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Abstract. One of the most important tasks in improving crop yield quality is accurately 

predicting leaf infection and its related soil properties. A Multi-channel Convolutional 

Neural Network (MCNN) was already designed that utilized a separate channels for 

learning features of soil and leaf infection images. But, it was not able to capture the 

spatiotemporal variance of the leaf infections and may lose data because of feature fusion 

at the decision stage. Hence, this article proposes a Multi-channel Multimodal 

Concatenation-based CNN with Long Short-Term Memory (M2C2NN-LSTM) model to 

improve the generalizability of feature learning for leaf infection and soil property 

prediction. At first, the MCNN architecture is built to learn the deep features from soil and 

leaf images together using DenseNets followed by the Convolutional LSTM (ConvLSTM), 

which helps to extract the spatiotemporal dependencies between them. During feature 

learning, three different types of concatenation strategies are employed to fuse the 

encoding of spatiotemporal features with better generalization ability and achieve robust 

prediction. Once the prediction process is completed, the predicted outcomes of leaf 

infections and related soil properties are broadcasted to the cultivators via smartphones to 

develop yield productivity. At last, this model is validated by the different categories of 

leaf infection and soil photos for cotton, pineapple, and strawberry crops plants. The testing 

outcomes demonstrate that the M2C2NN-LSTM attains a mean accuracy of 90.3% for leaf 

infection prediction and 91.85% for soil property prediction than the conventional 

classifiers. 

Keywords: Leaf infections, Soil properties, Multi-channel CNN, LSTM, Multi-modal 

fusion, Feature learning. 

1 Introduction 

Crop infections are regarded as one of the most important variables impacting cultivation, being 

crucial for a major fluctuation in plant morphological or commercial efficiency and, in certain 

cases, becoming a constraint to this effort. To minimize output risk and ensure food security, 
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pathogen monitoring and control strategies must be implemented correctly, focusing on frequent 

harvest inspections along with early and precise pathogen detection. These are the techniques 

that phytopathologists encourage the most [1]. 

On the other hand, the proper detection of the signs of various plant pathogens is the most 

difficult problem for farming systems [2]. Classical farming techniques cannot handle huge 

portions of farms or facilitate critical early feedback to decision-making strategies due to 

physical and automated processes.[3].  

An area of artificial intelligence called machine and deep learning algorithms [4] seems to be 

very successful at identifying and categorizing images. Farming has embraced these algorithms 

for different purposes, like leaf infection recognitiInitially, photos of leaves and soil were taken 

and forwarded to a server through the Internet of Things (IoT) systems [5]. The leaf photos were 

used to extract textural features and contour-based shape descriptors. Color histogram-based 

characteristics were also retrieved from soil photos. Then, SVM used these features to predict 

plant leaf disease. But, SVM has a high training burden when using large-scale datasets since it 

was not able to manage a larger number of features. To solve this problem, the deep learner is 

used to forecast plant leaf disease, which doesn’t demand domain expertise. To recognize crop 

leaf infections with significant efficiency, several authors have applied well-known Deep CNN 

(DCNN) structures like AlexNet, VGGNet, InceptionV3, ResNet, DenseNet, and so on [6]. 

These structures use leaf and soil photos separately for predicting leaf infection. Conversely, 

both soil and leaf infection images were considered together, which may not improve the 

prediction performance effectively. Accordingly, an MCNN has been developed that adopts 

independent channels for soil and leaf infection images [7]. It was based on the fact that the 

major feature learning by CNN for leaf infection images was being maintained regarding soil 

images to prevent major data merging among leaf and soil photos. 

An M2C2NN-LSTM model is proposed to enhance the accuracy of predicting leaf infections and 

related soil properties. In this model, three different types of concatenation strategies are 

employed: i) concatenation at the information stage called early concatenation; ii) concatenation 

at the feature stage called in-between concatenation; and iii) concatenation at the decision stage 

called late concatenation. Initially, the MCNN structure is constructed to concurrently train the 

deep features from both soil and leaf images through DenseNets, which are then connected to 

the ConvLSTM to extract the spatiotemporal dependencies between them. Moreover, different 

concatenation strategies are used at various stages to merge the encoding of spatiotemporal 

features with better generalization ability and achieve robust prediction.  

2 Literature survey 

2.1 Machine learning algortihms for  leaf disease detections  

The Machine learning based alggortihms for  leaf disease detections are providing promising 

results for small datsets.  A novel fuzzy set [8] was designed based on the neutrosophic logic-

based partition scheme to analyse the ROI.  But, its complexity was high, while increasing the 

number of images and the fuzzy membership values must be properly chosen to improve the 

efficiency. A Multi-class SVM (Multi-SVM) [9] was used to categorize the soil images using 

the linear kernel. But, the dataset was limited, and its training time was high for large-scale 

datasets. An Adaboost, tree, and Artificial Neural Network (ANN) algorithms [10] was used to 

classify the various soil types.  



 

 

 

 

2.2 Deep learning and transfer learning algortihms for leaf disease detections 

A customized Faster Region-CNN (FRCNN) system [11] was presented for identifying leaf spot 

infections in sugar beet. Conversely, the CNN hyperparameters must be adjusted to circumvent 

false categorizations. CNN was suggested [12] for extracting the features from rice leaf infection 

images. Then, the SVM was applied to categorize and recognize particular infections. In 

addition, the SVM parameters were optimized using a 10-fold cross-validation scheme. To 

analyzed different structures of the CNN model to predict and classify vegetable leaf infections 

[13].  

2.3 Limitations of existing works   

The ML algorithms had high computational costs and were prone to overfitting issues. However,   

machine learning algorithm cannot handle large scale datasets. The efficiency of deep learning 

methods depends on the huge number predefined parameter and number of infection image 

samples used for training. The performance of transfer learning mainly depend on pre-learned 

model. The proposed work eliminate the above limitations for leaf disease detections.   

3 Proposed methodology 

This part explains the M2C2NN-LSTM model for leaf infection and soil property prediction. 

First, different types of crop leaf infection images and soil photos are captured by the camera. 

Then, such images are transferred to an image processing module via either a wired or wireless 

system for further analysis. Once all the images are acquired, the noise elimination scheme is 

used to eliminate the distortions from the photos. These pre-processed photos are provided to 

MCNN, which facilitates separate channels for soil and leaf infection images. During MCNN 

training, multi-modal fusion strategies are used to enhance the learning of the feature 

representations. After learning all deep features from the soil and leaf infection images, these 

images are passed to the ConvLSTM to learn the spatiotemporal dependencies associated with 

the leaf infections and their related soil properties. Finally, the fully connected and softmax 

layers are employed for the final prediction. 

3.1 Image acquisition and preprocessing 

Primarily, the leaf infection images and their related soil images are captured for 3 major crops: 

strawberry, cotton, and pineapple. The captured images of leaf infection include bacterial flight, 

cylindrocladium, mealy bugs, ralstonia solancearum, Rhizoctonia, spider mites, and 

thielaviopsis. Among them, bacterial flight and mealybug-infected leaf images are only captured 

for the cotton crop. 

3.2 M2C2NN-LSTM classifier for leaf infection and soil property prediction 

This M2C2NN-LSTM model considers the concept of cooperative feature learning. It considers 

the leaf infection and soil images as inputs and feeds them into 2 individual convolutional dense 

networks to learn deep feature representation. The convolutional units may considerably 

decrease the number of learnable variables using the idea of weight sharing, which helps the 

model solve the overfitting issue. DesneNets adopt shortcut links that execute characteristic 

representation, therefore efficiently preventing feature attenuation triggered by several 

combined non-linear conversions. It guarantees that the extracted features preserve the data at 

the local level, whereas the global features of images are not defined. To solve this problem, 



 

 

 

 

such characteristics are passed to the ConvLSTM network linked to the result of the DenseNets 

to train the spatiotemporal relations among them. 

Compared to the standard LSTM, ConvLSTM explicitly considers substituting the input images 

as the sequential vector multiplication in LSTM gates using convolutional processes, where the 

photo’s transitional representation preserves the spatial relationship data in the repetition 

MCNN with ConvLSTM Structure 

The MCNN structure has 2 different input channels for leaf infection images and soil photos, 

correspondingly. The traits associated with all leaf infection and soil photos are concatenated 

and transferred along the specific channels [7]. The initial level is the convolution unit utilized 

to traverse along the matrix of the image to generate a primary feature matrix of deep 

characteristics using an adaptive filter. Such feature maps are then transferred along with the 2nd 

convolution without pooling. The feature maps created by this unit are given to the flattening 

unit, which converts this matrix from a 2D to a 1D array since the subsequent layers of the 

network are dense units. These matrices are provided to the dropout unit for regularization. 

The sixth layer of this network is a dense unit that uses the linear operation on the feature maps 

created by the convolution unit. This dense unit is used to learn the global relationship amid the 

features and abstraction of more complex pixels in the image 

 

Fig. 1. Structure of M2C2NN-LSTM classifier for leaf infection and related soil property 

prediction 

For an input sequence 𝑋1, … , 𝑋𝑁 and 𝑌1, … , 𝑌𝑁, consider 𝑚1, … , 𝑚𝑁 are the cell activation states 

and ℎ1, … , ℎ𝑁 are the hidden states. The ConvLSTM network executes the below operations: 

𝑖𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤𝑖 ∗ 𝑋𝑛 + 𝑈𝑖 ∗ ℎ𝑛−1 + 𝑏𝑖)                        (1) 

𝑓𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤𝑓 ∗ 𝑋𝑛 + 𝑈𝑓 ∗ ℎ𝑛−1 + 𝑏𝑓)                        (2) 

𝑜𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤𝑜 ∗ 𝑋𝑛 + 𝑈𝑜 ∗ ℎ𝑛−1 + 𝑏𝑜)                        (3) 

𝑚𝑛 = 𝑓𝑛 ∘ 𝑚𝑛−1 + 𝑖𝑛 ∘ 𝑡𝑎𝑛ℎ(𝑤𝑚 ∗ 𝑋𝑛 + 𝑈𝑚 ∗ ℎ𝑛−1 + 𝑏𝑚)                                      (4) 

ℎ𝑛 = 𝑜𝑛 ∘ 𝑡𝑎𝑛ℎ(𝑚𝑛)            (5) 

In the above equations, ∗ is convolution function and ∘ is element-wise product function. 𝑖𝑛 , 𝑓𝑛 

and 𝑜𝑛 are the input, forget and output fates whereas 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑜 and 𝑏𝑚 are the biases. The input 



 

 

 

 

weights 𝑤~ and hidden weights 𝑈~ denote the learned convolution kernels of the ConvLSTM 

network.In this work, the outcome from dense units of each channel is fed to the corresponding 

ConvLSTM networks where the feature map is passed to the ConvLSTM at various intervals. 

The convolutional kernel spatial dimensions of the input weights and hidden weights are 

assigned to 3 × 3 with stride of 1 × 1.   Typically, the outcome of the ConvLSTM unit is 

spatiotemporal characteristics with the spatial dimension of 7 × 7, which is similar to that of 

the ConvLSTM input, while its temporal dimension is decreased to 1. 

Multi-modal Concatenation 

Feature concatenation is the basic part of leaf infection and soil property prediction. In this work, 

3 multimodal concatenation strategies are considered: early concatenation, in-between 

concatenation and late concatenation. The softmax unit predicts the output-input possibility 

𝑃(𝐶𝑙|𝑋) and 𝑃(𝐶𝑠|𝑌) for all leaf infection and soil property labels 𝐶𝑙1≤𝑙≤𝑐
 and 𝐶𝑠1≤𝑠≤𝑐

, as: 

𝑃(𝐶𝑙|𝑋) =
𝑒

(𝑋𝐶𝑙
)

∑
|𝑋|
𝑞=1 𝑒(𝑋𝑞)

                          (6) 

𝑃(𝐶𝑠|𝑌) =
𝑒

(𝑌𝐶𝑠)

∑
|𝑌|
𝑞=1 𝑒(𝑌𝑞)

                          (7) 

In Eqns. (6) & (7), 𝑋 and 𝑌 are the resultant feature vector of a given leaf infection and soil 

images as guided by M2C2NN-LSTM.Remember that, for given the leaf infection and soil 

observation 𝑋 and 𝑌, every of the channel generates 𝑃(𝐶𝑙|𝑋) and 𝑃(𝐶𝑠|𝑌) for all labels 𝐶𝑙1≤𝑙≤𝑐
 

and 𝐶𝑠1≤𝑠≤𝑐
, correspondingly. Moreover, a simple linear mixture is performed to determine the 

final class-membership probabilities for the given 𝑋 and 𝑌 simultaneously as: 

𝑃(𝐶𝑙|𝑋) = 𝜀 ∙ 𝑃(𝐶𝑙|𝑋) + (1 − 𝜀) ∙ 𝑃(𝐶𝑙|𝑋)                                                     (8) 

𝑃(𝐶𝑠|𝑌) = 𝜀 ∙ 𝑃(𝐶𝑠|𝑌) + (1 − 𝜀) ∙ 𝑃(𝐶𝑠|𝑌)                                                     (9) 

The coefficient 𝜀 controls the contributions of all channels to the prediction. The optimum range 

of 𝜀 is calculated practically. Because for the absolute prediction outcomes, the leaf infection 

and soil images are allocated the label 𝐶∗ and 𝐶′ with the highest output-input possibility as: 

𝐶∗ = (𝑃(𝐶𝑙|𝑋))        (10) 

 𝐶′ = (𝑃(𝐶𝑠|𝑌 ))                      (11) 

Thus, both the leaf infection and the related soil images are predicted concurrently by training 

each channel of the M2C2NN-LSTM network. 



 

 

 

 

4 Results and discussion 

The effectiveness of the presented and existing models is assessed based on various evaluation 

metrics for predicting leaf infections and soil properties of different crops. In this analysis, 

various categories of soil photos and their associated leaf infections for cotton, pineapple, and 

strawberry crops are acquired (discussed in Section 3.1). The efficiency of the M2C2NN-LSTM-

based leaf infection prediction model is evaluated with the SVM, FRCNN, EfficientNet [19], 

InceptionResNetV2 [18], and MCNN [7]. Similarly, the efficiency of the M2C2NN-LSTM-

based soil property prediction model is evaluated with the Multi-SVM [9], Adaboost [10], Tree 

[10], ANN [10], and MCNN [7]. 

 

4.1 Accuracy 

It is the proportion of the True Positives (TP) and True Negatives (TN) to the overall number of 

samples analyzed. 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
   (12)

 

Fig. 2. Accuracy comparison for different leaf infection prediction models 

Figure. 2 illustrates the accuracy of various leaf infection prediction models for 3 major crops. 

It is observed that the accuracy of M2C2NN-LSTM for predicting pineapple leaf infections is 

9.6%, 7.4%, 5.7%, 4.4%, and 2.6% better than the SVM, FRCNN, EfficientNet, 

InceptionResNetV2, and MCNN models. Thus, it is realized that the M2C2NN-LSTM achieved 

better accuracy for predicting leaf infections in different crops compared to other models. 

 

Fig. 3. Accuracy comparison for different soil property prediction models 
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Figure. 3 illustrates the accuracy of various soil property prediction models for 3 major crops. 

M2C2NN-LSTM outperforms the Multi-SVM, Adaboost, Tree-based, ANN, and MCNN models 

for predicting high humidity soil by 9.1%, 7.8%, 7%, 6.1%, and 1.6%, respectively. As a result, 

the M2C2NN-LSTM model outperformed other models in terms of predicting the soil properties 

of different crops. 

4.2 Precision 

It is the proportion of predicted characteristics that are appropriate and analyzed at the TP rates. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (13) 

 It is indicated that the precision of the M2C2NN-LSTM for predicting strawberry leaf infections 

is 11.9%, 10.3%, 8.5%, 5.7%, and 2% larger than the SVM, FRCNN, EfficientNet, 

InceptionResNetV2, and MCNN models. Therefore, it is realized that the M2C2NN-LSTM has 

better precision compared to other prediction models for all crops. 

4.3 Recall 

It is the measure of predicting characteristics at TP and FN rates. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                    (14) 

It is indicated that the recall of the M2C2NN-LSTM for predicting the pineapple leaf infections 

is 9.9%, 6.4%, 5%, 4.4%, and 1% larger than the SVM, FRCNN, EfficientNet, 

InceptionResNetV2, and MCNN models.  

4.4 F-Measure 

It is defined by 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (15) 

It is indicated that the f-measure of the M2C2NN-LSTM for predicting the cotton leaf infections 

is 10.4%, 7.9%, 6.1%, 5.1%, and 2.3% greater than the SVM, FRCNN, EfficientNet, 

InceptionResNetV2, and MCNN models.  

5 Conclusion 

In this paper, the M2C2NN-LSTM model was developed to increase the generalizability of 

feature learning for simultaneously predicting leaf infections and related soil properties. First, 

the leaf infection and soil images for different crops were collected. The collected images were 

concatenated at the data level and fed to the corresponding channels.  The resultant feature maps 

were then passed to the ConvLSTM to learn the spatiotemporal dependencies among the images 

from each channel. After that, the outcomes of each channel were concatenated at the decision 

level and fed to the softmax unit to get the ultimate prediction. At last, the investigational 

analysis evidenced that the M2C2NN-LSTM model for predicting leaf infection and soil 

properties achieved maximum performance compared to the other models. The accuracy of  

M2C2NN-LSTM attains a mean accuracy of 90.3% for leaf infection prediction and 91.85% for 

soil property prediction than the conventional classifiers. This model can be implemented in a 



 

 

 

 

cloud server and the images collected from IOT sensors are detected in real-time manner in the 

future.  
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