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Abstract

This paper demonstrates a predictive channel selection method by implementing it in software-defined radio (SDR)
platforms and measuring the performance using over-the-air video transmissions. The method uses both long term and short
term history information in selecting the best channel for data transmission. Controlled interference is generated in the used
channels and the proposed method is compared to reference methods. The achieved results show that the predictive method
is a practical one, able to increase the throughput and reduce number of collisions and channel switches by using history
information intelligently. The method is developed further and a cellular assisted social-aware method that enables efficient
use of D2D links is defined in the end of this paper.
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1. Introduction

Cognitive radio (CR) techniques have been studied
intensively for over a decade, focusing mainly on dynamic
spectrum access oriented operation. Numerous techniques
have been developed and analysed, including spectrum
sensing, power and frequency allocations, beacon signalling,
and spectrum databases. Only a subset of the proposed
techniques have been implemented and tested in real systems
to see their practicality. This paper focuses on channel
selection problem in a changing radio environment and
demonstration of the proposed method in a practical system.

Importance of history information and knowledge on
primary traffic patterns in channel selection was shortly
discussed already in [1]. Later, the problem has been studied
intensively and prediction methods for both stochastic and
deterministic traffic have been developed [2]–[8]. For
example, a deterministic long-term component can be seen in
several bands such as cellular mobile communication systems
due to daily rhythm of the users [3]. Traffic pattern estimation

method for exponential traffic has

been proposed in [4]. A more general method able to classify
traffic patterns and select the prediction method based on this
information is proposed in [5]. Switching delay has been
included in the channel selection to decide whether to switch
a channel or not based on channel prediction and switching
overhead in [6]. The method is developed further in [7] where
an adaptive sensing policy is developed to detect the primary
user appearance as fast as possible. Sequential channel
sensing policy is studied also in [8]. The sensing procedure
and channel selection can be made faster by reducing the
number of channels to sense in the first place. Both short term
and long term information can be used to guide the process.
A channel selection method that was described in [9] and [10]
uses long term information on the use of primary channels to
select the most promising ones to be sensed and exploited by
cognitive radios at the requesting time. These channels are
investigated in more detail over short term to find the best
channels for data transmission. Both long term and short term
data are stored in databases to be able to predict which
channels look most promising for secondary use.
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Figure 1. Network model for social-aware D2D
communications.

The proposed hybrid method that uses both sensing and
databases is a promising approach to be used e.g., in different
spectrum sharing scenarios of future fifth generation (5G)
systems, and also in military environments. A hybrid method
is the most probable step in-between pure database access and
sensing based access to the spectrum. This paper
demonstrates the described method by implementing it in a
software-defined radio system. Verification is performed by
transmitting video over a cognitive link and measuring the
performance regarding error rates, channel switches, and
throughput. Achieved results are compared to reference
methods that are not using prediction in the channel selection.

A fundamental change in mobile networks from network-
centric to emerging device-centric system design is
facilitating the revolution in how mobile communication
systems are used [11]. Intelligent user equipment is becoming
involved in decision making on par with the network
infrastructure.  It  is  more  and  more  common  for  users  to
wirelessly share their content in close proximity. This is
inherently intertwined with human social behavior. Future 5G
systems have to efficiently bridge physical and virtual
communities by taking into account both physical distances
and social connections between those users. Thus, we will
propose a social-aware enhancement to our implemented
spectrum sharing method in the end of the paper.

This paper is an extended version of [12], providing more
detailed time domain analysis, a vision how to use social
information [11] in improving the channel selection process
and also defining research challenges for future.

The paper is organized as follows. Section 2 describes the
network model and used channel selection methods starting
from the intelligent hybrid one. Section 3 defines the
demonstration environment and measurement results are
presented in Section 4. Time domain analysis and discussions

about possible improvements to the

demonstrator are given in Section 5. Social-aware vision and
future research challenges are discussed in Sections 6 and 7,
respectively and conclusions are drawn in Section 8.

2. Network model and description of
channel selection methods

We consider a network model that is depicted in Figure 1
where wireless mobile users are connected to the base station
using a cellular interface. Nodes can communicate also
directly using device-to-device (D2D) communication links
between nodes that are in proximity to each other. There are
N nodes in the network. We assume that links L12 (between
Node  1  and  Node  2),  L13,  L23,  L3n can be either cellular or
short range links. The links can use both licensed and
unlicensed channels and the system is able to use spectrum
sharing methods to increase the system capacity. The links
possess different physical distances and social links between
users can be strong, weak, or even nonexistent.

The operation of the network is partly dependent on the
resource management databases that include both long term
(LT) and short term (ST) information of resources.
Information  in  the  LT  database  has  to  be  local  to  its  users
since otherwise it cannot offer relevant information. The LT
database can be shared with several base stations (BSs)
located near each other, and it can provide spectrum use
information and assistance to avoid interference between
cells. Only the spectrum use spatially close to requesting
nodes  is  important  to  be  known  to  assist  the  operation  of
them. The LT database can also include policy database,
which includes information about different QoS parameters
for the channels to be used in channel selection, e.g.,
interference levels and parameters for different licensed
systems.

Short term database gives more detailed information over
the bands of interest. The information about local channel use
is  gathered  by  periodical  sensing  and  stored  into  the  ST
database. It can be located at the base station to serve a single
cell resource management or also in a cluster head that can
serve  users  even  if  the  connection  to  a  BS  is  lost.  Using
pattern recognition and classification techniques that are
crucial parts of an intelligent system, a spectrum sharing radio
can recognize and classify traffic patterns in different
channels. This allows the system to use specific prediction
methods for different types of traffic to make idle time
prediction of channels as accurate as possible.

In this section we will define the spectrum sharing method
for the depicted system and then demonstrate the approach in
a real system. A cellular assisted social-aware method that
enables efficient use of D2D links is discussed in the end of
this paper. There we will define additional social information
to  be  included  in  the  databases  and  how  to  use  this
information in the resource management.
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Figure 2. Simplistic view of the proposed method.

2.1 The smart channel selection method

Simplistic view of the method* is shown in Figure 2. In the
first phase a radio or base station sends query to the long term
database to receive a set of promising channels among M
possible ones. The set is selected e.g., based on the long term
spectrum occupancy data. Time and capacity estimations can
be used to define channels that are suitable, offering needed
time for the requested transmission. Given N channels are
sensed to know whether they are free or not and the sensing
information is stored in the ST database.

The short term database classifies the type of traffic in
different channels which enables use of specific prediction
methods for each traffic type, making prediction results
accurate. Then, future idle times are predicted using the
classification result and the history data. The P channels with
the longest idle times are selected into use and the rest N–P
channels are returned to be offered to other users requesting
access to spectrum. After channel selection is made, the CR
can send data for predefined period of time, sensing
periodically the channel to be sure that it is still free for
transmission. Thus, use of long term database shortens the
sensing time by reducing the channels to be sensed. The use
of short term database reduces the channel switching rate and
collisions with primary users. Therefore, more time is left for
data transmission and consequently, capacity of the system is
increased.

2.2 Methods to compare

In order to study the effect of the proposed approach with
other existing ideas we need to define methods to which the
approach can be compared with. The following approaches
are used both in practical systems and in the literature.

* A more detailed description of the method including block
diagram and different phases can be found in [9] and [10].

No channel switching at all. The simplest way to operate
in the spectrum is to stay always in the same channel. Thus,
the first method to compare is no channel switching at all –
method. If there is interference in the channel, the system
suffers and there is degraded quality of service during that
period of time. The system may also be required to stop
transmitting totally and wait until the channel is free again.

Change to the next predefined frequency. An improved
step to the previous method is to change frequency when there
is interference in the current channel. This can be done in
many different ways. The simplest one is to predefine the next
frequency to switch into. The advantage of this method is to
be able to find a good channel to operate. A disadvantage is
that it may take several switches since the channel to switch
into may also be under interference.

Change to the free frequency. It is wise to switch into a
channel that is available for transmission even though it
requires more resources in sensing and finding those potential
channels. This method may randomly select any of the free
frequencies or jump into next free frequency whenever
interference occurs at the current operational channel. This
kind of reactive channel switching is proposed e.g., in [13]
and [14]. Since only instantaneous information about the
availability of channels is used, switching may need to be
performed quite often, depending on the primary user
spectrum use.

3. Demonstration environment

Figure 3 presents a block diagram of the measurement set-
up.  We  are  using  SDR  platforms  for  a  data  link,  five
interfering transmitters, and a spectrum sensor. A photograph
of  the  environment  is  shown  in  the  Figure  4.   The
measurement environment is physically located at VTT
premises in Oulu, Finland.
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Figure 3. Block diagram of the measurement setup.

Figure 4. Demonstration setup.

Interference generation is made using Matlab controlled
SDR-platforms. We use USRP B200 and X310 platforms
from Ettus Research [15] together with the EBRACE SDR
platform which, like the USRPs, is also a field-programmable
gate array (FPGA) based SDR platform. The SDR platforms
are used to generate continuous data to five different
frequency bands. The type of the platforms is not important
for the measurements. In fact, many other controllable
interference sources could be used with the same effect. The
transmission powers of the interfering

transmitters have been set high enough to cause strong
interference to the selected band. The lengths of the
continuous busy and idle times are both parametrized for each
frequency separately.

In general, data traffic transmitted in a network can be
characterized by traffic patterns. These patterns can be
classified as [1]: 1) deterministic patterns, where the
transmission is ON, then OFF during the fixed time slot, and
2) stochastic patterns, where traffic can be described only in
statistical terms. Thus, values for busy and idle times in the
demonstrator can be set either with fixed values or e.g.
exponentially distributed random values.

Suppose we have a vector of n samples of idle times from
the channel , = ( ,  , … ,  ). Assuming exponentially
distributed idle times with traffic parameter > 0 the
probability density function of the exponential distribution is

( ) = , 0
0,                       < 0.  (1)

The maximum likelihood (ML) estimate for the idle time
is = , where = (1/ )  is the sample mean [5].
Thus, the best prediction of the next idle time is the average
of the previous ones. The same model applies also for busy
times. In practice, traffic patterns of different channels might
vary over time. Thus, the observation interval for average
calculation should be restricted.

EAI Endorsed Transactions on 
Cognitive Communications

 12 2016 - 02 2017 | Volume 3 | Issue 10 | e2

M. Höyhtyä et al.



5

Figure 5. Graphical user interface.

Interference detection for the used channel is done by
measuring the block error rates (BLER) in the receiver.
BLER is defined as the ratio of the number of erroneous
blocks received to the total number of blocks sent,
expressed as a percentage. It is used in 3GPP Long Term
Evolution (LTE) systems during link radio monitoring,
typically aiming to have the BLER below 10 %. It can be
improved e.g., by adaptive modulation and coding or by
changing to a new frequency. In our proof-of-concept
implementation, once the block error rate exceeds a
threshold value we decide to change the channel. The next
channel is selected according to methods presented in
Section 2.

Spectrum measurement for other channels is done in
100MHz bandwidth, and by also selecting the system
bandwidth to be 100MHz, all of the used channels can be
monitored simultaneously. This keeps the spectrum
sensing simple in our measurement set-up. For each used
frequency, after averaging over a few measurements, we
use a simple threshold to decide whether the channel is
interfered or not. If the measured power level is above the
threshold, the channel is considered interfered.
Measurement control reads this binary (busy/free)
information and decides the next free frequency where to
jump to if a channel change is needed.

Actual data link is in our case a modified real-time LTE
link based on National Instruments LabVIEW
Communications LTE Application Framework version 1.0
[16] where we have added the frequency switching
algorithms. With the data link we can measure the
throughput, error rate and number of frequency changes.
Measurements were done with LTE Modulation and
Coding Scheme (MCS) number 24, i.e. with 64QAM and
code rate 3/4, and using 20MHz bandwidth. Throughput
was recorded both for all of the physical downlink shared
channel (PDSCH) data and for the user data, which in our
case was video data streamed over the link. The graphical
user-interface (GUI) of the measurement control is
presented in Figure 5. User interface shows in real-time
which channel is currently used, which channels are under
interference, and what is the next channel to switch into
when interference occurs. The GUI shows also spectrum
information and enables selecting the different channel
selection methods on the fly.

Measurements presented in this paper were made in the
2.4 GHz industrial, scientific, and medical (ISM) band
which is not fully controlled environment. We noticed that
there was also other traffic present at the band during the
measurements. The total 100 MHz bandwidth was
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Figure 6. Measured throughput and number of
channel changes with all the methods, random

interference traffic.

Table I. Idle and busy periods for used channels.

Channel
1

Channel
2

Channel
3

Channel
4

Channel
5

Idle
time

11 s 5 s 37 s 8 s 56 s

Busy
time

17 s 8 s 10 s 5 s 21 s

divided into five equal size channels. Especially, channels
1, 2 and 3 were slightly interfered but the channels 4 and 5
were mostly free of other traffic. The other traffic was
mostly general WiFi traffic in the office environment. The
measurements were made during the night time and during
the weekends when the amount of this other, uncontrolled
traffic was very small. Our radio link used a turbo code
with 3/4 code rate, and frame error rate (FER) was low on
all channels if we ourselves were not generating any
controlled interference with our interference generators.

4. Measurement results

Measurement results for video transmission with different
channel selection methods are given in Figure 6 and Fig. 7.
Measurements were conducted for each method over a
13500 second period. The presented results are average
results over four consecutive measurement periods. For
brevity, the used methods are named as:

Figure 7. Percentage of time used in channels,
random traffic.

Mode0: No channel changes
Mode1: Change to next (predefined) frequency
Mode2: Change to next free frequency
Mode3: Change to the best free frequency

Figure 6 shows the measured throughput and number of
channel changes for all the channel selection methods with
the random interference. The busy and idle periods for used
channels are given in Table I. The given values represent
both mean values for exponentially distributed interference
traffic and fixed values for deterministic traffic. Same
values are used with each mode to have a fair comparison.
As is seen in the figure, the more intelligence is added to
the channel selection method the higher the achieved
throughput is. Mode0 suffers during the interference since
it is not able to change the channel. Ability to switch
improves right away the performance. The proposed
method, i.e., Mode3 achieves the highest throughput since
it is able to predict and select the channels offering longest
idle times for transmission and thus, minimize the number
of channel changes over the experiment.

 Figure 7 shows in more detail how different modes use
different channels. The Mode0 uses all the time the best
channel. Mode1 and Mode2 select the next channel
randomly and use bad channels 1, 2, and 4 quite much.
Mode3 concentrates the operation on the two best channels
with longest idle periods, avoiding the use of other
channels whenever it is possible. Only when there are no
good channels free, the bad channels are used. The
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Figure 8. Performance results with deterministic traffic.

Figure 9. Impact of the method: a) original frame b)
with the intelligent method.

results with the deterministic traffic shown in Figure 8
confirm the same conclusions. The advantage of the
intelligent method is roughly the same regardless the type
of the interference traffic in the channels.

The previous results were achieved with two good and
three bad channels. We made also experiments with one,
three, and four good channels to see the impact. When there
are three good channels the trend looks still the same.
However, the advantage is not that large anymore since the
random methods also tend to select good channels more
often. With four good channels the intelligent method still
concentrates on three best ones since almost all the time
some  of  them  is  available.  When  there  is  only  one  good
channel to be used the performance is heavily dependent
on the quality difference between channels. Purely from the
throughput perspective the Mode0 can be better than other
random methods since waiting in the good channel can be
better than switching all the time among bad ones. Also in
this case the intelligent method provided the best
performance in measurements. From the quality of
experience  point  of  view,  it  is  often  better  to  change  the
channel since the waiting times and related video stoppage
can be quite long. This is especially true if the interference

is strong and continuously occurring in periods of several
seconds.

5. Time domain analysis

The impact of the intelligent method in time domain can
be seen in Figure 9. The use of the long term database
shortens the sensing time due to reduced number of sensed
channels. The short term data reduces the number of
channel switching by concentrating the operation on the
channels with longest idle times. Thus, more time is left for
data transmission. This combination of databases is the
main advantage of the proposed method when compared to
other predictive approaches such as ones in [2]–[8].

5.1 Sensing time with the long term
database

The performance of the LT database can be measured
with  the  sensing  time  that  depends  on  the  amount  of
channels to be sensed before an unoccupied one is found.
Average number of sensed channels in random search is
[17]:

= , (2)

where N is the total number of channels and K is the total
number of unoccupied channels. On average, this leads to
the total sensing time to be Ts = mts, where ts is the sensing
time of a single channel. If the number of possible channels
to use is small the LT database does not bring large
advantages. When the number of channel increases the
advantages become very clear.
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Figure 10. Number of channels before an
unoccupied one is found.

Assuming wider coverage than in our implemented
system such as 100 channels, we can estimate the number
of sensed channels depending on the way the LT database
operates. Figure 10 shows the results for random selection
and for intelligent selection using the LT database for
different percentages of unoccupied channels. If all the 100
channels have to be covered, tens of channels are needed to
be sensed in high occupancy situation before an unoccupied
one is found. When the LT database prioritizes and proposes
lower amount of channels, time needed to find a channel
reduces considerably. This means that in equation (2)
parameter N will have a smaller value and parameter K will
have proportionally higher value. However, it is seen in the
figure that the difference e.g., with 100 and 20 channels is
very small when percentage of unoccupied channels is over
20 %. This means that in this case the LT database has to
make a considerable reduction in the number of sensed
channels to improve the performance.

The beauty of this idea is that in addition to smaller
number of channels, the percentage of unoccupied channels
is higher when the channels are selected by the LT database.
Thus, one should compare random method with the LT one
with a clearly higher percentage of unoccupied channels.

One example is marked with ovals in Figure 10. When
percentage of unoccupied channels in random selection case
is 10 %, it can be clearly more than 20 % among the
channels intelligently selected by the LT database. This
would mean that required number of sensed channels to find
an available one drops down to a fraction of the original. As
an example, if there are 10 available channels originally
among 100 possible ones, these 10 available channels can
be included in the set of 50 channels proposed by the LT
database. In that case the percentage of unoccupied
channels is doubled. The results indicate that the LT
information always improves the performance, especially
when the number of channels is restricted to 10 or below.

5.2 Time domain operation in the
implemented system

 The operation in the demonstration setup is presented
in more detail in Figure 11, showing the steps needed with
from the occurrence of the interference to synchronized
data transmission in a new channel. There are multiple
steps needed to perform a single channel switch. The
performance of the system could be improved through
optimization of the sensing and switching times which
could be achieved e.g., with a fully FPGA based decision
making since FPGA processing speed is much faster than
software based processing. This would speed up the
procedures T1-T3 in Figure 11 also by eliminating the need
to exchange control data through the interface between
software and hardware layers in the LabVIEW framework.
In the current setup the switching decisions are made with
software which makes the total decision cycle clearly
longer. Thus, optimally the cognitive system would use
history information in reducing the number of sensing and
switching periods as well as implement needed functions
with HW to perform a single sensing and switching process
as fast as possible.

Figure 11. Details of the time domain operation during a channel switch.
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Figure 12. Dependence between social distance
and social trust.

6. Social-aware spectrum access

Active use of online social networks have broadened the
social connections among people and made it possible to
extract the social structure between them. In addition,
location information and mobility patterns can provide
interesting data and provide opportunities for resource
management algorithms also in wireless mobile networks.
According to a recent survey on social aware networking
[18], obtaining the relevant data comes through sensing
personal operations of users, contacts between users, and
environment sensing. Then, learning and analysis of the
data are used to deduce important social properties such as
community, similarity, centrality, tie strength, and human
mobility patterns.

Spectrum use may often be correlated both in temporal
and spatial domains [19], [20]. As discussed also in this
paper, recent observations can be used in predicting future
availability and additionally spectrum users located close
to each other may experience similar spectrum
availabilities. Joint use of physical and social
characteristics can be used to assist spectrum access [21]
and device-to-device (D2D) communications [22]–[24].

Therefore, users can jointly optimize and improve the
probability of finding best available channels for
transmission by social-aware cooperation principles. For
example, correlated spectrum use data can be disseminated
among trusted users in order to predict the spectrum use
more reliably and make spectrum access decisions
intelligently. Each secondary user in a cognitive network
can recommend the channels she successfully accessed to
the users who have social trust with her. Channel
recommendations provide additional information to often
limited sensing capability of users and help making
intelligent decisions. Before visioning how social-
awareness could be included in our predictive channel
method in a D2D communications scenario, let us take a
look at some social properties.

6.1 Social properties

Centrality is a basic concept in social networks,
affecting considerably the effectiveness of data
dissemination strategies. It is a metric that can be used to
find important and prominent nodes in a social network
with a strong capability in connecting with other nodes.
Closeness centrality  measures how close a node is to all
other nodes in the network [18] and is defined for user i as

=
( , )

(3)

where ( , ) is the distance between nodes i and j. This
means that the node with the largest closeness has the
shortest path to other nodes in the network, providing
efficient data propagation to other nodes in the network,
being thus a natural choice for selection of a relay node.

Tie strength indicates the strength between nodes in a
social-aware network. It can be defined using indicators
such as frequency, longevity, closeness, and social trust.
Mobility patterns of users have a clear effect on frequency
and longevity of encounters. For example, students at a
class, family members at home, or workers inside office
follow  same  kind  of  patterns  in  daily  and  weekly  basis
which can be used in predicting the possible D2D
connections in a wireless environment. Important concepts
for data dissemination are Social trust and social
distance. Social distance between users or nodes can be
calculated based on the social trust [22] as

( , ) = log ( ( , )), (4)

where ( , ) [0,1] is the social trust between users j and
k. The shorter the distance is the larger the probability of
D2D connection. The dependence between these metrics is
shown in Fig. 12. This metric partly defines the probability
that certain users select each other as partners for D2D
communications. It can also be used as a way to control the
quality of D2D links, i.e., users with shortest social
distances are awarded with highest quality
communications.

6.2 Cellular assisted social-aware predictive
method

Discussed social properties can be used in enhancing
routing and data dissemination when combined with D2D
principles. This extends the predictive channel selection
method from link level operation to network level resource
management.
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Table II. Data to be included in databases.

Long term database Short term database
Historical sensing data Recent sensing data
Social trust between users Available D2D

connections
Policy data, regulations Social recommendations
Interference map over an
area

Social distances of
available  D2D
connections

D2D communication is centrally controlled by the base
station which enables interference management and
assures quality of service (QoS) to the end users. Nodes can
form a cluster around the cluster head which may be the
only node discussing with the base station. Selection of a
cluster head is assumed to be made according to (3) among
users having social trust with each other. Thus, the
selection takes into account both physical and social
distances between users. It is also an option that a cluster
head can control the local use of frequencies instead of the
full base station control.

The social distance metric given in (4) is used in
defining the quality of D2D connections so that when

( , ) 1, the connection can be opened without any
restrictions in the data rate. Users are not as willing to share
their resources with users having large social distances. We
assume that when the social trust is 0 < ( , ) < 0.5, the
data rate of a related D2D connection is scaled as

, = / ( , ) (5)

which affects also to the time needed to transmit the data
as well as overall ability to support QoS requirements.
Without any social trust the D2D connection is not
available.

Social-aware predictive method can be developed in
this network model by taking our original implemented
method and enhancing it by the social principles. In this
concept the long term database is enhanced by inclusion of
social trust between users. This is not very frequently
changing information. The required long term and short
term data is shown in Table II. In addition, policies and
regulations provide e.g., information about allowed
maximum power levels that can be transmitted in certain
frequency band at a certain location. Spectrum data from
multiple sensors and locations has to be processed and
combined in order to assess the spectrum use over an area
and to create an interference map [25].  This information is
stored for a longer period of time.

In short term database we have the most recent spectrum
data. Also available D2D connections can be defined in
cellular-controlled fashion by using the social trust data
from the LT database as well as physical proximity of
devices. Social recommendations from the devices provide
an optional feature to improve the channel selection
process for D2D connections. Recommendations are seen

Figure 13. Social-aware predictive method.

to provide useful information especially when the users are
located at the edge of coverage in a frequency band that
includes heterogeneous air interface options. Finally, social
distances of available connections may prioritize D2D
connections and help in deciding whether to connect over
a cellular link or using the D2D link.

Even though there is a direct relation between social
trust and social distance, the logic behind having these
values in different databases is as follows. The LT database
may have all social trust values of a certain user, provided
voluntarily  in  order  to  be  able  to  use  D2D  services  and
connections. These values may cover tens of people. The
ST database includes only social distance values between
currently active nodes in the network.

The block diagram is shown in Figure 13. The route and
channel selection process starts by detecting the
interference. The base station (or a cluster head) starts the
process to find a combination of channels and routes to
fulfill the service requests. Then, using long term history
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data of the spectrum use over the area of interest, available
channels are prioritized and pre-selection of the most
promising channels made. In order to find possible
routes/D2D links for operation, social trust information
that enables direct connection between nodes is used
together with physical parameters to find a set of possible
D2D links over which the requested service can be
fulfilled.

Short term database uses more detailed spectrum data
together with social recommendations in selecting the best
operating channels for possible D2D links. Then, final
transmission routes and associated channels are selected
using partially the social distance information since it
affects the throughput according to (5). Thus, prediction of
availability time is partially based on that data which may
be needed e.g., in selecting a channel that can fulfill
transmission time requirements.

7. Research challenges

It is foreseen that dense 5G networks and Internet of
Things (IoT) environments will need spectrum sharing
methods and D2D communications in order to find enough
capacity for the applications and services. A crucial part of
this is spectrum awareness, i.e., knowing where users are
located in frequency, time, and spatial domains in order to
build dense systems that can co-exist without interfering
with each other. Spectrum databases and predictive
channel selection methods provide solutions to this
problem. We identified some interesting research
challenges in this area for the future.

Dynamic environments: Database based operation is
mostly based on the instantaneous information. Current
implementations of spectrum database systems such as TV
white space databases or licensed shared access (LSA)
concept [26] that introduces additional licensed users on
bands with existing incumbent licensed users while
providing guaranteed QoS for both are good for
environments that are quite static. In order to work well in
a dynamic, dense, small cell environment the database
should provide some predictive information to assist the
channel and mobility management. In addition to spectrum
data, location data can be used to assist in connecting the
mobile node to right access points or base stations
proactively.

Hybrid database and sensing:  Most proposals for
obtaining spectrum awareness consider either spectrum
sensing or a database separately. Also hybrid approaches
are needed. Especially in military applications, it is not
reasonable to rely only on shared databases that can be
destroyed, providing a single point of failure for whole
system which is not acceptable. In fact, soldiers carry
multiple different wireless devices that can be used to
measure spectrum use around them. Sensing gives
reliability, works anywhere, and can be used as a back-up
system for database based operation that still provides good
opportunities both during crisis and especially peace time.
Sensing information stored in the database provides ability

to identify signals, find spectrum use patterns, and predict
what channels to avoid, use, or even jam.

Social-aware methods for predictive spectrum
access: The concept of D2D communications is advancing
in standardization forums and it is seen to provide
significant capacity gains in the future. In wireless
environment users will have a role in defining who will be
able to connect to their devices directly. When D2D
concept is used in a shared frequency band, there is a clear
need to develop methods that are able to combine social
properties such as social trust and social distance in a
spectrum database system and predictive channel and route
selection. The vision given in this article is only a first step
to that direction. Future work on that includes definition of
the most relevant social properties to be used, performance
analysis, and also implementation challenges associated in
inclusion of this aspect to real systems.

8. Conclusions

Use of history information enables a radio system to
operate efficiently in a spectrum sharing radio
environment. This paper has studied the channel selection
problem by implementing a predictive method in a
software-defined radio demonstrator and comparing its
performance in the same system to several reference
methods. Achieved results show that the proposed method
increases the throughput and decreases interference
towards other sharing systems. The quality of experience
was clearly better for video streaming studied in the
demonstration setup when the proposed predictive method
was used.

Time domain analysis conducted in the paper shows
clearly the advantage of using the history data in channel
selection since it reduces considerably the time needed to
find the best channels for operation. Optimally the
cognitive system would use history information in reducing
the number of sensing and switching periods as well as
implement HW functions to perform a single sensing and
switching process as fast as possible.

As a possible future step, the setup can be developed
further by inclusion of steerable antenna techniques such
as the method proposed in [27] to improve the sharing in
spatial domain. In addition, current implementation did not
include the classification algorithm to be able to recognize
the traffic pattern in the channels and select the optimal
prediction method accordingly. An improvement to the
operation would be also the speed-up of frequency
switching by implementing a fully FPGA based decision
making. Finally, the measurements could be made in
totally interference-controlled environments with a channel
emulator and/or in an isolated chamber.

Social-awareness enabling D2D communications is
coming to future wireless systems. We envisioned and
described a way to improve the implemented predictive
system by inclusion of social properties in D2D
environment. Both channel and route selections were
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considered. Finally, research challenges for future were
identified.
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