess the behavior of this system
in presence of errors on the estimated symbols. To
fulfill that purpose without having to restrict ourselves
to a particular method for computing the estimated
symbols, we implemented the pseudo-genie receiver
depicted by Figure 8. The difference with a “true
genie” receiver is that its knowledge of the transmitted
symbols is corrupted by a binary symmetric channel
inducing errors on the bits used to compute the
interference term. Thus, the symbols {c̄p,q}(p,q)∈Λ at the
output of the pseudo-genie receiver are given by

c̄p,q = cp,q
〈
ǧp,q, gp,q

〉
+

∑
(m,n)∈Λ\{(p,q)}

(
cm,n − c′m,n

) 〈
ǧp,q, gm,n

〉
+

〈
ǧp,q, n

〉
, (24)

where each bit of each element of {c′m,n}(m,n)∈Λ are
corrupted by a binary symmetric channel:

∀(m, n) ∈ Λ, l ∈ {0, . . . , |A| − 1} Pr

{
bl

(
c′m,n

)
, bl

(
cm,n

)}
= Pe,genie

Pr

{
bl

(
c′m,n

)
= bl

(
cm,n

)}
= 1 − Pe,genie.

(25)

From (24), we consider two cases.

• If Pe,genie = 0 (which implies c′m,n = cm,n), the
whole interference is canceled. In this case,
ensuring ǧ = αg (α > 0) is sufficient for the linear
part of the receiver to act as a matched filter (such
that the SNR is maximized), ensuring the same
performance for this equalized system and the
orthogonal system.

• If Pe,genie > 0, it is valuable to use tight frames,
as they also maximize the SINR obtained after
interference cancellation, providing a lower error
probability.

Simulations. The performance of this system, simulated
by the transmission of K = 5000 multicarrier symbols
over M = 32 subcarriers using a QPSK constellation.
We can see on Figure 9 that it is quite robust to the
presence of errors on the bits used to compute and
cancel the interference, which gives an insight on how
non-linear receivers using interference cancellation
(such as decision feedback or turboequalization) could
efficiently prevent IPI. Figure 10 shows that generators
yielding matched filters and tight frames (respectively
RECTρT0

and TFL in this simulation) can both reach
the error probability of orthogonal systems, provided
that few errors are made on the bits used to compute
interference. When other generators are used, this
lower bound cannot be attained using this interference
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cancellation scheme. One can notice that tight frames
exhibits better performances over matched filters as the
bits used to compute interference get more corrupted
(here, when Pe,genie > 10−3). In particular, they provide
the smallest region where the BER after interference
cancellation is worse than the BER before.

5. Conclusion
Through this article, we specified a linear multicarrier
system based on the use of overcomplete Gabor frames,
enabling an increase in signaling density in the time
and/or the frequency domain and leading to a bidimen-
sional FTN system. Consequently, an increase of the
spectral efficiency beyond (bi)-orthogonal systems (for
a given constellation size) yields interference between
pulse-shapes. Such interference can be mitigated by the
use of tight frames within the context of a linear system.
Furthermore, we showed that interference cancellation
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Figure 10. BER as a functionof Pe,genie, with a pseudo-genie
receiver, ρ = 4/3 and Eb/N0 = 10 dB.

based on noisy estimates of the transmitted symbols
(pseudo-genie receiver) can lead to the same BER as
orthogonal systems, but at a higher bitrate.

The results presented in this article allow the
ability to relatively compare the performance of FTN
multicarrier systems based on the parameters of
their linear part (e.g., time-frequency lattice density,
transmission/reception filters...). Secondly, we showed
how the knowledge of this performance can help
the design of more complex receiver structures (e.g.,
LDPC/turbodecoders, turboequalizers) by predicting
their behavior.

Future work may consist in the analysis and efficient
implementations of various multicarrier non-linear
systems based on tight frames, and transmissions
over more complex channels encountered in practical
cognitive radio scenarios.
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