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Abstract 

Day-ahead electricity price forecasting is still an open problem in electricity markets. One major method is used in solving 
this problem is artificial neural networks (ANN). But they are usually trained slowly and need large numbers of patterns. 
NN trained using Levenberg-Marquardt (LM) learning is proposed and partial autocorrelation is applied on time series 
data to get correct input values. The functionality of the NN-LM is higher than the traditional ANN and some other hybrid 
approaches. To show the effectiveness and accuracy of the NN-LM method, the Indian and the Austrian energy exchange 
markets are considered. It is significant to note that for the very first time, the NN-LM based approach is being tested on 
both the energy markets. Finally, the flexibility of the proposed approach is checked using a 4-fold cross-validation 
technique. The 4-fold cross-validation strategy is capable of improving the generalization ability of the model and 
accomplishing higher forecast precision. 
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1. Introduction

After the 80s, numerous nations have changed the 
economics of their electricity markets from monopolies to 
oligopolies in an effort to increase competition. A 
significant feature of this change is to allow competition 
among generators and create market conditions in the 
industry which are necessary to decrease the cost of 
energy production and distribution, eliminate certain 
inefficiencies and increase customer choices [1]. The 
meaning of deregulation is the reduction or elimination of 
government control over a particular industry. The 
purpose of deregulation is to promote more competition 
within the same industries in the same geographical 
jurisdiction. It is generally believed that a fewer and 
simpler regulation will lead to a raised level of 
competitiveness and the overall result will be higher 
productivity and more efficiency at lower price. [1]. 

Deregulation of electrical markets calls for the 
restructuring of the electricity industry. The traditional 

vertically integrated system is broke down into three 
separate businesses are generation, transmission and 
distribution company. These three businesses are operated 
by three different entities. Deregulators advocate that 
deregulated electric market will bring cheaper electricity 
and in the meantime provide more choices for the 
customers [3]. In a deregulated market, instead of one 
generation provider, there are several generation providers 
in a local area. The local regulatory body can no longer 
fix the electricity price. The consumers have a choice 
regarding their local electricity providers. They can 
choose different electricity providers depending on their 
requirements and demand.  

The deregulation of power industry creates new 
challenges in the electricity market due to forecasting of 
price which has become a major issue globally. The price 
is volatile in nature. From an economic point of view, 
electricity is non-storable goods which make balance 
between demands and supply a herculean task. The 
electricity prices in competitive markets are directly or 
indirectly affected by a number of factors which are 
interlinked to each other. Uncertainty factors like load, 
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weather, market forces, bidding strategy etc arc 
fluctuating, and hence prediction of price is difficult. 
Accurate forecasting of price is not a trivial task. The 
electricity price forecasting is important for all market 
players and its behaviour is different from other 
commodities. Through competition, market deregulation 
strives to improve generation availability and efficiency. 

Electricity price prediction is more complex than load 
forecasting because of uncertainties in operation as well 
as bidding strategies of market participants. The volatility 
and non-linearity of the system directly affects the 
accuracy of price prediction. Significance of price 
prediction and its complexity have motivated the 
researchers to be more innovative and propose numerous 
strategies. Among these methodologies are the time series 
and artificial neural network (ANN) models [3, 4]. 

Time series models, for example, dynamic regression 
and transfer function, autoregressive integrated moving 
average (ARIMA), generalized auto-regressive 
conditional heteroskedastic and hybrid methods based on 
wavelet transform (WT) and ARIMA (WT-ARIMA) have 
been proposed in the literature. Time series models are 
linear predictors, and they experience issues in foreseeing 
non-linear behaviour of electricity price. Hence ANN is 
utilized to solve this problem. The advantage of ANN is 
their non-linear modelling ability and ability to capture 
the high volatility prices [5]. When the supplier offers a 
price equal to or below market clearing price (MCP), it is 
set to that price at that hour. In deregulated power market 
based pools, purchaser organizations submit bids for 
selling and purchasing power for the next 24hr time 
period. In electricity price forecasting, ANN takes 
previous day’s prices as input factors. Accuracy in 
forecasting MCP relies upon natural and extraneous 
components [5]. 

ANN with modified Levenberg–Marquardt (LM) 
learning algorithm is implemented in Penn-Jersey-
Maryland (PJM) market. The approach using ANN 
predicts the 24hr locational marginal price (LMP) of day-
ahead energy market [6]. The results obtained are 
compared with dynamic regression, transfer function, 
ARIMA, WT, simple application of neural networks 
(NN). Also fuzzy c-mean method is used to classify three 
clusters. NN are used to forecast MCP for day-ahead 
energy market. Three layered back-propagation (BP) 
network was chosen for structure of NN. The result 
showed 16% error on week days and less than 20% error 
on a week end. The accuracy can be improved by 
combining several techniques such as fuzzy logic, NN and 
dynamic clustering together. NN in open market was 
presented [7] by researchers. 

Many authors have published their work in electricity 
price forecasting utilizing different computational 
intelligence techniques, for example, feed-forward NN, 
extreme learning machines, recurrent neural networks, bat 
optimized NN and particle swarm optimization (PSO) 
based ANN [8-15]. In the literature, the greater part of the 
NN-based research papers have utilized day-ahead 
electricity price forecasting approach [16-18]. 

Among the existing approaches, [19] proposes to 
develop a hybrid ANN forecast engine solely to Indian 
energy exchange, since only meagre work is carried out in 
this market. Hybrid ANN models, which combine 
heuristic search algorithms, such as ANN-ANN-PSO, 
Wavelet-based ANN and Wavelet-based ANN-ANN-PSO 
were developed to forecast MCP [19]. In the process of 
training ANN, the weights were updated based on 
conventional gradient descent method. It should be noted 
that the weights can be updated either in incremental or in 
batch modes [19]. However, the conventional gradient 
descent method [19] had an obvious drawback of getting 
stuck in local minima.  

The proposed research work in this paper develops a 
NN trained electricity price forecasting model using LM 
(NN-LM) network and is used for forecasting the MCP. 
The proposed work uses a novel approach to eliminate the 
drawbacks mentioned in the earlier paragraphs and is 
implemented on two test systems, one on an Indian 
market and the other on an Austrian energy market to 
compare the forecast results. The findings show the 
accuracy and efficacy of the proposed approach. The 
legitimacy and versatility of the proposed approach are 
verified by comparing the obtained results with that from 
4-fold cross-validation.

The rest of the paper is organized as follows. The
methodology and detailed NN-LM learning are presented 
in Section 2. The experimental results and discussion are 
provided in Section 3. The conclusion is described in 
Section 4. 

2. Methodology

This section of the research describes the data source, 
input feature selection for NN-LM model, NN-LM model 
for day-ahead price forecasting in the electricity markets 
of Indian as well as Austrian energy markets and their 
prediction performance evaluation. 

2.1. Data source 

In this paper, the data for electricity prices data are taken 
from the daily trading reports of Indian as well as 
Austrian energy markets and are presented on a monthly 
basis. The Indian and Austrian dataset consists of MCP 
[20, 21]. 

2.2. Input feature selection using correlation 

Choosing the most suitable inputs to a model is the 
imperative initial phase in model building. It is 
particularly critical for NNs that are intense, non-linear 
processors. For time-series, inputs additionally 
incorporate lags (memory length). As the input 
dimensionality expands, multifaceted nature of the model 
increments and learning turns out to be more troublesome, 
prompting poor convergence. With fewer applicable 
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sources of inputs, a network can concentrate on building 
up the required associations with more efficiency. The test 
is to choose from all the potential data sources, a subset of 
information sources that will prompt an unrivalled model. 
If there are several inputs in the time-series, then it is 
necessary to find the appropriate lags that are significant 
to the output for each time-series [22]. 

The electricity price information of the earlier day (nth 
day) is mapped with the following day (n+1)th day while 
modelling neural systems. The reason is that the strength 
of the correlation of both linear and nonlinear parameters 
between nth and (n+1)th day is more stronger [19]. For 
instance, the MCP profile on Monday of the earlier day is 
mapped to Tuesday of the following day. So when a test 
contribution of the nth day is fed into the prediction model, 
the MCP of the (n+1)th MCP is predicted. However, it 
should be noted that researchers discussed short-term 
electricity price forecasting in which the electricity price 
or MCP is forecasted for a day or a week [19].  

The correlation gives the level of direct relationship 
between two variables, which involves how firmly the 
two variables are identified with each other [23]. The 
extent to which the variables are related can be 
determined by deciding the correlation coefficient, whose 
value is limited between −1 and 1. The three potential 
outcomes of being positively correlated, negatively 
correlated and not correlated correspond to the correlation 
coefficients with values close to 1, −1, and 0, respectively. 

Correlation is the most prevalent investigative method 
for choosing inputs and the quantity of lags. Correlation 
examination has been utilized by a few researchers [22-
24] for input determination in electricity price forecasting.

The lags (price of the previous hours) of Indian market
(a week in June) Ph-1, Ph-2, Ph-8, Ph-22, Ph-23, Ph-24, Ph-25, Ph-

34, Ph-35, Ph-36, Ph-47, Ph-49, Ph-52, Ph-62, Ph-63, Ph-70, Ph-72, Ph-77, 
Ph-79, Ph-81, Ph-83, Ph-84, Ph-87, Ph-89, Ph-91, Ph-94; (a week in 
September) Ph-1, Ph-2, Ph-8, Ph-19, Ph-20, Ph-21, Ph-22, Ph-23, Ph-

24, Ph-25, Ph-40, Ph-45, Ph-46, Ph-48, Ph-52, Ph-58, Ph-64, Ph-65, Ph-68, 
Ph-74, Ph-76, Ph-77, Ph-80, Ph-83, Ph-88, Ph-102, Ph-103, Ph-107, Ph-

111, Ph-112, Ph-113, Ph-115, Ph-122; (First week of October) Ph-1, 
Ph-2, Ph-4, Ph-14, Ph-18, Ph-24, Ph-25, Ph-39, Ph-54, Ph-59, Ph-67, Ph-

72, Ph-86, Ph-89; (Second week of October) Ph-1, Ph-2, Ph-16, 
Ph-20, Ph-21, Ph-23, Ph-24, Ph-52, Ph-59, Ph-61, Ph-67, Ph-80, Ph-81, 
Ph-82, Ph-83, Ph-90, Ph-92, Ph-95, Ph-96, Ph-98, Ph-108, Ph-116, Ph-118, 
Ph-119, Ph-129, Ph-136 are considered as the input features. 

The lags of Indian market in the year 2019 (a week in 
June) l ε L = {1, 2, 21, 22, 23, 24, 48, 74, 84, 88, 90, 92, 
93, 95, 96, 97, 98, 101, 103, 106, 107, 110, 112, 113, 
117}; (a week in September) l ε L = {1, 2, 23, 24, 25, 47, 
55, 63, 66, 67, 69, 70, 78, 79, 81, 82, 83, 84, 89, 90, 92, 
97, 100, 102, 104, 109, 110, 115, 116, 121}; (First week 
in October) l ε L = {1, 2, 23, 24, 37, 48, 85, 94, 96, 97, 
100, 121, 140, 142, 144, 145, 146}; (Second week in 
October) l ε L = {1, 2, 4, 8, 17, 23, 24, 59, 68, 72, 83, 85, 
87, 112} are considered as the input features. 

The lags of Austrian market (a week during Winter) Ph-

1, Ph-2, Ph-4, Ph-20, Ph-21, Ph-22, Ph-23, Ph-52, Ph-62, Ph-73, Ph-79, 
Ph-80, Ph-81, Ph-82, Ph-83, Ph-84, Ph-86, Ph-88, Ph-93, Ph-96, Ph-97, 
Ph-99, Ph-100, Ph-104, Ph-110, Ph-111, Ph-115, Ph-119, Ph-127, Ph-128, 

Ph-129; (a week during Spring) Ph-1, Ph-2, Ph-4, Ph-8, Ph-9, Ph-

10, Ph-23, Ph-42, Ph-44, Ph-73, Ph-87, Ph-88, Ph-93, Ph-94, Ph-95, Ph-97, 
Ph-100, Ph-106, Ph-109, Ph-116, Ph-123, Ph-128, Ph-129, Ph-132, Ph-140, 
Ph-144, Ph-145; (a week during Summer) Ph-1, Ph-2, Ph-7, Ph-18, 
Ph-73, Ph-86, Ph-87, Ph-88, Ph-90, Ph-99, Ph-101, Ph-110, Ph-111, Ph-

113, Ph-117, Ph-122, Ph-123, Ph-131, Ph-136; (a week during Fall) 
Ph-1, Ph-2, Ph-17, Ph-20, Ph-22, Ph-34, Ph-39, Ph-56, Ph-68, Ph-85, Ph-

90, Ph-92, Ph-93, Ph-98, Ph-99, Ph-102, Ph-106, Ph-108, Ph-116, Ph-132, 
Ph-141, Ph-143, Ph-144, Ph-148 are considered as the input 
features. 

The inputs for the proposed models depend on this 
correlation investigation. The chosen inputs (lagged 
prices) demonstrate the impact of short-run trend, every 
day periodicity and week after week periodicity. There are 
different inputs for the proposed prediction model in 
Indian and Austrian power markets during all of the test 
periods. 

2.3. Neural network trained using 
Levenberg–Marquardt learning 

ANN is made up of neurons organized in layers, as 
illustrated in Figure 1. The data is fed into the network 
through an input layer. This is followed by setting up at 
least one intermediate (hidden) layer. The output data 
comes out of the network's last layer [4]. The transfer 
function contained in the individual layers can be nearly 
anything. It describes the mathematics behind the NN 
with LM training algorithm. 

Figure 1. Implementation of NN-LM for electricity 
price forecasting 

When an input vector is presented to the NN, the 
output error can be computed by a squared error. The 
squared error is calculated as the sum of the squared 
differences between the target values and the output 
values. 
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where ( )ntk  is the target output for the kth in the output
layer when pattern n is presented and ( )nyk  is the net
output for the kth in the output layer when pattern n is 
presented. The output error for all input vectors presented 
to the feed-forward is given by 
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The goal of training algorithm is to iteratively adjust 
the weights in the network to generate the preferred 
output by minimizing the output error. BP is a gradient-
descent approach in that it utilized the minimization of 
first-order derivatives to locate an ideal solution. It works 
with a training set of input vectors f, and target output 
vectors t. The training algorithm iteratively tries to 
constrain the created outputs described by vector y to 
sought after target vector t, by modifying the weights in 
the network through a training calculation. 

Quasi-Newton methods are popular algorithms for 
nonlinear optimization. They use second-order derivatives 
to find the optimal solution, so they generally converge 
faster than the first-order techniques such as the gradient-
descent method used in BP [25]. Quasi-Newton methods 
can be used to train NNs, and they can be used in most 
configurations that work for BP [26]. The second-order 
partial derivatives are computed in a Hessian matrix, H. 
The weight update is the product of the inverse Hessian 
matrix H, and the direction of the steepest descent, g. 
Since it works on the average gradient of the error 
surface, a batch update of weights is performed at the end 
of each epoch [27, 28]. 

gHw 1−−=∆ .       (3) 

Since determining the weight updates involves the use 
of a Hessian matrix with all the second-order derivatives, 
the computation is difficult and time consuming. By using 
approximations to the Hessian matrix, speed can be 
increased. In general, Quasi-Newton techniques can 
become stuck in local minima more often than the other 
optimization techniques [27, 28]. 

The LM algorithm is nonlinear optimization based on 
the use of second-order derivatives [25-28]. It has been 
adapted for use on training NNs. The main weakness of 
the LM algorithm is that it desires the storage of several 
matrices that can be quite large for definite problems. It 
also works only with summed squared error functions, so 
it is often used for estimation (i.e., regression) 
applications. 

The LM algorithm is a succession of the features of 
gradient descent found in BP and the Newton method [27, 
28]. It assumes that the underlying function being 
modelled is linear and that the minimum error can be 
found in one step. It calculates weight change to make this 

single step. It tests the network with these new weights to 
determine whether the new error is lower. A change in 
weights is only accepted if it improves the error. When 
the error decreases, the weight change is accepted and the 
linear assumption is reinforced by decreasing a control 
parameter, µ. When the error increases, the weight change 
is rejected and like BP, it follows a gradient descent by 
increasing the control parameter to de-emphasize the 
linear assumption. Along these lines, the LM calculation 
is a bargain between a Newton and gradient-decent 
process [25-28]. Close to a base, the linear supposition is 
roughly genuine so the LM calculation gains 
exceptionally fast ground by utilizing this second-order 
Newton-like feature. The procedure is repeated until the 
stage when the desired error is reached or maximum 
number of iterations is reached. 

The LM calculation approximates the Hessian matrix 
utilized as a part of the Quasi-Newton technique as the 
result of a Jacobian matrix of the first-order partial 
derivatives, with its transpose as appeared in Eq. (4). 
Since it utilizes a Jacobian matrix J, rather than Hessian 
matrix H, the estimation is simpler [28]. 

JJH T≈ .                          (4) 
The gradient is calculated as the result of the Jacobian 

containing the first-order partial derivatives and a vector e 
that contains the errors being minimized. 

eJg T= .              (5) 
This gives us a weight-update formulation in Eq. (6), 

where I is the identity matrix and µ is the control 
parameter. 

( ) eJIJJw TT 1−
+−=∆ µ .              (6) 

From Eq. (6), it is revealed that µ is 0, and this is a 
Newton routine with an approximated Hessian matrix. 
The larger values of µ make it look more like a gradient-
descent method. 

The LM training procedure is follows: 

(i) Initialize weights. Set )(Wih n  and )(Who n  to
small random values,

(ii) Present each pattern to the input of the network,
(iii) Propagate data forward and produce the output

pattern. Determine the error between the target
output and the actual output,

(iv) If there are more patterns (i.e., n < N) in the training
set, loop back to step (ii),

(v) Now estimate the error vector e, between the target
and actual output for all patterns presented by using
summed squared error as in Eq. (1),

(vi) Calculate the Jacobian matrix, J, from the first-order
partial derivatives,

(vii) Calculate the weight update as given in Eq. (3),
(viii) Recalculate the sum of squared errors. If the new

error is lower, reduce µ by some factor, update the
weights by ∆W, and go to step (ix). If the new error
is higher, increase µ by some factor and go back to
step (vii),
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(ix) If the norm of the gradient g, is less than the
preferred amount, stop; otherwise loop back to step
(i).

2.4. Prediction performance evolution 

The input features and the target output (actual electricity 
price) are linearly normalized in the range of {-1, 1} 
before being presented to the NN-LM model and the 
output from the NN-LM model was de-normalized before 
being presented in performance evaluation. The 
performance of the trained network is then evaluated by 
comparison of the network output with its actual value via 
statistical evaluation indices. 

The mean absolute percentage error (MAPE), the 
normalized mean square error (NMSE) and the error 
variance (EV) are used to evaluate the performance of 
forecasting in electricity prices. 

The MAPE can be defined as 

,1001
1
∑
=

×
−

=
N

h h

hh

A
FA

N
MAPE   (7) 

where Ah and Fh are the actual and forecasted 
electricity prices of hth hour, respectively, and N is the 
number of forecasted hours. 

The NMSE is given by 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = � 1

∆2𝑁𝑁
∑ (𝐹𝐹ℎ − 𝐴𝐴ℎ)2𝑁𝑁
ℎ=1 �.              (8) 

where 
∆= 1

𝑁𝑁−1
∑ (𝐴𝐴ℎ − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)2𝑁𝑁
ℎ=1 .              (9) 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is average of actual ata. 
The EV is given by 

𝜎𝜎2 = 1
𝑁𝑁
∑ ��𝐹𝐹ℎ−𝐴𝐴ℎ

𝐴𝐴ℎ
� − 𝑁𝑁𝐴𝐴𝑀𝑀𝑁𝑁�

2
𝑁𝑁
ℎ=1 .              (10) 

The MAPE, NMSE and EV were used in the 
experimental results in this case study. If a model has 
smaller MAPE, NMSE, and EV, then that means that it is 
well performing both in space and in times as well as 
more precise will be the prediction of prices. The detailed 
discussion on three error indices are presented here [19]. 

3. Numerical results

This section presents the case study of energy exchanges 
in Indian and Austrian electricity markets which were 
forecasted by the proposed NN-LM model. 

3.1. Case studies 

The day-ahead electricity market of the Indian energy 
exchange and energy exchange of Austria are considered 
in this real-world case study. 

In the energy market of an Indian market, price 
changes are identified by key behaviour of the dominating 
player, which are difficult to predict. It could be observed 
that the series introduced in Figs. 2–5 (four weeks of 
June, September and two weeks of October) have shaky 
mean and variance. This temperamental conduct makes 
forecasting hard. Along these lines, it could be obviously 
observed that the Indian power market is a genuine case 
study with adequate unpredictability. Hence, researchers 
have used the Indian electricity market as a benchmark 
case study [19]. 

Figure 2. Forecasted MCP for a week in June 
(Indian market in the year 2014) 

Figure 3. Forecasted MCP for a week in September 
(Indian market in the year 2014) 

Therefore, day-ahead energy exchange Indian market, 
during the year 2014 is utilized as a case study in price 
forecasting [19]. For correlation, four weeks are chosen, 
i.e., weeks with especially good price behaviour were
purposely not picked. The most unstable prices were
utilized for forecasting [9]. It is significant to note that for
the very first time, an NN-LM based approach is being
tested on the Indian energy market price data

To construct the forecasting model for each of the 
forecasted weeks, the input data incorporates hourly 
historical prices of the 42 days prior to the day of the 
week whose prices are to be predicted. Large training sets 
are not used to stay away from overtraining amid the 
learning procedure and when training is attempted for 
over 42 days, it doesn't give viable and better forecasting 
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accuracy [4, 5, 9]. Also it is tedious for training the NN-
LM beyond the 42 days worth of data. Hence, 42 days 
worth of data set is utilized. The previous 42 days 
electricity price data are used for training and the 
following 7 days electricity price are predicted. 

For the Indian market the testing data are the week in 
June (from June 22 to June 28, 2014), the week in 
September (from September 21 to September 27, 2014), 
the first week in October (from October 5 to October 11, 
2014) and the second week in October (from October 26 
to November 1, 2014). The historical data available 
includes hourly prices from May 11 to June 21, 2014, 
from August 10 to September 20, 2014, from August 24 
to October 4, 2014 and from September 14 to October 25, 
2014 and they are used to forecast the price for the above 
test data [19]. In order to evaluate the forecasting 
accuracy of the proposed model, the electricity prices in 
India during the year 2019 and energy exchange of 
Austria during the year 2015 are considered. For 
reasonable correlation, the fourth week of June, fourth 
week of September, first week of October and the second 
week of October are also selected for the Indian market 
during 2019. 

Figure 4. Forecasted MCP for first week in October 
(Indian market in the year 2014) 

Figure 5. Forecasted MCP for second week of 
October (Indian market in the year 2014) 

Real data of the Austrian energy exchange market in 
the year 2015 are considered in the case study as well. For 
the sake of fair comparison, the fourth weeks of February, 

April, July and November (months 2, 4, 7 and 11) are 
selected, i.e., weeks with particularly good price 
behaviour are deliberately not chosen. The winter week is 
from February 15 to February 21, 2015, the historical data 
available includes hourly prices from January 4, 2015 to 
February 14, 2015. The spring week is from April 19 to 
April 25, 2015, historical data available includes hourly 
prices from March 8 to April 18, 2015. The summer week 
is from July 19 to July 25, 2015, historical data includes 
prices from June 7 to July 18, 2015. The fall week is from 
November 1 to November 7, 2015, historical data 
includes prices from September 20 to October 31, 2015. 

Figure 6. Forecasted MCP for a week in June 
(Indian market in the year 2019) 

Figure 7. Forecasted MCP for week in September 
(Indian market in the year 2019) 

Figure 8. Forecasted MCP for first week in October 
(Indian market in the year 2019) 
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Figure 9. Forecasted MCP for second week in 
October (Indian market in the year 2019) 

Figure 10. Forecasted MCP for a winter week 
(Austrian market in the year 2015) 

Figure 11. Forecasted MCP for a spring week 
(Austrian market in the year 2015) 

Figure 12. Forecasted MCP for a summer week 
(Austrian market in the year 2015) 

Figure 13. Forecasted MCP for a fall week (Austrian 
market in the year 2015) 

The NN use LM training. In this model, the input 
pattern (selected using correlation analysis) x 1008 (42 
days training period x 24 h), and the target pattern is 1 
(forecast price) x 1008. The NN model is structured by 
using the Matrix Laboratory (MATLAB) signal 
processing and NN toolboxes.  

The actual and estimated price values for the four 
weeks in the Indian market in the years 2014 and 2019, 
and Austrian energy markets using NN-LM model are 
shown in Figs. 2–13. Each figure shows the forecasted 
prices (black line) and the actual prices (gray line) in 
Rupees per megawatt hour (for the Indian market) and 
Euro per megawatt hour (for the Austrian market). 

3.2. Electricity price forecasting with NN-LM 
model 

In NN-LM, the architecture of the neural network is 
determined using stochastic approach. More and more 
number of simulations were made until the best number of 
hidden layers, and their corresponding number of neurons 
were obtained [4, 8, 9]. The network architecture is 
typically decided on when both training and testing gives 
minimal MAPE. 

The resultant number of neurons in the input, hidden, 
and output layers for testing weeks of the Indian and 
Austria energy exchange markets that produced minimal 
MAPE error in both training and testing are shown in 
Table 1. 

3.3. Comparison with other approaches 

Distinctive methodologies are tested for Indian and 
Austrian energy markets and results of these 
investigations are discussed in this section. Table 2 shows 
the statistical analysis and metrics used to assess the 
accuracy of the proposed NN-LM display in forecasting 
the electricity prices in both Indian and Austria energy 
markets. The first column shows the deregulated power 
market, the second demonstrates the forecast week, the 
third demonstrates MAPE, the fourth presents the NMSE, 
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and the fifth column shows the EV. It is observed that the 
MAPE for the Indian power market in the year 2014 has 
an average estimation of 6.3021% obtained by utilizing 
the proposed NN-LM model. From Table 2, an average 
weekly MAPE which is close to 6.3406% for the Indian 
power market for the year 2019, and Austria for the four 
weeks of the year 2015 is reported, yielding an average 
weekly MAPE which is close to 6.1627%, results being 
obtained by using NN-LM model. It shows the 
effectiveness of the proposed model for the recent year 
and under other market environments. 

Table 1. The best number of neurons in the input, 
hidden, and output layers obtained with the NN-LM 

model for both the markets 

Market Forecast week Input layer 
neurons 

Hidden layer 
neurons 

Output layer 
neurons 

June 26 10 1 
Indian September 33 12 1 
(2014) First October 14 6 1 

Second October 26 10 1 

June 25 10 1 
Indian September 30 11 1 
(2019) First October 17 7 1 

Second October 14 6 1 

Winter 31 12 1 
Austria Spring 27 10 1 
(2015) Summer 19 8 1 

Fall 24 9 1 

Table 3, demonstrates the comparison between the NN-
LM model and four different models (ANN, ANN-ANN-
PSO, Wavelet-based ANN and Wavelet-based ANN-
ANN-PSO). The proposed NN-LM is a single compact 
and robust architecture (without hybridizing the different 
hard and soft computing models) tool that consistently 
performs better than the other models. The four different 
models with the exception of ANN are a hybrid of soft 
computing models. As observed from Table 3, the NN-
LM has excellent forecast accuracy with less calculation 
time, making it a single compact and robust model better 
than  hybrid approaches such as ANN, ANN-ANN-PSO, 
Wavelet-based ANN and Wavelet-based ANN-ANN-
PSO. From Table 3, it is also observed that with very low 
NMSE, and smaller the EV, the proposed model is well-
performing both in terms of accuracy and time, and more 
precise are the prediction of prices. 

The aggregate setup time of the proposed technique 
including the execution of pre-processing (normalization), 
training of NN (tweaking utilizing experimentation 
approach), testing of NN and post processing (de-
normalization) was around 3 secs on an AMD processor 
with 2 GHz and 1 GB RAM memory. In the wake of 
training, average computation (response) time of the NN-
LM was around 15 ms (since it just includes the forward 

propagation of the NN). This approach is an efficient and 
accurate method for forecasting electricity prices in a 
deregulated power market. Consequently, the NN-LM 
presents the best combination of forecasting accuracy and 
computation time, and furthermore brings down 
modelling complexity, which is essential for real-time 
applications. In a deregulated power market, the faster 
and accurate forecast of prices is likewise essential for 
real-life applications. 

Table 2. Statistical analysis for the four weeks of 
Indian and Austria energy exchange markets 

Market Forecast week MAPE NMSE EV 
June 7.4658 1.2468E-07 54.6338 

Indian September 4.5317 1.5538E-07 20.1299 
(2014) First October 7.1617 1.0583E-06 50.2738 

Second October 6.0492 1.5091E-07 35.8675 

June 7.8640 1.7044E-07 59.3711 
Indian September 3.8451 2.9718E-07 14.4918 
(2019) First October 5.6864 1.4771E-07 31.6965 

Second October 7.9669 2.4363E-07 67.3825 

Winter 5.1865 5.3307E-04 26.3695 
Austria Spring 8.7266 4.6843E-04 74.8370 
(2015) Summer 5.9292 3.0039E-04 34.4451 

Fall 4.8085 4.0043E-04 22.6633 

3.4. Effect of 4-fold cross-validation on 
forecasting accuracy 

The NN-LM network is taken as an example to illustrate 
the effectiveness of cross-validation in the proposed 
training model. In this research, the 4-fold cross-
validation is applied to the Indian energy market for the 
year 2014 for training and testing. The training and testing 
sets are divided into four disjoint sets of equal sizes. Let 
each set of data be labelled as week 1 (w1), week 2 (w2), 
week 3 (w3) and week 4 (w4). The group 1 represents 
cross-validation w2w3w4 (training) Vs w1 (testing), 
group 2 represents cross-validation w1w3w4 Vs w2, 
group 3 represents cross-validation w1w2w4 Vs w3 and 
finally group 4 represents cross-validation w1w2w3 Vs 
w4. The statistical results of 4-fold cross-validation are 
presented in Table 4. 

Table 4 shows that 4-fold cross-validation has the most 
noteworthy accuracy, yielding an average weekly MAPE 
which is near 5.7717%. Also, the forecast accuracy of 
week 4 is lower than that of NN-LM, and week 1, week 2, 
and week3 have higher forecast precision than NN-LM, 
however, it increases the processing time of the model. 
Besides, we determined that the NMSE and EV of the test 
system took a long time by 4-fold cross-validation, and 
the results are shown in the Table 4. This phenomenon 
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shows that the 4-fold cross-validation strategy can 
improve the generalization ability of the model. 

Table 3. Comparative results between the various 
methods 

Method Forecast week MAPE NMSE EV 
June 24.3832 7.1227E-07 5.8273E+02 

ANN September 13.0963 1.1638E-06 1.6811E+02 
[19] First October 10.1464 4.0563E-07 1.0091E+02 

Second October 14.7888 5.9369E-06 2.1437E+02 

Average, MAPE % 15.6036 

ANN June 24.3855 6.5888E-07 5.8284E+02 
-ANN September 12.9346 3.4333E-07 1.6398E+02 
PSO First October 9.9469 2.8291E-08 9.6982E+01 
[19] Second October 14.7534 2.0740E-07 2.1335E+02 

Average, MAPE % 15.5051 

Wavelet Winter 24.3809 7.1219E-07 5.8262E+02 
-based Spring 13.0329 1.2132E-06 1.6648E+02 
ANN Summer 10.0097 4.1598E-07 9.8211E+01 
[19] Fall 14.1191 4.1001E-06 1.9539E+02 

Average, MAPE % 15.3856 

Wavelet Winter 24.3802 6.5859 E-07 5.8259E+02 
-based Spring 12.8764 3.5436E-07 1.6251E+02 
ANN-ANN Summer 9.2523 2.5696E-08 8.3911E+01 
-PSO [19] Fall 14.0773 1.4129E-07 1.9424E+02 

Average, MAPE % 15.1465 

June 7.4658 1.2468E-07 54.6338 
Proposed September 4.5317 1.5538E-07 20.1299 
Method First October 7.1617 1.0583E-06 50.2738 

Second October 6.0492 1.5091E-07 35.8675 

Average, MAPE % 6.3021 

Table 4. Statistical analysis for the four weeks of 
Indian energy exchange market in the year 2014 

using 4-fold cross-validation 

Market Forecast week MAPE NMSE EV 
June (w1) 6.9344 1.0922E-07 47.1328 

Indian September (w2) 3.8443 1.1309E-07 14.4861 
(2014) First October (w3) 5.7044 1.3085E-07 31.8954 

Second October (w4) 6.6035 9.6907E-07 42.7417 

Average, MAPE % 5.7717 

4. Conclusion

An exact determination of electricity price is an essential 
issue of concern for all energy market players and stock 
holders, either for creating bidding systems or for settling 
on investment choices. In the past research, no single 
accessible model has been applied across data from a 
broad spectrum of power markets. There is a need to put 
forth more research attempts in different markets also; 
this will help in interpreting and understanding the price 
development and behaviour in various power markets 
from an advanced point of view. Hence, in this paper, 
input parameters were selected using correlation analysis 
of raw data, by removing redundant components and LM 
training method was implemented which helped the 
neural network to train better. Forecast results of the 
benchmark energy market of India for the four weeks of 
the year 2014 were analyzed, yielding an average weekly 
MAPE near 6.3021%, with a very low NMSE, and 
smaller EV.  
The NN-LM networks’ implementation results illustrate 
that it has excellent forecasting accuracy than other 
forecast methodologies, such as ANN, ANN-ANN-PSO, 
Wavelet-based ANN, and Wavelet-based ANN-ANN-
PSO. The technique is very straightforward and yields an 
average weekly MAPE close to 6.3406% for the Indian 
power market for the year 2019, and for Austrian energy 
market for the four weeks of the year 2015. The average 
weekly MAPE is close to 6.1627%. It shows the 
effectiveness of the proposed model for the current year 
and the under different market environments. The 4-fold 
cross-validation technique can improve the generalization 
ability of the proposed model. The error of the test weeks 
has decreased with average weekly MAPE which is near 
5.7717%. However, it increases the processing time of the 
model and improves the accuracy of the test data. In a 
deregulated power market, the electricity price forecast 
model resulting in lower computation time and quicker 
forecast of prices is essential for real-life applications. 
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