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Abstract. Analysis of the 3D LiDAR point cloud data is the fundamental for computer 

vision and robotics, with potential applications ranging from object detection to scene 

understanding. In this proposed work, introduced an approach that leverages the power of 

contrastive learning combined with self-supervised learning for feature extraction from the 

LiDAR 3D point cloud data. On-the-fly extensions to include rotation on invariance of 3D 

point cloud data, jitter adding noise in coordinates of point cloud data, and displacement 

and shear to improve model robustness and invariance to geometric transformations. Each 

data point is paired with two extensions to form positive pairs and facilitating the 

contrastive learning. The focus of proposed method is to implement the point cloud feature 

learning layer, specifically on DynamicEdgeConv. This layer uses the parameter 'k' to 

identify nearest neighbors in 3D point cloud data that together create a subgraph, 

facilitating improved feature learning. Applying enhancements during training is important 

that ensures the adaptability of model to real-world data fluctuations. Evaluation results 

determines the efficacy of  proposed approach and that shows that significant 

improvements in clustering performance and outlier detection accuracy compared to 

common methods. This work has advances of the state of self-supervised learning of 

LiDAR 3D point cloud data, but also paves the way for more robust 3D object detection, 

scene understanding, and applications in the fields of robotics. 

Keywords: 3D point cloud data, LiDAR, Contrastive learning, Self-supervised learning, 

DynamicEdgeConv, Outlier detection. 

1 Introduction 

LiDAR is the Light Detection and Ranging sensor used for obtaining the 3D point cloud 

dataset. 3D point cloud data has become an important source of information for applications in 

a variety of fields, from autonomous navigation and robotics to augmented reality and 

environmental modeling. Accurately and efficiently classifying objects and scenes represented 

by 3D point clouds is a fundamental task with significant impact on real-world systems. 

However, this task is inherently difficult because point cloud data is unstructured and sparse. 

Although traditional supervised learning methods had great success in classifying 2D images, 
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they face limitations when applied to 3D data. Additionally, the rich spatial and geometric 

information encoded in these point clouds may be underutilized. Self-supervised learning, a 

paradigm that exploits the inherent structure of data to generate monitoring signals, represents 

a promising way to address these challenges. In 3D point cloud classification, self-supervised 

learning algorithms aim to automatically learn distinctive features directly from the data. Raw 

data eliminates the need for extensive manual annotation. This proposed work addresses a self-

supervised learning for 3D point cloud classification. The proposed model introduced an 

approach that leverages the power of self-supervised learning techniques to extract meaningful 

features from unannotated 3D point cloud data. Through careful design and research, the aim to 

address several key challenges in this field, including:  

 

• Feature Learning: The strategy focuses on creating a framework for self-supervised 

learning that is specifically adapted to the unique features of 3D point cloud data. The 

goal is to learn a highly descriptive and compact representation that captures the 

underlying geometry and semantics. 

• Data efficiency: By eliminating dependence on large labeled datasets, the method 

significantly reduces data annotation effort, making it suitable for practical 

applications. 

• Robustness to variation: Real-world 3D data is subject to significant variation due to 

factors such as lighting conditions, sensor noise, and changes in viewing angle. The 

approach includes mechanisms that improve the model's robustness and adaptability to 

these challenges.  

• Generalization: The goal is to create a model that generalizes well across a variety of 

3D point cloud datasets and scenarios, leading to broader applications in areas such as 

robotics, self-driving cars, and augmented reality.  

The following sections are organized as Section II gives an overview of related work in 3D point 

cloud processing, geometric transformation, contrastive learning in LiDAR 3D point cloud data, 

and Dynamic Edge convolution model. Section III describes a methodology for Classification 

model for 3D point cloud data and describes the self-supervised learning model architecture. 

Section IV presents experimental results and performance analysis and evaluations on the 

benchmark dataset, and discussing the results. Finally, Section V concludes the paper by 

highlighting the contributions and possible of future directions of this research. 

2 Related Work 

For a range of computer graphics applications, point clouds offer a versatile geometric 

representation. includes real-time use of the majority of 3D data capturing tools. Features that 

were hand-designed are highlighted. CNNs for image analysis point to the benefits of translating 

CNN-derived insights to point clouds. They described the EdgeConv neural network module, 

which is appropriate for CNN-based applications on point clouds. There is a description of 

classification and segmentation [1]. For analysing 3D point clouds, they described a graph 

neural network (GNN) framework. Vertex employing MLP to represent points with significant 

local geometric information after nonlinear projection. The second contribution is a proposed 

model that enhances 3D point cloud GNN graph creation [2]. Natural language processing is 

being revolutionised by self-attention networks, which are also considerably advancing image 

analysis tasks like image categorization and object recognition. This achievement led to research 



 

 

 

 

into the use of self-attention networks for processing 3D point clouds [3]. The general 

architecture of graphical neural networks (GNNs) is given for analysing 3D point clouds. The 

construction of local neighbourhood graphs and advancements in point representation are 

described [4].  Machine learning is utilised in the infrastructure and construction sectors to 

automate procedures. A plan for future research is discussed in light of the found research gaps 

[5]. The sector of developing, protecting, and maintaining data for cultural property is seeing an 

increase in the importance of automatic segmentation and classification models [6]. A deep 

neural network called PointNet receives 3D point cloud data directly as input. Due to its great 

stability and computational efficiency, PointNet has emerged as one of the most popular point 

cloud categorization algorithms for practical applications [7].  A dynamic graph convolutional 

neural network (DGCNN) point-wise deep learning approach was created and deployed for 3D 

point cloud classification, extending its classification applicability from indoor scenarios to 

aerial point cloud data. This was described [8]. Large human-annotated datasets are utilised in 

conjunction with aircraft LiDAR point cloud classification [9]. a 3D point cloud classification 

technique based on segmentation. For the purpose of data training, this supervised technique 

needs a simple data description [11]. The foundation of point cloud analysis is point cloud 

categorization, and numerous deep learning-based approaches are being discussed[12]. 

discusses how to automatically interpret 3D point cloud data by giving each 3D point cloud a 

class label [13]. We have discussed the use of 3D convolutional neural networks (CNNs) for 

feature extraction as well as a voxel-based technique for transforming point clouds into normal 

3D grids (voxels) [16]. Unreliable points are successfully hidden and the spatial breadth is 

decreased when statistical subspace outlier detection and logarithmic transformation (LPCT) 

are used together. outlined a deep learning model for the quantization of 3D LiDAR point cloud 

taken from the air [15]. 

3 Methodology 

This methodology includes as step 1 in data preprocessing to improve the robustness of point 

cloud data, step 2 is self-supervised learning to extract meaningful features, step 3 as clustering 

for data reduction, and task-specific adaptation. Includes fine-tuning as step 4 and step 5 is 

outlier detection to ensure data quality. Integrating a point cloud feature learning layer like 

EdgeConv plays an important Role in feature extraction from point cloud data. Taken together, 

these steps enable the model to effectively learn and use 3D point cloud analysis classification 

representations. In further the steps are elaborated briefly: 

 



 

 

 

 

Fig. 1. Architecture of 3D point cloud data for proposed model 

3.1 Description of proposed Architecture: 

The diagram above shows the proposed architecture of a 3D point cloud dataset for classifying 

data. In the first process of this methodology, 3D point cloud data is preprocessed and converted 

into tensors. A further process is data augmentation of 3D point cloud data. The feature learning 

layer is an edge convolution layer and is used as a convolutional neural network on 3D point 

cloud data. With the help of edge convolution layers, feature learning is performed through self-

supervised learning on 3D point cloud data. Classification is performed by determining outlier 

detection using a K-nearest neighbor algorithm on point cloud data. 

3.2 Steps used in Proposed work 

Step:1 Data preprocessing 

 Before training the model, the raw 3D point cloud data undergoes a preprocessing step. This 

includes data augmentation techniques that improve model robustness and processing of point 

cloud features: 

1. Rotation (if the plane used is not rotation invariant): A random rotation is applied to 

the 3d point cloud data for variations in the point cloud orientation. This step allows 

the model to generalize across different orientations of objects in the point cloud. 

Randomly rotating each point cloud by a random transformation matrix (𝑅): 

                  𝑅 = [
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0
0 0 1

]                    (1)                    

Applied the rotation to each point 𝑝 in the 3D point cloud: 

 𝑝′ = 𝑅𝑝            (2) 

2. Jittering: Noise is added to the coordinates of a point cloud data, effectively 

simulating the presence of measurement errors or measurement uncertainties. This 

makes the model more robust and allows it to learn from noisy real-world data. Adding 

Gaussian noise to the coordinates of each point:    

        𝑝′ = 𝑝+∈. 𝑛            (3) 

Where ∈ is the noise level and 𝑛 is a vector of random values sampled from a 

Gaussian distribution. 

3. Displacement and Shear: Applying transformations and shear transformations to 

point cloud data further improves resilience to spatial variations. This is especially 

useful for correcting positional differences and non-uniformities in point cloud data. 

Shear in 3D point cloud is represented using an affine transformation matrix. A shear 

transformation involves moving one or more coordinates of an object in proportion to 

other coordinates. 

i. X-Shear: The X-shear transform shears points along the X axis without changing the 

Y and Z coordinates. 

          [

𝑥′

𝑦′

𝑧′
1

]= [

1     𝛼     𝛽     0  
0     1     0     0
0     0     1     0
0     0     0     1

] [

𝑥
𝑦
𝑧
1

]    (4) 

Here, 𝛼 represents the shearing factor along the X-axis, and 𝛽 is typically set to 0 for 

X-shearing. 



 

 

 

 

ii. Y-Shear: The Y-shear transform shears points along the Y axis without changing the 

Z and X coordinates. 

                  [

𝑥′

𝑦′

𝑧′
1

]= [

1     0     0     0  
 𝛼     1     𝛽    0
0     0     1     0
0     0     0     1

] [

𝑥
𝑦
𝑧
1

]                               (5) 

Here, 𝛼 represents the shearing factor along the Y-axis, and 𝛽 is typically set to 0 for 

Y-shearing. 

iii. Z-Shear: The X-shear transform shears points along the Z axis without changing the 

X and Y coordinates. 

                  [

𝑥′

𝑦′

𝑧′
1

]= [

1     0     0     0  
 0     1     0    0
𝛼     𝛽     1     0
0     0     0     1

] [

𝑥
𝑦
𝑧
1

]    (6) 

Here, 𝛼 represents the shearing factor along the Z-axis, and 𝛽 is typically set to 0 for 

Z-shearing.  

4. Point cloud feature learning layers (EdgeConv): These layers are integrated into the 

model architecture captures the local and global functionality from point cloud data. 

The EdgeConv facilitates the neighborhood of aggregation and feature extraction, 

allowing models to learn meaningful representations from input data.  

Step: 2 Self-supervised learning 

Self-supervised learning is used as the main learning paradigm for feature extraction. Point 

cloud data is split into positive and negative pairs. Positive pairs represent instances with 

common characteristics, and negative pairs represent instances that are different. The model 

is trained to maximize the similarity between positive pairs and minimize the similarity 

between negative pairs, thereby learning to distinguish features from the point cloud data 

for classification.  Let 𝑓(𝑝) be the feature embedding of a point 𝑝 obtained from the Point 

Cloud Feature-Learning layers used in EdgeConv layer: 

 

Contrastive Loss: 

For a pair of positive samples 𝑝𝑖and 𝑝𝑗and negative samples 𝑝𝑘: 

Defining the similarity function 𝑠(𝑝𝑖 , 𝑝𝑗) cosine similarity between the feature embeddings: 

𝑠(𝑝𝑖 , 𝑝𝑗) =
𝑓(𝑝𝑖).𝑓(𝑝𝑗)

||𝑓(𝑝𝑖)|| ||𝑓(𝑝𝑗)||
         (7) 

Step:3 Clustering 

 After an initial self-supervised learning phase, the learned feature representations are clustered 

with the help of KNN algorithm to group similar data points. Clustering helps organize data and 

serves as the basis for downstream tasks such as fine-tuning and outlier detection. 

Using clustering algorithms like KNN (K-Nearest neighbor) to group the feature embeddings 

𝑓(𝑝) into clusters. This can be represented as: 

          𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡:       𝐶 = 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 (𝑓(𝑝1)), (𝑓(𝑝2)), … , (𝑓(𝑝𝑛))                        (8) 

Step:4 Fine adjustment 

Fine-tuning is performed on clustered data to adapt the model's learned features to a specific 

task of 3D point cloud classification. This phase includes self-supervised training on labeled 

data to adapt the model's features to classification tasks of 3D point cloud data. 

                                𝐹𝑖𝑛𝑒 − 𝑇𝑢𝑛𝑖𝑛𝑔 𝐿𝑜𝑠𝑠:   𝐿𝑓𝑖𝑛𝑒−𝑡𝑢𝑛𝑒 = 𝐿𝑡𝑎𝑠𝑘(𝑚𝑜𝑑𝑒𝑙(𝑝𝑖), 𝑙𝑎𝑏𝑒𝑙𝑖)                      (9)  



 

 

 

 

where model (𝑝𝑖) represents the contrastive learning model's prediction for point (𝑝𝑖) 3D point 

cloud data and 𝑙𝑎𝑏𝑒𝑙𝑖is the ground truth label for particular point cloud data. 

Step:5 Detecting outliers 

 Outlier detection mechanisms are applied to identify and handle outliers in point cloud data. 

These are EdgeConv machine learning models, dynamic graph CNN models specifically 

designed to label the data points that deviate significantly from expected patterns. Converting 

3D point cloud data into a graphical representation. Each data point (3D point) becomes a node 

in the chart. Graph edges are defined based on similarity or adjacency metrics specific to 3D 

point cloud data. This is done using spatial proximity to generate an adjacency matrix A. Use 

graph convolutional networks (GCN) for outlier detection. GCN is a type of neural network 

designed for graph-structured data. The GCN layer allows information to pass through the graph 

and capture local and global relationships within 3D point cloud data. 

4 Performance Analysis and Evaluations 

The performance of the proposed convolutional neural network model includes contrastive 

learning on 3D point cloud data for classification self-supervised learning. The proposed work 

has been evaluated the effectiveness of our method, including on-the-fly extensions aimed at 

improving model robustness and invariance to geometric transformations. The experiments aim 

to verify the benefits of combining contrastive and self-supervised learning for this particular 

task.  The proposed Model architecture: is to feature extraction model is based on the concept 

of DynamicEdgeConv, which uses the parameter “k” to identify nearest neighbour points by 

using the KNN algorithm in 3D point cloud data and create subgraphs to improve feature 

learning. Adam optimizer is used for learning model, learning rate is auto and epochs is 30 and 

had the loss of 1.1936 When training on a 3D point cloud dataset, the accuracy is 90.88%. The 

proposed model has higher accuracy than state-of-the-art classification algorithms. The 

proposed model integrates contrastive learning, which improves the accuracy percentage. The 

training of the proposed model was trained using the training parameter “k”. The batch size is 

32, the input dataset learning rate is 0.01, and the number of epochs is 30. The 3D LiDAR point 

cloud dataset is implemented using the Jupyter environment in Python 3.10.9 and used for the 

PyTorch implementation. The model represents the quantitative results of experiments using 

various performance metrics. 



 

 

 

 

 

Fig. 2. Original ShapeNet Dataset - Input sample images from 3D point cloud datasets (a) 

Teapoy.ply (b) airplane.ply (c)Nightstand.ply and (d) car.ply 

The above figure shows the Original ShapeNet dataset of Different shapes that represents the 

3D point cloud dataset (a) Teapoy.ply shows the Teapoy shape (b) airplane.ply shows the 

Airplane shape (c) Nightstand.ply shows the Table shape and (d) car.ply represents the car 

shape. 

 

Fig. 3.   Output sample images from 3D point cloud datasets (e) Teapoy.ply (f) airplane.ply 

(g)Nightstand.ply and  (h) car.ply. Using the Jupyter environment in Python 3.10.9 and 

PyTorch, the proposed convolutional neural network model was constructed and trained on 

dense 3D LiDAR point cloud ShapeNet datasets of various sizes. The dataset is a.Ply file that 

contains a large amount of training data for the suggested model and is composed of 3D object 

point cloud data. 



 

 

 

 

5 Conclusion 

Contrastive learning and self-supervised learning while combined, have verified to be 

exceptionally powerful in extracting significant capabilities from 3D point cloud data. These 

capabilities function a robust basis for downstream tasks, consisting of clustering and fine-tuned 

outlier detection. The inclusion of on-the-fly augmentations has substantially advanced of the 

model`s robustness to numerous geometric transformations, consisting of rotation and jittering, 

normally encountered in real-time scenarios. The implementation of DynamicEdgeConv has 

been a pivotal advancement, making an allowance for the extraction of neighborhood contextual 

data via the formation of subgraphs. The parameter 'k' aids withinside the identity of nearest 

neighbors, contributing to extra informative characteristic from data. First-rate upgrades in 

clustering overall performance and outlier detection accuracy is 90.88% while as compared to 

present methods. These effects have the viability of the proposed method for real-time 3D point 

cloud data evaluation tasks. Future work ought into optimizing augmentation strategies, scaling 

the method to large datasets, and increasing its utility to fields consisting of autonomous 

navigation and robotics. 
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