
 Synthesizing MRI Images Using Generative AI 

 and Image Style Transfer GAN 

 PL.Chithra1, Dhivya.S.D2 

 { chitrasp2001@yahoo.com1, dhivyadharmalingam@gmail.com2} 

Department of Computer Science, University of Madras, India1, Department of Computer Science, 

University of Madras, India2 

Abstract. This work proposes to realistically synthesize the missing MRI sequence using 

generative artificial intelligence (GAI). GAI framework learns the patterns, data 

distribution, and structure of the input MRI images by using training data with those MRI 

images and then generates new data with similar data distribution as input MRI images. In 

this proposed work, Deep Convolution Generative Adversarial Network (DCGAN) and 

Pix2PixGAN generate a synthesized image using a real input image and random noise 

drawn from the dataset distribution. Its output is approximated to the original image using 

Image Style Transfer GAN, which gives an impressive outcome with an accuracy of 

95.6%. Accuracy and loss are assessed using the performance metrices, for content and 

style images and the data distribution of real and fake images of DCGAN and Pix2Pix 

GAN. To treat brain tumor patients, it is vital to examine all four modalities, such as T1, 

T2, T1w, and Flair, which are often missing due to image artifacts and time constraints. 

These missing brain tumor modalities lead to difficulties while treating patients, creating 

class imbalance and reducing performance and accuracy while training the dataset for 

classification and segmentation in deep learning and machine learning. 

Keywords: Generative Artificial Intelligence, DCGAN, Pix2PixGAN, Image Style 
Transfer GAN, modalities, class imbalance. 

1 Introduction 

 While computer Tomography (CT) is better at imaging bones, magnetic resonance imaging 

(MRI) offers better visualization of soft tissue, cartilage, ligaments, and organ comparison. CT 

distinguishes between fat, water, muscle, and other soft tissue. The benefit of an MRI 

experiment is that there's less radiation, in contrast to X-rays, CT scans, and Positron Emission 

Tests (PET), so it is able to be used greater adequately on individuals who are greater liable to 

the consequences of radiation. Researching more about cancer after they find it through 

examination is necessary, to locate the exact location and nature of the tumor. To plan cancer 

treatments, such as surgery or radiation therapy,  and analyze how well the treatment works. In 

detecting and planning treatment for brain tumor T1, T1w, T2, and   FLAIR images, these MRI 
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images are sometimes missed and visually unappealing in clinical practices due to time limits 

or image artifacts such as patient motion, etc. This reduces the chances of detecting tumor and 

planning treatment for tumor, and most algorithms require these four sequences. To overcome 

these missing sequences, the proposed work realistically synthesizes the missing MRI 

sequence using generative artificial intelligence (GAI) Also, missing some modalities leads to 

class imbalance, which reduces performance and accuracy while training the dataset. 

The synthetic image generation process goes through two processes: a learning process and a 

generation process, the generator gets samples from a normal distribution and learns features 

and data distribution of MRI images during the training process. Using a random noise vector 

as input, sequential upsampling procedures are used to generate an MRI image by learned 

features, data distribution during the training process is known as the generation process. The 

discriminator attempts to distinguish between MRI images generated by the generator and 

those with original input MRI images. The rest of the work based on the DCGAN which 

consists of generator and discriminator blocks and Style Transfer GAN, followed by Pix2Pix 

GAN ‘s discriminator and generator block, and finally Style Transfer GAN. This work is 

organized as follows Section 2 explains the background on GANs, Section 3  the methodology, 

Section 4  MRI dataset and preprocessing, Section 5 results and performance matrices followed 

by Section 6 presents the conclusion and future work. 

 

 2 Literature Survey 

Generative image models have been extensively researched and are classified into parametric 

and nonparametric types. Non-parametric models are frequently employed in texture creation 

[1], super-resolution [2], and in-painting [3] by matching patches of images from a database of 

existing images. Parametric models for image generation have been extensively studied and 

experimented on MNIST digits or texture creation [4]. A variational sampling technique for 

image generation has had some success [5], although the samples are frequently fuzzy. This 

method employs an iterative forward diffusion process to generate images [6].G. M. Conte et 

al., work, used the publicly available,  data set and trained two Generative Adversarial models 

to generate missing MRI sequences in one for generating T1 sequences and another for FLAIR 

sequences using Mean Squared Error (MSE) and Structural Similarity Index (SSE) 

[7].Changhee Han. et al., worked with Convolutional Neural Network-based brain tumor 

detection, which is challenging via conventional GAN difficulties arise due to unstable GAN 

training with high resolution. Progressive growing GAN(PGGAN)--based data augmentation 

(DA) method has shown better performance, combined with classical DA, in tumor detection 

and other medical imaging tasks. [8]. Martin Arjovsky et al. Proposed a method improving the 

stability of learning, eliminating mode collapse, and providing learning curves used for 

debugging and hyperparameters, the deep connections to different distances between 

distributions [9]. The main objective of the proposed work focuses on combining two different 

variants of GAN namely DCGAN and Pix2Pix, its outcomes are approximated with Style 

transfer GAN to achieve more resembling images similar to real or input images. In DCGAN 4 

dense layers including input and output layers are used to reduce internal complexity and to 

overcome the vanishing gradient problem often raised in GAN. To normalize input value 0 to 1 

batch normalization is used in each layer, and transposed convolution is used to retain the 

important features in input images, and LeakyRelu is used instead of Relu to scale the output 



 

 

 

 

from each layer -1 to 1. Pix2pix GAN, to generate synthetic MRI images of brain tumors batch 

normalization used in the UNet architecture to normalize mean and variance of input passed in 

each layer. Style transfer is used to maintain approximately the same texture as the original input 

image and it is a technique to enhance the image resemblance along with the above-mentioned 

features included in this model making it to obtain an accuracy of 95.6 %.     

3 Methodology   

The architecture of the proposed method consists of DCGAN and Pix2pix GAN with Style 

Transfer GAN as shown in Figure 1. 

 

                                                     Figure. 1. Architecture of the Proposed Work 

3.1 DCGAN with Style Transfers 

The DCGAN consists of two blocks, discriminator block D and generator block G. The data 

distribution is confiscated by the generative model. The chance of the sample being chosen from 

the training MRI dataset to the generative model is determined by the discriminative model. An 

adversarial procedure is used to train the two models simultaneously. This architecture follows 

a game theory strategy that resembles a minimax two-player [10]. The output MRI image from 

DCGAN  is fed into Style Transfer GAN as a style image and the original input MRI image is 

fed as a content image into Style Transfer GAN to obtain the final output MRI Image. 

3.1.1 DCGAN Generator Block 

In the generator blocks G, the first layer generates uniform noise distribution Z as input is fed 

to the dense net layer, in contradiction to the process of upsampling noise distribution using 

learned features while training the MRI image dataset. The noise vector is taken as an input 

MRI image and upsampled using transpose convolution to an input MRI image of size 128, as 

shown in Figure 2. To retain the learned features of an image and to regularize the flow of input 

to each unit so that it has a  mean value of 0 and variance as 1, this makes gradient flow in 

deeper models and helps to solve training MRI image dataset issues such as sample oscillation 



 

 

 

 

and model vulnerability. The deep generators starts to learn and stops the generator from 

combining all of the samples as one point. The LeakyReLu [12] activation is used in all layers 

except the output layer, and the Tanh activation scales the output between −1 and 1. The 2 x 2 

fractional-(strided convolutions ) Generator, allows the network to learn (spatial downsampling) 

on their own. Remove related hidden layers to avoid model instability and stabilize the 

convergence speed. Backpropagation and an optimizer Adam with a constant learning rate of 

0.01  are used to update the generator weights. The generator loss is calculated using binary 

cross entropy. The generator network of a DCGAN consists of 4 hidden layers, including the 

input layer, 1 hidden layer, and 1 output layer. Transposed convolution is performed in hidden 

layers to upsample the images, which are followed by batch normalization and LeakyReLU 

activation functions.  

 

Figure. 2. Architecture of DCGAN 

3.1.2 DCGAN Discriminator Block 

The discriminator block consists of 4 layers,  the input layer as the first layer followed by two 

layers and the output layer. Each layer has batch normalization, except  the first layer. 

LeakyReLU activation used for all layers except output layer, and Sigmoid is used for the output 

layer, as shown in Figure 2. The input channel has a stride of 1, and all hidden layers have a 

stride value of 2 and a padding value of 1 so that the output image sizes will be half the input 

images. As image sizes increase in deeper layers, the number of channels increases by twice. 

Backpropagation and an optimization phase are used to update the discriminator's weights. 

Batch normalization is used to regularize the discriminator's learning rate. LeakyReLU 

activation function is used gradients to avoid  backward flow of  the layer. The last layer 

classifies the output. 

3.1.3  Style Transfer GAN for DCGAN 

The style Transfer GAN works with the principle of texture transfer.  The pre-trained model of 

VGG consists of 16 convolutions and five pooling layers. The network scales the weights to 



 

 

 

 

normalize the values , the mean activation of each convolutional filter across images and 

positions is one. The texture transfer  creates a texture from a input MRI image by limiting 

texture synthesis to preserve the target MRI image's content. This is accomplished by matching 

the deep feature's Gram matrix statistics through optimization. The Style Transfer GAN uses 

the VGG 19 network, which comprises rectified linear activation functions and no normalizing 

or pooling over feature maps. Re-scaling is possible without affecting its output. For image 

synthesis, the max pooling operation is replaced by average pooling, yielding a slightly more 

appealing outcome. Assume X and Y are the content and style images in the domain where no 

pairings exist between them. To characterize the tumor image domain X, a brain tumor dataset 

is used to obtain features, regions of interest, tones, and textures. {xa} a =1. . . . , N, xa ∈ X. To 

train the style block output of DCGAN images, {yb} b = 1,..., M, yj ∈ Y, Y β ⊂ Y refers to a 

sub-domain of Y that contains tumor images of β. When yb∈ Y β, we denote it as yβb. The style 

GAN trains two separate neural networks, G and F, one to transfer input images and another to 

replace DCGAN output images with original input MRI images. This is done by using diverse 

training, Generator G can generalize its learning to the entire input image dataset domain and 

can transfer regions of interest to arbitrary regions at run time. DCGAN and Pix2PixGAN 

output, yβ ∈ Y β, and input images, x ∈ X, the transfer network G: X × Y β → Y β extracts the 

tumor region from yβ and applies it to x to maintain its identity. Our result G (x, yβ), highlighted 

in Figure 3, should belong to the domain Yβ. Given the same photo yβ, the final output network 

F: Y → X learns to identify the region of interest in the identity of yβ 

 

Figure 3. Architecture of Style Transfer GAN 

The G and F are unbalanced functions. G takes a pair of images as input to transfer the style 

from one style to the other. F learns to reproduce ROI.. Total Loss of Style Transfer GAN is 

calculated by optimizing a min-max. 

3.2 Pix2Pix GAN with Style Transfer GAN: 

Pix2Pix is a conditional GAN (CGAN) that uses conditional distribution as an instruction to 

distribute the output data. It pertains to class labels with the condition. As a result, during dataset 

training, the UNet architecture receives the images with their actual labels. The Pix2Pix GAN 

uses real MRI image data, noise, along with condition labels to generate images. The Pix2Pix  

consists of two blocks, namely the generator UNet and the discriminator patch GAN, as shown 

in Figure 4. 



 

 

 

 

 

Figure. 4. Architecture of a Pix2Pix GAN 

 

3.2.1 Generator Block of Pix2Pix GAN 

The generator G learns a mapping from real data distribution X and noise distribution Z and Y 

are labeled outputs or target data from the generator G: {X, Z}->Y. The generator attention 

UNet consists of two blocks, namely the encoding and decoding. Convolution layers make up 

the encoding block, also called the contractive path. The proposed method consists of 4 

encoding units of convolution layer, leaky Relu, and batch normalization. They extract spatial 

information from the input image while downsampling data. Then they pass the data to the 

subsequent layer until it reaches the middle, or the bottleneck, from which the expansive path 

originates. The decoder is also known as the expansive path; the transpose convolution is 

performed in upsampling, and concatenation, the information and a skip connection are used to 

retain the information lost during downsampling 

3.2.2 Discriminator Block of Pix2Pix GAN 

The discriminator D learns representation from label data Y and real data distribution and 

distinguishes real or fake D=Y | X. The discriminator uses Patch GAN, it splits an image into 

actual and fake segments; it classifies a patch of (n*n) in the image as real and fake. As a result, 

more restrictions are imposed, and high-frequency details are visualized. This patching method 

operates more quickly than classifying the entire image. The discriminator follows patch 

pairings: an input image and a generated image, as well as an input image and a target image, 

merge the input pairs together. The discriminator loss consists of the sum of two losses, one 

between an array of ones and an actual image and the other between an array of zeros and a 

synthetic image. The sigmoid cross-entropy loss is used to calculate the loss. 

3.2.3 Style Transfer GAN for Pix2Pix GAN 

Pix2Pix GAN is an advancement of GAN. It efficiently handles the transfer of image styles 

between data sets and the model to extract MRI image features more effectively. The pre-trained 

model of VGG consists of 16 convolutions and five pooling layers. The fact that the data set is 



 

 

 

 

not paired and there is also an edge blur edge. The Gaussian smoothing technique is used to 

retain the edge information more clearly as shown in Figure 3. 

4 Dataset and Preprocessing 

The dataset contains 920 tumor images, without tumor 300, for a total of 1220 images from the 

public brain tumor datasets of 2021, 2000, and 2019. The preprocessing techniques included 

resizing the images and scale between [-1, 1].  The MRI image data is given as a NumPy array 

so that pixel values are 8-bit unsigned integer  values in the range [0, 255]. 

5 Result and Performance Metrices 

The overall output of Image style Transfer GAN data distribution of real images and fake images 

is based on content loss and style loss is plotted as the graph is shown in Figure 5. The 

parameters required to train and test the DCGAN, Pix2Pix GAN, and progressive  GAN are 

tabulated in TABLE 1 

Table 1: Parameter configuration of DCGAN, PIX2PIX GAN and Style Transfer GAN 

Parameters DCGAN Pix2PixGAN Progressive GAN 

Mital batch size 120 80 100 

No. of Epochs 3750 2000 2500 

Discriminator Learning rate 0.0001 0.0001 0.0001 

Generator Learning rate 0.0002 0.0002 0.0002 

Optimizer Adam Adam Adam 

Discriminator Loss 4.2999 3.8712 7.988 

Generator Loss 8.2126 6.5682 9.1280 

Accuracy without Style Transfer 87.5% 89.02% 83% 

Accuracy Style Transfer 95.6% 93.7% 92.8% 

 

 

 

 

 



 

 

 

 

 

Figure. 5. Distribution of real and fake images of Style GAN 

 

The input MRI image, the ground truth of DCGAN with Style Transferred GAN image, and 

with Style Transferred GAN are shown in Figure 6. 

 

(a)                                              (b)                                             (c) 

Figure 6. (a) Input Image (b) DCGAN with Style Transferred GAN (c) Pix2pix with Style 

Transferred GAN 

The accuracy of DCGAN, PIX2PIX GAN, and progressive GAN has been compared with and 

without style transfer GAN. Is shown in Figure 7. 

 



 

 

 

 

 

Figure 7. Comparative analysis of DCGAN, PIX2PIX GAN, and Progressive GAN with  

                                         and without Style Transfer GAN 

 

 

 

6 Conclusion and Future Work 

The proposed work for synthesizing images using the GAN framework DCGAN and Pix2Pix 

GAN outcomes are passed to Style Transfer GAN received outcomes are remarkable and it 

closely resembles the real input images with an accuracy of 95.6 % and its performance is 

evaluated using data distribution of the real image and fake images and content image and style 

images. Future work includes overcoming model instability caused due to increasing layers, 

overcoming gradient degradation while training dense layers, reducing noise at times region of 

interest, and increasing accuracy. 
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