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Abstract—Hyperspectral images with high dimensionality, strong inter-band correlation 

and high spectral resolution make the research of existing classification methods a great 

challenge. Typical convolutional neural network models cannot capture the feature 

information of irregular or inhomogeneous regions of feature classes in images, and the 

features extracted by using a single network model lack diversity and cannot provide the 

best classification results. To address the above problems, a hyperspectral image 

classification method that fuses 3D dilated convolution and graph convolution is 

proposed. Firstly, a 3D dilated convolution network model is constructed to extract 

multi-scale null-spectral features using dilated convolution with different dilated 

parameter sizes; secondly, a neighborhood relationship-based graph convolution neural 

network model is established to obtain spatial structure contextual features by 

aggregating the neighborhood feature information of graph nodes; then, to improve the 

feature representation capability, the extracted deep null-spectral features are fused with 

spatial contextual features Finally, the proposed method is compared and analyzed with 

seven related classification methods on two hyperspectral datasets, Indian Pines and 

Pavia University. The results show that the overall classification accuracy, average 

classification accuracy and kappa coefficient of the proposed method reach 99.27%, 

98.81%, 99.12% and 99.32%, 99.12%, 98.38%, respectively, on the two datasets, 

indicating that the proposed method can make full use of the diverse features of 

hyperspectral images and has a strong feature learning capability, which effectively 

improves the classification accuracy of images. 
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1 INTRODUCTION  

Hyperspectral remote sensing is a technology that can make full use of visible, infrared and 

microwave light for high-altitude detection and remote non-contact classification and 

identification of land features through information processing and transmission. The acquired 

hyperspectral images have hundreds of adjacent narrow bands containing a large number of 

channel dimensions, which can provide rich spectral and spatial information to effectively 

improve the identification of land cover types[1]. Therefore, hyperspectral images have been 

widely used in various fields such as agriculture[2] and environmental monitoring[3]. 

Hyperspectral image classification, which refers to the use of its unique spatial spectral features 

to assign a unique class label to each image element in an image, is an important research 

aspect in many application areas. However, the problems of high spectral dimensionality, high 

inter-band correlation, large data redundancy, and small amount of labeled sample data in 

hyperspectral images make it a great challenge to achieve high accuracy classification[4,5]. 

In the early days, methods such as K-nearest neighbor (KNN)[6], support vector machine 

(SVM)[7], and random forest (RF)[8] were proposed to achieve hyperspectral image 

classification, but these methods only considered the spectral information and ignored the rich 

spatial information that hyperspectral images have. The phenomenon of "same-spectrum and 

different- spectrum" in hyperspectral images[9,10] has led to the inability to achieve accurate 

classification by using spectral features alone. In hyperspectral images, spatially adjacent image 

elements have similar spectral features and similar category information with high probability, 

so adding spatial features to the feature extraction and classification process can effectively 

reduce the classification uncertainty and improve the classification accuracy. Therefore, 

methods such as extended morphological profile (EMP)[11], Markov random field (MRF)[12], 

and Gabor filtering[13]have been used to extract spatial features of hyperspectral images thus 

improving the classification accuracy. Although the above methods have proven to be effective 

in improving the classification accuracy of hyperspectral images, only single, shallow spectral 

features or spatial features are extracted for hyperspectral image classification, which cannot 

fully realize the feature representation and learning, resulting in less than ideal classification 

accuracy. 

In recent years, deep learning-based classification methods have received attention due to the 

powerful ability of Convolutional Neural Network (CNN)[14] to automatically extract deep-level 

features. Several researchers have designed different CNN structures to improve the 

classification accuracy of hyperspectral images. liu et al[15] proposed a three-dimensional 

convolutional neural network (3D-CNN) that takes the original hyperspectral image as input to 

directly extract the null spectral features, which improves the classification accuracy while 

reducing the number of parameters. roy et al[16] proposed a hybrid 3D-2D CNN (HybridSN) for 

hyperspectral image classification, which combines the advantages of 3D-CNN and 2D-CNN to 

extract the null spectral features and achieves good classification results. To better learn the 

deep null-spectrum features, reduce the network complexity, and avoid the overfitting problem 

caused by the increase of layers, Jeyaraj et al[17] went to build a deep network to extract the 

null-spectrum features by residual network (ResNet), which further improved the classification 

performance of images. Chen Wenhao et al[18] proposed a 3D residual convolutional neural 

network (SE-ResNet) with the introduction of channel attention mechanism to extract null-

spectrum features based on a network with residual structure as the backbone, and obtained 



better classification results. In order to avoid the problem of feature information loss caused by 

pooling layer, Yan Mingjing et al[19] proposed a three-dimensional null convolutional residual 

neural network (Dilated-3D-CNN) hyperspectral image classification method by introducing 

null convolution, which used null convolution instead of pooling layer to improve the accuracy 

of hyperspectral image feature classification without increasing the network parameters. The 

research of the above methods has some practical significance for the improvement of 

classification accuracy. However, in the CNN-based model, the convolution or pooling 

operation relies heavily on the fixed structure in the regular grid, which cannot capture the 

subtle changes of continuous shapes associated with pixels in the spectral features and ignores 

the irregular spatial topological relationships of hyperspectral images, resulting in incomplete 

feature information extraction and easy misclassification. 

To be able to effectively extract information from inhomogeneous and irregular regions in 

images, graph convolutional neural network[20] (GCN) is applied to image processing as a 

network model with graph structure as input, which can convolve arbitrary irregular image 

regions flexibly, so it is getting more and more attention in hyperspectral image classification. 

Wan et al[21] proposed a multi-scale dynamic graph convolution hyperspectral image 

classification method (MDGCN), which expresses the spatial topological relationships by 

building multiple feature maps at different neighborhood scales. Xibing Zuo et al[22] proposed a 

graph convolution network-based hyperspectral image classification method (RULBP + GCN), 

by constructing graphs based on texture feature extraction and inputting them into the graph 

convolution network to improve the classification accuracy of images in the case of small 

samples. Liu et al[23] proposed an enhanced graph convolution network-based hyperspectral 

image classification method (CEGCN), by using encoder and decoder to fuse CNN with GCN, 

eliminating the network structure incompatibility problem to improve the classification 

accuracy. Although the above method is able to extract the spatial topological relations, it does 

not reasonably utilize the deep spatial spectral features with the contextual features extracted 

from the spatial topological relations, which leads to feature loss making the classification 

accuracy cannot be further improved. 

To solve the above problems and express the feature information of hyperspectral images 

completely, this paper proposes a hyperspectral image classification method (Dilated-3D-GCN) 

based on three-dimensional dilated convolution and graph convolution. The contributions of 

this method are as follows: the proposed combination of 3D-CNN and dilated convolution (DC) 

constitutes a 3D-DC module to extract deep null-spectral features of hyperspectral images, 

which expands the perceptual field while reducing the generation of parameters and provides 

favorable conditions for the extraction of deep null-spectral features; the topological features of 

spatial structure in the image are fully extracted by GCN, and graph is performed on the global 

features obtained by using KNN The deep null-spectral features extracted by 3D-DC and the 

contextual features extracted by GCN are fused in two channels to achieve complete feature 

representation, and better performance and higher classification accuracy are obtained in 

hyperspectral images. 



2 METHODOLOGY OF THIS ARTICLE 

2.1 Multi-scale feature extraction based on 3D dilated convolution 

Hyperspectral image as a kind of 3D data with spectral dimension and spatial dimension, using 

3D-CNN can fully extract the spatial information and spectral information. It operates the 

adjacent bands of the input layer in spatial dimension and spectral dimension simultaneously 

through 3D convolution kernel to extract the null spectral features. the equation of 3D-CNN 

convolution calculation is 

( )( )( )
1 1 1

, , ,, 1,
0 0 0

i i iL W H
x l y w z hxyz lwh

i j m i ji j i m
m l w h

f W b

− − −
+ + +

−
= = =

 
 = +
 
 
  V V

                        (1) 

where m denotes the feature map connected to the current feature map in layer 1i − ; iL
 and 

iW
 denote the length and width of the convolution kernel; iH

 denotes the size of the 

convolution kernel in the spectral dimension; W  represents the connection weight of the mth 

feature map connected to layer 1i − ; ,i jb
 denotes the bias of the Jth feature map in layer i; and 

f
 is the activation function. 

In general, the smaller the convolution kernel is, the smaller the perceptual field is, and the less 

global information is received; on the contrary, the increase of convolution kernel will increase 

the perceptual field to obtain more effective information, but the increase of convolution kernel 

will increase the complexity of the network. To address this problem, this paper introduces the 

dilated convolution(DC), which expands the perceptual field to make the edge information 

more complete and the spatial information more adequate while keeping the computation 

volume of the network unchanged. The perceptual field is calculated as follows: 
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where iF
 is the perceptual field of the convolutional kernel in the ith convolutional layer; ik

 

denotes the size of the convolutional kernel; id
 is the dilated coefficient; 1iF −  is the perceptual 

field of the convolutional kernel in the i-1th convolutional layer; and ns
 is the convolutional 

step size. 

In this paper, a 3D-DC network composed of DC is introduced on the basis of 3D-CNN, as 

shown in Figure 1. The network consists of four parts: the first part contains two convolutional 

layers with a convolutional kernel size of 3×3×3 and a channel number of 16, one of which is a 

null convolutional layer; the second part contains three convolutional layers with a 

convolutional kernel size of 3×3×3 and a channel number of 32, the middle of which is a null 

convolutional layer; the third part contains three convolutional layers with a convolutional 

kernel size of 3×3×3 and a channel number of 48, of which two are empty convolutional layers; 

the fourth part contains two convolutional layers with convolutional kernel size of 3×3×3 and 



channel number of 64, and one is a Maxpooling layer. All the convolutional layers have a 

convolutional step of 1, and the ReLU function is used after batch normalization (BN) in each 

layer to enhance the generalization ability of the model, while the Dropout regularization 

method is used to avoid overfitting before classification. Where Conv means convolution layer 

and DC means dilated convolution. 

 

Fig. 1. 3D-DC network structure 

2.2 Extraction of Spatial Topological Relations Based on GCN 

There are more and more researches on the methods of hyperspectral image classification, GCN 

as a kind of network dealing with graph structure, the essence of which is to fully extract the 

long-range spatial dependencies between nodes, and the hyperspectral data can be transformed 

into a graph structure by using the nearest neighbor relationship between nodes in the image. 

Therefore, in this paper, the whole hyperspectral image is obtained as a global feature map by 

KNN method, and a feature map KNNF
of size 11×11×512 is output, and the whole feature map 

is transformed into a neighbor graph G. The GCN makes the information between each node 

pass in the graph, and then learns the neighbor information between the nodes in the graph to 

obtain the spatial topological relationship in the image. It is assumed that each local 

feature
512NR ix on the feature graph KNNF

is treated as a node on G, so all the local features 

will form a complete adjacency graph. any two nodes ix and jx
in G are connected by edges, 

and the correlation between all nodes is defined by the adjacency matrix
N NR A . If the 

distance between two nodes is within a certain range, an edge is generated between these two 

nodes, and the smaller the distance, the stronger the correlation between the two nodes. In this 

paper, we first calculate the correlation ( ),i jdis x x
between all nodes two by two to get the 

distance matrix
N NR dis , 
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According to the KNN algorithm to sort Dis from smallest to largest, the K nodes closest to 

each node are selected as neighboring nodes, and edges are generated between these nodes, 

from which the adjacency matrix A is obtained. 
N NR A is defined as. 
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With the adjacency matrix A known, create the graph Laplacian matrix L D A= − , where D is 



the diagonal matrix representing the degree of A, i.e. ,i, j i j=D A  ; to enhance the 

generalization of the graph, the symmetric normalized Laplacian matrix L can be used, 

calculated as follows. 
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A spectral decomposition is performed on L, 
1−=L UΛU , where U is an orthogonal matrix 

consisting of eigenvectors and ( )1 2, , , nU u u u= is the eigenset of L; Λ is the diagonal array 

of eigenvalues of L. 

Defining the GCN as the product of the image signal
Nx R in the Fourier domain and the 

filter ( )g diag = , calculated as 

x g g x  = T
U U                                                         (6) 

where g can be considered as a function of the eigenvalues ( Λ ) of L with respect to the 

variables , i.e., ( )g Λ , xTU is the graph Fourier transform of x. 

The Chebyshev polynomial kT is used to approximate ( )g Λ , denoted by max as the 

maximum eigenvalue of L. Let
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combining the constant equation ( )
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In this paper, we choose 1K = , i.e., only the 1st-order connectivity information of the nodes is 

considered, so that the normalized maximum eigenvalue max 2 = , expanded and simplified as 
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where ˆ
n= −L L I ,

1 1

2 2
n

− −
= −L I D AD , and nI are unit matrices, and to further simplify, 



let 0 1  = − = , the above equation be equivalent to 
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where,  is the learnable weight; n= +A A I is the normalized adjacency matrix 

and ii ij=D A is the normalized degree matrix. 

A multi-layer GCN is eventually represented as 
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Where,
( ) ll d


N
H R denotes the node features of layer l; 

( )1 * l+1d+


l N
H R denotes the 

updated node features. The features of the input layer are
( )0

H X= . ( ) l l+1d d


l
W R is the 

trainable weight in each layer, and ( )  is denoted as the ReLU activation function. 

The graph convolution operation is performed on A according to equation (11), and the features 

of each node are updated to obtain the contextual information with dimension 256 through the 

three-layer GCN. 

2.3 Convergence and classification of 3D-DC and GCN 

The features extracted by a single model are limited and cannot express the complete 

information of hyperspectral images, which eventually leads to unsatisfactory classification 

results, for example, 3D-DC ignores the topological relationship of space and GCN ignores the 

spectral information. In order to solve the above problems and make the feature extraction more 

comprehensive, this paper proposes to fuse 3D-DC and GCN to enhance the feature expression, 

and adopt the cascade fusion (Connnect Fusion) to fuse diverse features before the final 

classification, and the network structure is shown in Figure 2. Unlike the conventional network, 

in this paper, the empty spectral features of dimension 64 obtained from the 3D-DC network 

module and the contextual features of dimension 256 obtained from the three-layer GCN 

processing are pooled globally on average, and then the empty spectral features are cascaded 

with the spatial contextual features to obtain a feature of dimension 320. The fused features are 

processed by two layers of full concatenation before using Softmax classification to construct 

an end-to-end fusion network, and finally the whole network is trained using the cross-entropy 

loss function. 



 

Fig. 2. Dilated-3D-GCN network structure 

3 EXPERIMENTAL RESULTS AND ANALYSIS 

3.1 Experimental Data Set 

To evaluate the classification effectiveness of the proposed network structure, two benchmark 

datasets, Indian Pines (IP) and Pavia University (PU), are selected as the experimental data to 

validate the proposed method. 

(1) The Indian Pines dataset was captured with the Airborne Visible Infrared Imaging 

Spectrometer (AVIRIS) sensor in 1992 at a remote sensing test site in northwest India with a 

spatial resolution of 20 m. There are 220 bands with a wavelength range of 0.4 to 2.5 nm, and 

the image size is 145 pixel × 145 pixel, containing a total of 16 categories of features. The 

pseudo-color images (bands 40, 80, and 120), ground truth maps, and each category name for 

this dataset are shown in Figure 3. 

 

Fig. 3. Indian Pines dataset (a)Pseudo color image (b)ground truth map (c)classes 

(2) The University of Pavia dataset was collected by the Reflection Optical System Imaging 

Spectrometer (ROSIS) sensor over the University of Pavia, Italy, in 2001, with a spatial 

resolution of 1.3 m, the presence of 115 bands, a wavelength range of 0.43 to 0.86 nm, and an 

image size of 610 pixel × 340 pixel, containing a total of 9 categories of features. The pseudo-

color images (bands 10, 60, and 80), ground truth maps, and the names of each category for this 

dataset are shown in Figure 4. 



 

Fig. 4. University of Pavia dataset (a)Pseudo color image (b)ground truth map (c)classes 

3.2 Evaluating Indicator 

To verify the effectiveness of the proposed method, overall classification accuracy (OA), 

average accuracy (AA), and Kappa coefficient are used as the evaluation indexes of 

classification performance to evaluate the performance of hyperspectral image classification. 

Among them, OA indicates the ratio of the number of correct samples to the number of overall 

classification samples; AA is the mean value of the samples correctly predicted by each 

category after the model makes predictions; Kappa coefficient indicates the difference between 

the classification results of the model and the completely random classification results. 

Combining the above index factors, to ensure the randomness of the experimental data selection, 

5%, 90%, and 5% data sample proportions were selected as the training, testing, and validation 

samples for each category of features in the IP data set, and similarly 1%, 98%, and 1% 

proportions were used as the training, testing, and validation samples for each category of 

features in the PU data set. 

3.3 Parameter Analysis 

Based on the determined network structure, the Adam optimizer is selected to train the network 

for optimal learning, setting the initial learning rate to 0.001 and the maximum number of 

iterations for network training to 200. Meanwhile, the main parameters are analyzed. 

(1) The influence of void factor: The size of the dilated coefficient determines the range of the 

dilated convolution field, which can affect the extraction ability of the spatial features of 

hyperspectral images. For this reason, we set the dilated coefficients from 1 to 6 and analyze 

the effects of different values of dilated coefficients on the classification results in six groups of 

experiments, and the results are shown in Figure 5. The results are shown in Fig. 5. It can be 

seen from Fig. 5 that as the null coefficients increase, the range of perceptual fields becomes 

larger, and the features that can be learned by the convolutional layer become richer, thus 

improving the classification accuracy; however, when the null coefficients are large enough, 

some detailed information may be ignored or noise may be introduced, leading to a decrease in 

classification accuracy. For the IP and PU datasets, the classification accuracy is optimal when 

the hole coefficients are 2 and 4, with OA of 97.83% and 98.12%, respectively. 



 

Fig. 5. Impact of expansion coefficient on classification accuracy in IP and PU datasets 

(2) The Influence of the number of adjacent points K: The number of neighboring points K is 

the main parameter that constitutes the neighboring matrix, and the quality of the neighboring 

matrix determines the performance of the GCN, thus affecting the stability of the entire 

hyperspectral image spatial topology. Therefore, in this paper, the influence on the 

classification results is analyzed by selecting a total of four different numbers of neighboring 

points, 10, 15, 20, 25 and 30, and the results are shown in Figure 6. From Fig. 6, it can be seen 

that the classification accuracy is optimal when the number of neighboring points is 15 and 20 

for IP and PU data sets, respectively, with OA of 99.14% and 99.26%, respectively. This is 

because when the number of neighboring points is small, the spatial contextual relationship of 

hyperspectral images cannot be expressed completely; however, when the number of 

neighboring points is too large, it is easy to cause redundancy or aggregation of node features 

that are not particularly relevant, resulting in a decrease in classification accuracy. 

 

Fig. 6. Impact of the number of adjacent points K on the classification accuracy of IP and PU datasets 

3.4 Ablation Experiment 

In order to verify the effectiveness of end-to-end multi-scale feature fusion between the deep 

null-spectrum features extracted by the null convolution in 3D-DC networks and the contextual 

features extracted by the GCN module, ablation experiments are conducted on the IP and PU 

datasets in this paper. A three-dimensional convolutional neural network (3D-CNN) is used as 

the benchmark model in the experiments, and the network structure of all models is the same to 

ensure the accuracy of the experiments. The two comparison models and the Dilated-3D-GCN 



model proposed in this paper are obtained by replacing some convolutional layers of the 

benchmark model with null convolution and adding the GCN module without KNN method 

composition to the benchmark model, respectively. The results of the overall precision 

classification versus training time for different network models are given in Table 1, 

respectively. 

Table 1 Comparison of overall accuracy and training time of different network models 

Methods 

IP PU 

OA 
Training 

time /s 
OA 

Training 

time /s 

3D-CNN 93.24 214.6 94.23 178.4 

3D-CNN-GCN 

(without KNN) 
95.57 326.3 97.34 246.5 

Dilated-3D-

GCN 

(without KNN) 

98.62 336.8 98.93 264.6 

Dilated-3D-

GCN 
99.21 312.7 99.32 237.8 

The following conclusions can be drawn from the analysis of the experimental results: (1) After 

adding the GCN module to the benchmark model, the training time increases while the 

classification accuracy improves by 2.34% and 3.11%, respectively. (2) Taking the 

experimental results of 3D-CNN-GCN (without KNN) and Dilated-3D-GCN (without KNN) as 

examples, the classification accuracy of the model improves by 3.05% and 1.29% on the IP and 

PU datasets, respectively, with almost the same training time after the introduction of the null 

convolution. (3) The classification accuracy of the proposed model (Dilated-3D-GCN) 

improves by 5.97% and 5.09% on the IP and PU data sets, respectively, by introducing both the 

null convolution and the GCN module in the presence of the KNN method in the benchmark 

model. (4) The training time of the model proposed in this paper is reduced by 13.6s, 24.1s, 

8.7s and 26.8s compared to 3D-CNN-GCN (without KNN) and Dilated-3D-GCN (without 

KNN) on IP and PU datasets, respectively. The above experimental results illustrate that the 

proposed method using the null convolution and GCN module can improve the classification 

performance of the network model, proving the effectiveness of the multi-scale feature fusion 

of the null convolution and GCN module, while applying the KNN method to the graph 

convolution module to frame the graph can improve the classification efficiency of the model. 

3.5 Results and Analysis 

In order to prove the effectiveness and feasibility of this paper's method, this paper does 

experimental comparison with a total of five methods, namely, 3D-CNN, HybridSN, Dilated-

3D-CNN, MDGCN, and CEGCN, respectively. Also, to ensure the fairness of the experiments, 

all five comparison algorithms are configured according to the optimal parameters in this paper, 

and the number of samples in the training set, validation set and test set are selected equally. 

Tables 2 and 3 show the classification accuracy of DilateDilated-3D-GCN and the comparison 

methods on the IP and PU data sets, respectively. The analysis and comparison in Table 2 and 

Table 3 show that (1) the best classification accuracy results are achieved by the method in this 

paper, in which the OA of Dilated-3D-GCN is improved by 6.15%, 2.55%, 1.49%, 0.82%, 

0.44% compared with other methods on the IP dataset, and on the PU dataset, the OA of 

DilateDilated-3D-GCN improved by 14.89%, 2.11%, 1.19%, 0.58%, and 0.40%, respectively, 



compared with other methods. (2) The limited features extracted by 3D-CNN network 

structures lead to low classification accuracy, but HybridSN improves classification accuracy 

by combining 2D-CNN with 3D-CNN and Dilated-3D-CNN by introducing null convolution. 

(3) The classification accuracies of MDGCN, CEGCN, and Dilated-3D-GCN network models 

are better than those of CNN-based network models, indicating that graph convolution can fully 

extract the contextual information of spatial topological relationships between irregular regions 

in images, and the accuracy is significantly improved on HSI classification. (4) Among the 

three GCN-based network models, the method in this paper takes advantage of 3D-DC and 

GCN to fuse the extracted deep spatial spectral features with the spatial contextual features in 

multiple features to achieve end-to-end network training, and the proposed method has the 

highest classification accuracy compared with the other three GCN-based methods. 

Table 2 Comparison of overall accuracy and training time of different network models 

Num Classification accuracy 

3D-CNN HybridSN 
Dilated-

3D-CNN 
MDGCN CEGCN 

Dilated-

3D-

GCN 

1 81.25 89.23 76.63 92.35 100.00 100.00 

2 88.73 95.73 96.34 98.12 98.25 99.21 

3 87.98 93.27 99.63 98.23 99.22 98.57 

4 88.67 95.74 99.34 99.28 98.24 100.00 

5 97.63 97.25 100.00 100.00 98.64 98.18 

6 93.96 98.64 99.42 99.54 99.84 98.06 

7 87.23 93.19 96.83 97.73 100.00 100.00 

8 100.00 99.56 100.00 100.00 100.00 100.00 

9 75.56 100.00 85.83 100.00 100.00 82.32 

10 88.22 96.52 95.63 98.83 99.33 98.21 

11 93.42 96.21 95.62 98.14 98.83 99.21 

12 94.89 93.13 100.00 98.58 96.69 99.42 

13 100.00 100.00 97.67 100.00 99.64 100.00 

14 97.86 98.93 100.00 99.84 100.00 99.23 

15 84.37 94.31 97.82 96.21 98.86 100.00 

16 100.00 100.00 92.26 97.12 91.21 100.00 

OA/% 93.12 96.72 97.78 98.45 98.83 99.27 

AA/% 92.52 95.99 96.25 97.82 98.48 98.81 

Kappa/% 92.94 95.48 96.79 97.97 98.65 99.12 



Table 3 Comparison of overall accuracy and training time of different network models 

Num Classification accuracy 

3D-

CNN 
HybridSN 

Dilated-

3D-

CNN 

MDGCN CEGCN 

Dilated-

3D-

GCN 

1 90.23 94.74 97.84 96.53 99.24 99.47 

2 98.32 99.45 99.14 99.46 99.35 99.92 

3 87.31 98.45 93.72 98.34 98.75 98.75 

4 92.31 88.58 99.32 96.15 98.23 99.12 

5 85.68 99.91 100.00 99.45 97.96 96.27 

6 95.38 99.78 98.36 100.00 97.53 100.00 

7 88.34 99.74 95.67 99.49 100.00 99.24 

8 88.11 92.67 92.37 96.23 97.67 98.57 

9 99.24 89.33 99.28 97.53 98.94 100.00 

OA/% 94.43 97.21 98.13 98.74 98.92 99.32 

AA/% 92.65 96.45 97.31 97.88 98.45 99.12 

Kappa/% 92.15 96.21 97.75 98.23 97.85 98.38 

Table 4 shows the training time and testing time of different methods on both IP and PU 

datasets. From Table 4, the GCN-based deep learning methods increase the time to construct 

the graph adjacency matrix to some extent, the training times are both longer than the CNN-

based deep learning methods. Among the GCN-based methods, the method in this paper has the 

shortest time cost. This is because the method uses KNN to extract features for the construction 

of the adjacency graph, which effectively reduces the composition time. Comprehensive 

analysis of the comparison results of training time and classification accuracy can conclude that 

the network model in this paper can achieve the best results. 

Table 4 Training time of different network models 

Datas

et 
Time 3D-CNN 

HybridS

N 

Dilated-

3D-CNN 
MDGCN CEGCN 

Dilated-

3D-GCN 

IP Train/s 73.7 231.2 279.6 356.7  389.3 468.7 

PU Test/s 23.2 98.3 143.7 181.3 235.8 85.2 

4 CONCLUSION  

To address the problems that CNN has large network parameters and can only extract features 

for regular regions of fixed size, which leads to insufficient information extraction; meanwhile, 

GCN tends to extract features in the same way for neighboring nodes and ignores the changing 

regions existing in hyperspectral images, etc., this paper proposes a hyperspectral image 

classification method based on three-dimensional dilated convolution and graph convolution 

(Dilated-3D- GCN). This method firstly, the image is extracted with deep null-spectral features 

by 3D-DC module; Secondly, extract the spatial context of the image using KNN to extract the 

global information of the image as input to the convolution; finally, the global features 

extracted by 3D-DC module are fused with the spatial contextual features extracted by GCN 

module to improve the utilization of information in the image and balance the problems of 

CNN and GCN in hyperspectral images. In this paper, experiments are conducted on two 

datasets, and the classification performance of this method and other advanced methods are 

evaluated and analyzed comprehensively using three evaluation metrics. The experiments 



finally show that the proposed Dilated-3D-GCN method achieves 99.27% and 99.32% on the 

IP and PU datasets, respectively. This shows that the method not only extracts the deep null-

spectral features more completely, but also extracts the spatial topological relations by GCN 

using the null-spectral features, and the fusion of multiple features effectively improves the 

classification results and the information expression ability, which shows certain superiority in 

the actual feature classification. 
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