
 Secure Format Preserving Encryption for Multiple

Data Fields

 S.Vidhya

 {vidhya.s@kgcas.com}

Associate Professor, Department of Computer Science, KG College of Arts and Science,

Coimbatore, Tamilnadu, India

Abstract. In Format Preserving Encryption the cipher text will have the similar length,

structure and type as the plain text. By maintaining the original format, FPE ensures that

the encrypted cipher text can be seamlessly used in existing systems and processes without

requiring significant modifications. The limited randomness leads to security

vulnerabilities, such as statistical analysis attacks or frequency-based attacks. FPE

algorithms are typically used in real-world applications and systems where security is of

utmost importance. In this paper a more secure Format Preserving Encryption algorithm

by interleaving multiple fields is proposed.

Keywords: Format Preserving Encryption, FPE, Order preserving Encryption,

Cryptography, Database encryption.

1 Introduction

Format Preserving Encryption (FPE) in a database refers to the application of FPE techniques

specifically to protect sensitive data stored within a database system. FPE in databases is

designed to encrypt the data while preserving its original format and maintaining its usability

within the database ecosystem.

Fig. 1. Credit card encryption using FPE and traditional encryption scheme.

It is mainly applicable to small fixed length domains. Unlike traditional encryption techniques

that render data unreadable, FPE enables the ability to search and query encrypted data.

FPE
7895 2346 9876 1278

AES
r890fL7KsW8G8te3lVE

VWL8l4yAh7jbj1tEvty

mIxwI=

IACIDS 2023, November 23-25, Lavasa, India
Copyright © 2024 EAI
DOI 10.4108/eai.23-11-2023.2343192

Applications can perform operations such as sorting, filtering, indexing and searching on

encrypted data, allowing for efficient analysis of data and retrieval without compromising

security. The initial proposal of FPE was made by Michael Brightwell et al [1]. Later three major

schemes are proposed such as cycle-walking cipher, prefix cipher and generalized Feistel cipher

along with a technique that utilized a Rank then-Encipher (RTE) approach and an unbalanced

Feistel structure. RTE enables FPE to be used for different format. The NIST endorsed FFX,

VAES3, and BPS algorithms and the corresponding standards are FF1, FF2, and FF3. However,

FF2 did not meet NIST's security requirements and was consequently eliminated from FFX

modes. The 64-bit tweak parameter employed in FF3 was reduced to 56 bits, resulting in the

revised version known as FF3-1. Currently, the standards for Format Preserving Encryptions

are FF1 and FF3-1. [1].

2 FF1 and FF3-1

2.1 Encryption and Decryption

FF1 and FF3-1 use block cipher encryption to maintain the format of plaintext. FF3-1 uses AES

block cipher in Counter (CTR) mode as the default option. Although the specific block cipher

employed in FF1 may differ, the standard recommends the Advanced Encryption Standard

(AES) as the default choice [2]. The subsequent notations illustrate the encryption and

decryption functions, along with the corresponding parameters, of the FF1 and FF3-1 schemes.

PT – Plaintext, CT – Cipher text, Key – Secret key, TW – Tweak

Encrypt (Key, TW, PT) = CT, Decrypt (Key, TW, CT) = PT

2.2 Feistel Structure

The construction employed in block ciphers, known as a Feistel network structure, serves as the

foundation for the FF1 and FF3-1 modes. In both FF1 and FF3-1, the Feistel network operates

on a block of data by dividing it into two halves, applying a round function to each half, and

then combining the halves. This process is repeated for all the rounds.

Data Division. The input data block is equally divided into two parts and referred as the left

partition (L) and the right partition (R).

Round Function. The input for the round function is round key and right partition R to produce

the output (R’).

Swap and Feedback. At the end of each round, the right and left portions are interchanged. The

new right (R’) becomes left and left partition becomes right.

Final Round. After a certain number of rounds, a final round is performed without swapping the

halves.

Output. The final outcome of the Feistel network is the concatenation of the left partition (L)

and the right partition (R), producing the cipher text.

2.3 FF1

The FF1 algorithm is defined to operate on binary strings of arbitrary length and supports

various data formats, such as numbers and alphanumeric strings [3].

Table 1. Parameters in FF1

minlen 2 maxlen 232 radix 2..216 tweak T Optional t=0 round 10

In the encryption algorithm mentioned above, the plaintext X is divided into two partitons, A

and B. The internal function employs the length of B (b), along with d and P (the initial block),

for the subsequent encryption process. Additionally, the tweak value (T) and the round number

(i) are utilized to generate Q from B. R is then formed using the opening blocks P and Q,

followed by encryption to obtain S. The modulo the radix value (m) is appended with the

decimal strings which are derived from S and A. The resulting value, linking the final A and B

values, represents the encrypted value. The FF1-Decrypt algorithm is identical to the FF1-

Encrypt algorithm, with differences occurring in Step 6: 1) the sequence of the indices is

inverted, 2) the values of A and B are interchanged, and 3) modular subtraction is used instead

of modular addition in Step 6vi.

2.4 FF3-1

FF3-1 is mainly used for small domains. It additionally uses Tweak to increase the domain

space. The tweaks should be generated randomly for high entropy in each half. [4].

Table 2. Parameters in FF3-1

minlen 2 maxlen 2 ×⌊logradix(296)⌋ radix 2..216
tweak

T

56

bits
round 8

The algorithm, resembling FF1, partitions the plain text X into two equal portions, A and B.

The value of random generated tweak is 54 bits. TL is formed by concatenating T[0..27] with

04, while TR is created by combining T[32..55], T[28..31], and 04.

Fig. 2. FF3-1 Encryption and Decryption algorithm

The i represents the round number. If i is an even number, m is assigned to u, and W takes the

value of TR. Conversely, if i is odd, m is assigned as v, and W is set to TL. A four-byte value is

constructed using W and i. By reversing the radix-notation number B and padding it with leading

zeroes until 12 bytes of data are created, P is generated by combining the two. C is produced

by utilizing S and A in a manner similar to FF1. FF3-1. The value of C is derived by repeatedly

executing the round function by 8 times. The cipher text is obtained by combining the final A

and B values.

3 Proposed Algorithm

FF1 and FF3-1 are deterministic encryption modes, meaning that the same plaintext will always

encrypt to the same cipher text. The lack of probabilistic encryption introduces the possibility

of frequency or pattern analysis on the cipher text [5]. The proposed algorithm increases the

complexity of existing standard FF3-1 algorithm by interleaving multiple fields to create the

plaintext.

3.1 Format Preserving Encryption for multiple fields

The proposed algorithm is derived from FF3-1 with an additional layer of customization and

security to the encryption scheme. The proposed algorithm is tested by encrypting credit card

number along with expiry month and date.

Fig. 3. Format Preserving Encryption for multiple fields

3.2 Python procedures for FPE for multiple fields

The python procedure interleave_digits is used to mix the digits of two columns based on the

secret key. The hexadecimal digits in the keyset is converted into decimal digits to perform

arithmetic operations. In order to avoid the uniform distribution of positions, multiplication and

modulus operations are applied to each digit.

def interleave_digits(X1, X2,k):

#X1is the credit card number

#X2 is the expiry month and year

#k is the secret key

X1_digits = list(map(int, str(X1)))

X2_digits = list(map(int, str(X2)))

X2_len = len(X2_digits)

X_len = X1_len + X2_len

X =[]

for digit in k:

 keyset.add(int(digit, 16))

X = [0] * (X1_len +X2_len)

To avoid duplicate positions

keyset = list(keyset)

To avoid uniform distribution

positions = [((element * keyset[-1]) % X_len) for element in

keyset]

positions = positions[:X2_len]

Credit Card Number CCN – X1 Expiry month and year – X2

Mixing the digits. The position of the

digits are based on the secret key

Plaintext X

FF3-1.Encrypt

position of the digits

are based on the

secret key
Ciphertext Y

Separate the digits. The position of the

digits are based on the secret key

Encrypted Expiry

month and year

Encrypted Credit Card

Number

index = 0

for i in X2_digits:

 X[(positions[index])]=i

 index = index + 1

i=0

for index in range(0,X_len):

 if index not in positions:

 X[index]=X1_digits[i]

 i=i+1

Return(X)

The credit card number is represented as X1 and the six digits expiry month and year is X2.

Insert each digit in X2 to X1 based on the key. The insertion position depends on the secret key.

The hexadecimal secret key is converted into decimal digits and stored in the python set in order

to remove the duplicate digits. The resultant list is stored on X which is used as input for FF3-1

algorithm.

The python procedure separate_digits is used to divide the encrypted multiple fields into two

fields. The resultant Cipher texts Y is the output of Format Preserving Encryption of FF3-1

scheme in which the format and datatype of the cipher texts are equivalent to the original fields

Credit card number and expiry month and year.

def separate_digits(Y,k):

Y is the encrypted value

keyset = set(str(int(k,h=16))

positions = list(keyset)

Y1 = []

Y2 = []

Y_digits = list(map(int, str(Y)))

for i in range(0,len(Y_digits):

 if i in positions:

 Y2.append(int(Y_digits[i]))

 else:

 Y1.append(int(Y_digits[i]))

return Y1, Y2

The output of the FF3-1 algorithm is encrypted value Y which is the combination of encrypted

values of credit card number and expiry month and year. The y is separated into Y1 and Y2

based on the positions which are derived from the secret key.

3.3 Experiments

The procedures interleave_digits() and separate_digits() are tested with 16 digits credit card

number and 6 digits expiry month and date and 128 bit secret key which is represented by

hexadecimal value[6]. The added procedures increase the complexity of the FF3-1 algorithm.

The above procedure is executed on Python’s idle 3.10.0 version with the inputs.

Fig. 4. Procedure interleave_digits() coding and Fig. 5. output in Python’s IDLE

The input credit card number, expiry month and date, the interleaving positions based on the

secret key and the interleaved output which is acted as the input for FF3-1 are printed. The

output of the procedure interleave_digits is applied to the FF3-1 scheme.

The encrypted value is given as input for separate_digits() procedure with 128 bit secret key to

separate the encrypted values for credit card number and expiry month and year. The outcome

of the FF3-1, the cipher text is applied to the procedure separate_digits to get the correct number

of encrypted digits of both Credit card number and expiry month and date. The format of the

encrypted fields are same as original fields. During the decryption process, the same sequence

of procedures are applied to get the correct plaintext. The encrypted credit card number and

expiry month and date are applied to the procedure interleave_digits(). The output of the

procedure is acted as input for FF3-1 decryption algorithm. The output of the decryption is

applied to the procedure separate_digits() to get the original credit card number and expiry

month and date.

Fig.6. Procedure separate_digits() coding

Fig. 7. Procedure separate_digits() coding and the output in Python’s IDLE

The encrypted value Y is separated in to encrypted credit card number Y1 and encrypted expiry

month and year Y2. It is the reverse of the procedure interleave_digits(). Based on the secret

key the cipher text Y is separated into two fields. The encrypted values are same format and

data type as plaintext such credit card number and expiry month and year. The proposed

algorithm can also be applied to encrypt Social Security Number, Aadhar number and other

small domains. In all the applications, more than one fields are encrypted in a single encryption

and also ensure the format of the chipper text is same as plaintext. The complexity of the

proposed algorithm is increased to provide added security for FPE. By increasing the number

of encrypted fields, the security of the proposed algorithm is also increased.

4 Performance analysis

The proposed algorithm has the following features.

 More than one column is encrypted in a single encryption which reduces the overhead and

time.

 Using a single secret key, multiple fields can be encrypted.

 Mixing multiple columns, the proposed algorithm is more secure than FF3-1.

 The algorithm is non-deterministic hence the same plaintext never produces the same

ciphertext.

One of the key benefits of performing the encryption for multiple fields is the possibility of

avoiding pattern-based attack which is more common in Format Preserving Encryption. The

proposed algorithm minimizes patterns and correlations in the ciphertext [7]. It's also crucial to

ensure that the domain size (the set of possible plaintext values) is sufficiently large to make it

computationally infeasible for attackers to guess the plaintext based on observed patterns.

5 Conclusion

FPE encrypts data in a way that maintains the original format, such as preserving the length,

character set, or structure of the data. This requirement introduces additional complexity

because the encryption process must respect the format constraints while ensuring security. FPE

must provide a high level of security, including properties like confidentiality, integrity, and

resistance against attacks such as brute-force, known-plaintext, or chosen-plaintext attacks.

Achieving these security goals requires more complex cryptographic algorithms and techniques.

Due to these additional requirements and complexities, designing and implementing format-

preserving encryption can be more challenging than traditional encryption algorithms. The

proposed algorithm provides an additional layer of customization and security to the encryption

scheme FF3-1.

References

[1] Wonyoung Jang, Sun-Young Lee. "A formatpreserving encryption FF1, FF3-1 using lightweight

block ciphers LEA and, SPECK" Proceedings of the 35th Annual ACM Symposium on Applied

Computing, 2020

[2] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Methods for Format-

Preserving Encryption. NIST Special Publication, 800:38G..

[3] F. B. Durak and S. Vaudenay, Breaking the FF3 Format-Preserving Encryption Standard Over Small

Domains, CRYPTO 2017.

[4] Orr Dunkelman, , Abhishek Kumar, Eran Lambooij , and Somitra Kumar Sanadhya “Cryptanalysis

of Feistel-Based Format-Preserving Encryption”, International Association for Cryptologic Research,

2020.

[5] Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Methods for Format-

Preserving Encryption. NIST Special Publication SP 800-38G Rev. 1(2019)

[6] F. Betül Durak, Henning Horst, Michael Horst and Serge Vaudenay “FAST: Secure and High

Performance Format-Preserving Encryption and Tokenization”, Advances in Cryptology –

ASIACRYPT 2021 (pp.465-489).

[7] Ke Luo and Wei Gao, “A study of Format Preserving Encryption algorithm Incorporating Robust

Chinese Reminder Theorem”, 3rd International Conference on Artificial Intelligence and Advanced

Manufacture, October 2021.

https://dl.acm.org/profile/99660040621
https://dl.acm.org/profile/99659626669
https://dl.acm.org/doi/proceedings/10.1145/3495018
https://dl.acm.org/doi/proceedings/10.1145/3495018
https://dl.acm.org/doi/proceedings/10.1145/3495018
https://dl.acm.org/doi/proceedings/10.1145/3495018

