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Abstract. Natural data usually exhibit a long-tailed distribution, with the minority 

classes occupying the majority of the data, while the majority classes have few samples. 

Although deep learning has made remarkable progress in visual recognition on large-

scale balanced datasets, it remains challenging to model long-tailed distributions. Recent 

multi-branch methods have shown great potential to address long-tailed problems. We 

find that these methods work due to the difference between branches, so we also propose 

a new structure called Strong-weak Dual-branch Network (SDN) to enlarge the 

difference between branches. In particular, our SDN is equipped with a new Difference 

to Classification (D2C) learning strategy, designed to amplify the differences between 

the branches first, and then pay attention to classification. In addition, we propose a new 

Hard-aware Loss (HL) for the sake of handling hard examples. Our SDNHL method 

achieves SOTA on four long-tailed datasets: CIFAR-10-LT, CIFAR-100-LT, ImageNet-

LT and iNaturalist 2018. 
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1 Introduction 

Real-world data often exhibit long-tailed distributions. Existing methods usually favor the 

majority classes, resulting in poor generalization performance for rare classes. Early works 

alleviate the deterioration of long-tailed training data by re-balancing data distribution [2], [7], 

[8]. These rebalancing methods often distort the original data distribution and thus overfit the 

tail classes. Recently, two-stage methods [2], [6], [13] have achieved significant 

improvements. Deferred re-balancing methods first train the network with long-tailed 

distribution, and then use re-balancing strategies to adjust the network in the second stage. 

Ensemble approaches [11], [13] reorganize datasets into groups and each group is assigned a 

model for training. We find that these multi-branch methods inherently increase the difference 

between branches, so we propose a simple Strong-weak Dual-branch Network (SDN) to 

increase the difference between branches. In addition, we find that some classes have many 

images, but the accuracy rate is not high, while some classes have a small number of pictures, 

but have a high accuracy rate. So we propose the hard-aware (HL) loss function to adjust the 

weights of difficult and easy classes. 

In this paper, we propose Strong-weak Dual-branch Network with Hard-aware Loss (SDNHL) 

for long-tailed classification. Specifically, we feed the strongly augmented and weakly 
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augmented samples into two separate branches, while ensuring the difference between the 

branches through KL divergence. In addition, the weights of each class are dynamically 

adjusted through a hard-aware loss function. 

2 Overall Framework 

The overall framework of our Strong-weak Dual-branch Network with Hard-aware Loss 

(SDNHL) is illustrated in [1] Figure. Specifically, we design two branches to learn strong 

feature representation and weak feature representation respectively. The difference between 

the two branches is that we process the input data, one branch uses strong augmented data and 

the other uses weak augmented data. Furthermore, we increase the difference between the two 

branches by maximizing KL divergence. And we use a new learning strategy to adjust the 

focus of learning from difference to classification. In addition, we design a new Hard-aware 

Loss (HL) function for difficult samples and use it in the final stage of training. 

 

Fig. 1. The framework of SDNHL method. 

2.1 Strong-weak Dual-branch Network 

As shown in [1] Figure, the two branches are called "weak branch" and "strong branch". For 

the weak branch, we follow [4] to apply augmentation strategies, while for the strong branch, 

we randomly add grayscale, blur and color distortion. Let 𝑥 denote a training sample and 𝑦 ∈
1,2, … , 𝐶 , where 𝐶  is the number of classes. We apply strong and weak augmentation 

strategies for ''Strong branch'' and ''weak branch'', and send the two obtained samples (𝑥𝑠 , 𝑦) 

and (𝑥𝑤 , 𝑦) to their corresponding branches, respectively. Then, we send the obtained feature 

vectors 𝑓𝑠 ∈ ℝ𝐷 and 𝑓𝑤 ∈ ℝ𝐷 into the classifiers 𝑊𝑠 ∈ ℝ𝐷 ×𝐶 and 𝑊𝑤 ∈ ℝ𝐷 ×𝐶 respectively: 

𝑧𝑠 = 𝑊𝑠
T𝑓𝑠, 𝑧𝑤 = 𝑊𝑤

T𝑓𝑤 . 

𝑧𝑠, 𝑧𝑤 ∈ ℝ𝐷 ×𝐶 denotes the predicted output of the strong branch and weak branch respectively. 

We calculate the probability of the class by the softmax function as  
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Furthermore, we add a regularization term to ensure the difference between the two branches. 

We maximize the KL divergence of the classification probabilities of the two branches over a 

total of 𝐶 categories as 

𝐿𝑑𝑖𝑓𝑓  (𝑃||𝑃𝑤) = 𝐷(𝑃𝑠 ||𝑃𝑤) = ∑ 𝑃𝑠
𝑖 𝑙𝑜𝑔
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𝑖
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𝐿𝑑𝑖𝑓𝑓  denotes the difference loss. We utilize the proposed hard-aware (HL) loss in section 2.3 

for classification loss as 𝐿𝑐𝑙𝑠 and the final loss is 

𝐿𝑆𝐷𝑁  =  𝜆(𝐿𝑐𝑙𝑠(𝑦, 𝑃𝑠)  +  𝐿𝑐𝑙𝑠(𝑦, 𝑃𝑤))  +  (1 − 𝜆)𝐿𝑑𝑖𝑓𝑓(𝑃𝑠||𝑃𝑤) .  

𝜆 and 1 − 𝜆 are the weight of classification loss and difference loss respectively. A detailed 

description of the parameter 𝜆 can be found in Section 2.2. 

2.2 D2C Learning Strategy for SDN 

We propose a new learning strategy that shifts the learning focus from Difference to 

Classification (D2C). Specifically, we want to obtain as different branches as possible through 

difference loss early in training, and gradually shift the focus of training to classification as the 

training progresses. We define the 𝜆 as 

𝜆 = (
𝐸𝑐𝑢𝑟𝑟

𝐸𝑡𝑜𝑡𝑎𝑙

)
𝛾

 . 

𝐸𝑡𝑜𝑡𝑎𝑙  denotes the number of total epochs, and 𝐸𝑐𝑢𝑟𝑟  is the current epoch. We can see that 𝜆 is 

automatically generated based on the training epoch and will gradually increase with the 

training epoch. 𝛾  controls how quickly the learning strategy shifts from difference to 

classification. More experiments on 𝛾 can be found in ablation studies. 

2.3 Hard-aware Loss 

In this section, we describe hard-aware loss in detail. Our motivation stems from the 

observation that in a long-tailed data recognition task, a class with a small number of samples 

is not necessarily a hard-to-learn class, and similarly, a class with many samples is not 

necessarily an easy-to-learn class. However, the common re-weighting loss function just 

adjusts the weights according to the number of classes. To solve the above problem, we 

propose a new Hard-aware Loss (HL). 

We introduce the hard-aware loss starting with a common re-weighting loss: 

𝐿𝑊𝐶𝐸 =  −
1

𝑀
∑ ∑ 𝑤𝑐 × 𝑦𝑚

𝑐 × 𝑙𝑜𝑔(𝑝𝑚
𝑐 )

𝑀

𝑚=1

𝐶

𝑐=1
 . 

𝑀 denotes the number of training examples, 𝐶 represents the number of classes, 𝑤𝑐 denotes 

the weight of class 𝑐 , 𝑦𝑚
𝑐  is the target label for class 𝑐  of training example 𝑚 , and 𝑝𝑚

𝑐  is 

estimated probability for the class 𝑐 of training example 𝑚. 𝑝𝑚
𝑐  is calculated by 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧). 



 

 

 

 

Formally, we introduce a weight term �̃�  into the re-weighting loss function to obtain our 

proposed hard-aware loss: 

𝐿𝐻𝐿 =  −
1

𝑀
∑ ∑ �̃�𝑐 × 𝑤𝑐 × 𝑦𝑚

𝑐 × 𝑙𝑜𝑔(𝑝𝑚
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𝑀
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�̃�c is the hard-aware weight of class 𝑐. we set �̃�c with the following regulations: 

�̃�𝑒+1
𝑐 = 𝑚 × �̃�𝑒

𝑐 +
1

𝑎𝑐𝑐𝑒
𝑐
 .  

�̃�e
c denotes the weight for class 𝑐  at the 𝑒-th epoch, 𝑚 ∈ (0,1) is the momentum factor to 

adjust weights smoothly, and 𝑎𝑐𝑐𝑒
𝑐  is the accuracy of the class 𝑐 at the 𝑒-th epoch. 

3 Experiments 

3.1 Datasets and Implementation Details 

We follow [2], [13] to generate long-tailed version of CIFAR datasets. Following [12], we use 

official ImageNet-LT training and validation images. For iNaturalist 2018, we use the official 

training and validation set in [9]. 

We train the network for 200 epochs for all experiments with warm-up schedule. The 

classification loss used for the first 160 epochs is LDAM-DRW loss [2], and for the last 40 

epochs is replaced by hard-aware loss. 

Following[2], [7], [10], [11], [12], [13], we train the ResNet-32 as our backbone for CIFAR-

10-LT and CIFAR-100-LT, train ResNet-10 and ResNet-50 for ImageNet-LT, and train 

ResNet-50 for iNaturalist 2018. For weak branch training samples, we use augmentation in [2]. 

For strong branch training samples, we randomly add grayscale, blur and color distortion with 

a probability of 0.2, 0.5, and 0.8 respectively. 

3.2 Performance Comparison 

Results on CIFAR-LT. The top-1 accuracy on CIFAR-LT with ResNet-32 is reported in 

Table 1. The imbalanced ratios are 200, 100, 50 and 20. Our proposed method SDNHL 

performs the best across all the datasets. We also report the accuracy of many-shot (>100 

images), medium-shot (20∼100 images) and few-shot (< 20 images) on CIFAR-100-LT-100 

in Table 2. Our SDNHL outperforms the state-of-the-art methods by more than 2%. 

Results on ImageNet-LT and iNaturalist 2018. We further validate the effectiveness of our 

method on large-scale datasets in Table 3. Ours outperforms the RIDE by 2.2% (ResNet-10) 

and 1.9% (ResNet-50) on ImageNet-LT, and 2.5% (ResNet-50) on iNaturalist 2018, 

respectively. In Table 4, we report the accuracy of many-shot, medium-shot and few-shot. 

Table 1. Top-1 accuracy on CIFAR-10-LT and CIFAR-100-LT. 

Datasets CIFAR-10-LT CIFAR-100-LT 

Imbalance ratio 200 100 50 20 200 100 50 20 

Class-Balanced 68.89 74.57 79.27 84.36 36.23 39.60 45.32 52.59 

LDAM-DRW - 77.03 - - - 42.04 - - 



 

 

 

 

Equalization - - - - 43.38 - - - 

BBN - 79.82 82.18 - - 42.56 47.02 - 

RIDE - - - - - 49.10 - - 

Remix-DRW - 79.76 - - - 46.77 - - 

CAM - 80.03 83.59 - - 47.83 51.69 - 

Domain Adap. 77.23 80.00 82.88 86.46 39.53 44.70 50.08 55.73 

LADE - - - - - 45.40 50.50 - 

Ours 78.11 81.10 85.08 87.71 46.77 50.55 53.56 58.57 

Table 2. The accuracies of many-shot, medium shot and few-shot on CIFAR-100-LT. ∗ denotes the 

results from RIDE [10]. Other results are copied from ACE [1]. 

Method Many Medium Few All 

Focal loss 64.3 37.4 7.1 37.4 

CB loss 65.0 37.6 10.3 38.7 

Remix 69.6 40.7 8.8 40.9 

OLTR∗ 61.8 41.4 17.6 41.2 

Mixup 70.7 40.4 8.8 41.2 

LDAM-DRW 61.5 41.7 20.2 42.0 

τ-norm ∗ 65.7 43.6 17.3 43.2 

CRT∗ 64.0 44.8 18.1 43.3 

RIDE∗ 69.3 49.3 26.0 49.1 

Ours 66.2 52.1 30.5 50.5 

Table 3. Top-1 accuracy on ImageNet-LT and iNaturalist 2018. ∗ denotes the results from BBN. 

Datasets ImageNet-LT iNaturalist 2018 

Backbone ResNet-10 ResNet-50 ResNet-50 

LDAW-DRW* - - 66.12 

BBN* - - 69.62 

CAM 43.13 - 70.87 

Remix-DRW - - 70.49 

DisAlign - 52.90 70.60 

RIDE 45.30 54.40 71.40 

Ours 47.53 56.31 73.98 

Table 4. The accuracies of many-shot, medium-shot and few-shot on ImageNet-LT and iNaturalist 2018. 

∗ denotes the results from MiSLAS [5]. 

Datasets  
ImageNet iNaturalist 2018 

Many Medium Few All Many Medium Few All 

cRT* 62.5 47.4 29.5 50.3 73.2 68.8 66.1 68.2 

LWS* 61.8 48.6 33.5 51.2 71.0 69.8 68.8 69.5 

MiSLAS* 61.7 51.3 35.8 52.7 73.2 72.4 70.4 71.6 

RIDE 65.8 51.0 34.6 54.4 70.2 71.3 71.7 71.4 

Ours 66.1 53.7 37.5 56.3 73.3 74.5 73.4 73.9 

 

 

 



 

 

 

 

Table 5. Ablation studies of the proposed SDNHL on CIFAR-LT, ImageNet-LT and iNaturalist 2018. 

Datasets CIFAR-10-LT CIFAR-100-LT ImageNet-LT iNat18 

ResNet 32 32 32 32 32 32 32 32 10 50 50 

Imbalance ratio 200 100 50 20 200 100 50 20 256 256 500 

Baseline 73.21 77.20 81.73 84.41 38.01 41.16 46.30 52.57 42.61 51.94 68.83 

with SDN 77.82 80.84 84.14 86.53 45.44 49.62 52.67 57.82 46.97 56.01 73.48 

with SDNHL 78.11 81.10 85.08 87.71 46.77 50.55 53.56 58.57 47.53 56.31 73.98 

4 Ablation Study 

4.1 Effectiveness of each component 

The effectiveness of SDN and HL is shown in Table 5. The baseline is the plain model with 

LDAM-DRW loss. ''with SDN'' denotes the accuracies of Strong-weak Dual-branch Network 

with D2C learning strategy. ''with SDNHL'' denotes the model with SDN and Hard-aware 

Loss. 

4.2 Different D2C learning strategies 

As shown in Table 6, we conduct several experiments about 𝛾, which controls how quickly the 

learning strategy shifts from Difference to Classification (D2C). Linear form achieves the best 

result and we set gamma to 1 in all experiments. 

Table 6. Ablation studies of different Difference to Classification (D2C) learning strategies on CIFAR-

100-LT with the imbalance ratio of 50. 

𝛾 D2C form Accuracy 

0.0 Constant 52.67 

0.3 Concave 53.49 

1.0 Linear 53.56 

2.0 Convex 52.38 

5 Conclusions 

In this paper, we have introduced a Strong-weak Dual-branch Network (SDN) with the special 

Difference to Classification (D2C) learning strategy for long-tailed problems. Furthermore, we 

proposed a new Hard-aware Loss (HL) for samples that are hard to learn. Extensive 

experiments verify that our SDNHL method is effective. 
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