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Abstract. Predictive maintenance involves using data to anticipate when equipment will 

need maintenance, rather than adhering to a set schedule or reacting to equipment 

breakdowns. It is a proactive approach to maintenance that aims to prevent issues before 

they occur. This approach has the potential to improve the efficiency and effectiveness of 

maintenance operations, reducing downtime and maintenance costs and improving 

equipment performance and reliability. In this paper, we proposed a model to predict 

machine failure based on a synthetic dataset from the UCI machine learning repository. 

We used the gradient-boosted trees (GBT) method to model the PdM application and found 

that the model had an accuracy of 97.3%. We also compared the performance of the GBT 

model to other machine learning algorithms, including random forests (RF) and support 

vector machines (SVM), and found that the GBT model had the highest accuracy. These 

results suggest that GBT is a valuable tool for implementing PdM and improving the 

efficiency and effectiveness of maintenance operations. 

Keywords: Predictive maintenance, Gradient-boosted trees, Machine learning, Random 

forest, Data driven based model 

1 Introduction 

Predictive maintenance is a strategy for maintaining equipment that involves analyzing data to 

anticipate when equipment is likely to malfunction. This proactive approach allows companies 

to take preventive measures to avoid equipment failures and improve system performance. [1]. 

This is in contrast to traditional maintenance strategies, which often involve performing 

maintenance on a fixed schedule or in a reactive manner, regardless of the actual condition of 

the equipment [1]. This can be inefficient, as it may result in unnecessary maintenance and fail 

to address potential equipment failures before they occur [1]. 

 

There are several potential benefits to using predictive maintenance in industrial systems [2]. 

These include reduced downtime, improved efficiency, and increased production [2]. By 

identifying potential equipment failures before they occur, organizations can avoid unexpected 

downtime and ensure that their systems are operating at optimal performance, leading to 

increased productivity and cost savings [2]. Additionally, predictive maintenance can help 
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organizations optimize their maintenance schedules by performing maintenance at the most 

convenient and cost-effective times [2]. 

 

The use of artificial intelligence (AI) and data-driven approaches in predictive maintenance has 

grown significantly in recent years due to the increasing availability of highquality data and 

advances in machine learning algorithms [3]. Data-driven predictive maintenance (PdM), in 

particular, is effective for handling smart manufacturing and industrial systems, as it enables 

organizations to proactively address potential equipment failures and optimize system 

performance [4]. 

 

However, the use of data-driven PdM is not without challenges. One significant challenge is the 

lack of publicly available predictive maintenance datasets, which can make it difficult for 

researchers and organizations to develop and test their predictive maintenance models [5]. To 

address this challenge, we have used synthetic datasets, such as the one published in the UCI 

machine learning repository [9], to develop data-driven approaches to predictive maintenance. 

 

Another challenge is the imbalanced availability of failure diagnosis data. There are typically 

far more observations that show good condition than those that show failure. This can make it 

difficult to train a predictive maintenance model, as the model may be overly influenced by the 

large number of observations that show good condition. To address the challenge of imbalanced 

availability of failure diagnosis data in predictive maintenance, we propose a gradient-boosted 

trees (GBT) based machine learning approach to predict the likelihood of machine failure based 

on data from sensors. GBT is a type of decision tree algorithm that is used for both regression 

and classification tasks. It works by building a series of decision trees and combining their 

predictions through an ensemble model [6]. GBT is known for its ability to handle large numbers 

of features and to effectively classify minority classes even when there are a large number of 

majority classes [6]. 

 

To evaluate the performance of our proposed GBT approach, we also compare it to two other 

machine learning models that are known to be robust for imbalanced data: random forest and 

support vector machine (SVM) [7, 8]. By comparing the performance of our proposed GBT 

approach to these two other machine learning models, we aim to determine which approach is 

the most effective for predicting the likelihood of machine failure in predictive maintenance [6, 

7, 8]. 

2 Data and Method 

Datasets 

 

Predictive maintenance is a proactive approach that aims to prevent equipment failures and 

enhance the efficiency of a facility. It involves analyzing data from various sources, such as 

sensors, machine logs, and maintenance records, to forecast when maintenance is required. In 

this study, we used a synthetic predictive maintenance dataset of 10,000 data points, each 

representing a row with six features in columns. These features may include information such 



 

 

 

 

as product ID (low, medium, or high quality variants), air temperature (K), process temperature 

(K), rotational speed (rpm), torque (Nm), and tool wear (min). 

 

The dataset includes five different failure modes: tool wear failure (TWF), heat dissipation 

failure (HDF), power failure (PWF), overstrain failure (OSF), and random failures (RNF). TWF 

occurs at a randomly chosen time between 200-240 minutes and can result in either the tool 

being replaced or the tool failing. HDF occurs when the difference between the air temperature 

and process temperature is below 8.6 K and the tool's rotational speed is below 1380 rpm. PWF 

occurs when the power required for the process is below 3500 W or above 9000 W. OSF occurs 

when the product of tool wear and torque exceeds a certain threshold based on the product 

variant (11,000 minNm for L, 12,000 for M, 13,000 for H). RNF occurs with a probability of 

0.1%. If any of these failure modes occur, the machine failure label is set to 1. Additional details 

about the dataset can be found in reference [9]. In this work, we used all the features except 

product ID to predict machine failure for the generalization of parameter-based sensors. 

 

Gradient-Boosted Trees Working Process 

 

The gradient-boosted trees method is an ensemble learning algorithm that combines multiple 

"weak" models to make a prediction [6]. It is particularly well-suited to imbalanced datasets, as 

it is robust to outliers and can handle many features [6]. This is because the gradient-boosted 

trees method uses a process called "boosting" to improve the model's performance iteratively 

[6]. In each iteration, the algorithm identifies the observations that were misclassified by the 

previous iteration and gives them more weight in the current iteration [10]. This allows the 

algorithm to focus on the most difficult observations to classify, and it helps improve the overall 

accuracy of the model [6]. Using the gradient-boosted trees method, we can build a predictive 

maintenance model that can handle the imbalanced nature of the data and make more accurate 

predictions [6]. 

 

GBTs operate by fitting a series of decision trees models to the training data, and then combining 

these models in a way that minimizes the overall prediction error [7]. The MSE loss function is 

used with GBTs, as it measures the average squared difference between the predicted values 

and the true values [7]. The goal of the GBT model is to minimize the MSE by iteratively adding 

weak learners to the ensemble and updating the model's prediction with the residuals (errors) 

from the previous model [7]. 

 

Here is the mathematical formula for GBTs using the MSE loss function: 

 

y_pred =  y_pred_0 +  Σ(h_i(x)) (1) 
Where:  

y_pred is the predicted value for a given input x  

y_pred_0 is the initial prediction made by the model (the mean of the training labels)  

Σ is the summation operator  

h_i is the prediction made by the i-th weak learner in the ensemble 

 

This formula shows that the final prediction made by the GBT model is the sum of the initial prediction 

and the predictions made by each of the weak learners in the ensemble. The weak learners are trained to 



 

 

 

 

correct the errors made by the previous models, and their predictions are combined in a way that minimizes 

the overall prediction error. 

 

The Application Procedure of Proposed Method 

 

The procedure for a predictive maintenance analysis using gradient boosted trees might include the 

following steps:  

 

a) Collect and preprocess data: Gather data on the equipment and its maintenance history using sensors 

to collect information on the equipment's performance and machine failure records. In this work, we 

used synthetic data from the UCI machine learning database. Preprocess the data by handling missing 

values, normalizing numerical data, and encoding categorical data in preparation for analysis.  

b) Explore the data: Use visualizations and statistical analysis to explore the data and identify patterns 

and trends. This may involve creating scatter plots, histograms, and other visualizations to understand 

the relationships between different variables.  

c) Split the data: Split the data into a training set and a testing set. The training set will be used to build 

the gradient boosted tree model, while the testing set will be used to evaluate its performance.  

d) Train the model: Train a gradient boosted tree model on the training set using an appropriate loss 

function and hyperparameters. You may want to use crossvalidation to fine-tune the model and ensure 

that it generalizes well to new data.  

e) Evaluate the model: Evaluate the model's performance on the testing set using metrics such as accuracy 

or precision. Use these metrics to determine how well the model is able to predict when maintenance 

should be performed on the equipment.  

f) Make predictions: Use the trained model to make predictions on new data and use these predictions to 

identify when maintenance should be performed on the equipment.  

g) Monitor and fine-tune the model: Regularly monitor the model's performance and fine-tune it as needed 

to ensure that it continues to make accurate predictions over time. This may involve adjusting the 

hyperparameters or adding new data to the training set. 

3 Result and Discussion 

Exploratory Data Analysis  

 

Exploratory data analysis (EDA) [10] is a crucial step in building a machine learning model 

because it allows for understanding the characteristics of the data and identifying patterns and 

trends that are useful for building the model [5]. By performing EDA, one can gain a better 

understanding of the data and identify any potential problems or limitations that may affect the 

model's accuracy [10].  

 

In this case, we used machine failure data that was labeled as either „fail“ or „good“ to learn the 

parameters and weights from the features and build a machine learning model that can 

accurately predict the likelihood of machine failure. Figure 1 shows that the „fail“ and „good“ 

data is imbalanced, with a much larger proportion of observations labeled as „good“ compared 

to „fail“ (with a ratio of 1:28.5) [11]. This imbalance may impact the performance of a machine 

learning model, as it can be difficult for the model to learn from such an imbalanced dataset 

[11].  

 

To address this issue, we used a model that is designed to handle imbalanced datasets, such as 

a gradient boosted trees (GBT) with weight-based splits [12] and support vector machine (SVM) 



 

 

 

 

with a class weight parameter [13]. These models can help ensure that the model gives 

appropriate weight to the minority class and can improve its performance on imbalanced 

datasets [12, 13].  

 

In this study, we utilized machine learning techniques to analyze data from equipment and make 

predictions about the likelihood of machine failure. The features used for this analysis included 

air temperature, process temperature, rotational speed, tool wear, and machine failure detection. 

Figure 2 illustrates the distribution of values for these features across the dataset [14]. To gain 

a better understanding of the characteristics of the data, we employed descriptive statistics [15], 

which are statistical measures that provide a summary of key features of the data. These 

measures include the minimum and maximum values, the average, and the standard deviation, 

and they give us an idea of the range of values, the central tendency, and the degree of variation 

in the data [10]. The results of the descriptive statistics analysis are presented in Table 1. 
 

 
Fig. 1. The “Fail” and “Good” Data 

 
(a) Air Temperature 

 
(b) Process temperature 

 
(c) Rotational Speed 

 
(d) Tool Wear 

 
(e) Torque 

Fig. 2. Illustrates the distribution of values for different features across the dataset 

 



 

 

 

 

Table 1. Descriptive Statistics of Attributes 

 Rotational 

Speed 

Air 

Temperature 

Preocess 

Temperature 
Tool 

Wear 

Torque 

Min 1168 295.300 305.700 0 3800 
Max 2886 304.500 313.800 253 76.600 
Average 1538.776 300.005 310.006 107.951 39.987 
Standar Deviation 179.284 2000 1484 63.654 9.969 

 

To better understand the characteristics of the data, we used visualization techniques [16] to 

explore the distribution of the good and fail data and identify patterns and trends. One of the 

key goals of this study was to predict machine failure, so we were particularly interested in 

understanding the relationship between different variables and how they might be correlated 

with machine failure. By plotting the distribution of the good and fail data, we were able to see 

how the different variables varied between the two categories and identify any potential trends 

or patterns [17]. 

 

One of the key insights that emerged from this visualization was the strong correlation between 

process temperature and air temperature [18]. As shown in Figure 3, there was a strong linear 

relationship between these two variables, with a high degree of correlation. This suggests that 

process temperature may be a good predictor of air temperature, and vice versa. This finding 

could be useful for predicting machine failure, as it suggests that changes in process temperature 

may be indicative of changes in air temperature and, potentially, changes in the likelihood of 

machine failure. Further analysis will be needed to confirm and expand upon this finding, but it 

is an important step in understanding the relationships between different variables and 

predicting machine failure.  

 

Continuing with our analysis, we also examined the relationship between air temperature and 

rotational speed, as shown in Figure 4. This visualization shows that there was a moderate level 

of correlation between these two variables, with a slight downward trend as air temperature 

increased. This finding is consistent with our expectations, as higher temperatures may cause 

equipment to run slower due to increased friction or other factors. However, it is important to 

note that this relationship is not necessarily causal, and further analysis will be needed to 

understand the underlying mechanisms that may be driving this correlation.  

 

Another interesting finding from our visualization analysis was the relationship between 

rotation speed and torque. As shown in Figure 5, there was a moderate positive correlation 

between these two variables, meaning that as rotation speed increased, so did torque. This 

relationship could be important for predicting machine failure, as changes in rotation speed and 

torque could indicate changes in the performance of the equipment. By understanding these 

relationships, we can better predict when maintenance should be performed and prevent 

equipment failure. Overall, these visualizations have provided valuable insights into the 

characteristics of the data and the relationships between different variables, which will be useful 

for building an effective machine learning model for predicting machine failure in predictive 

maintenance.  

 



 

 

 

 

Overall, these visualizations provide valuable insights into the relationships between different 

variables and how they may be related to machine failure. By understanding these relationships, 

we can better predict when maintenance should be performed on equipment and improve the 

efficiency and effectiveness of our maintenance operations.  

 

In addition to these visualizations, we also performed a comprehensive analysis of the 

correlations between all of the attributes in our dataset. This analysis helped us understand the 

relationships between different variables and how they might be related to machine failure. 

Table 2 shows the results of this analysis, with the correlation coefficient (r) for each pair of 

attributes. As we can see, there are a range of correlations between different variables, with 

some having strong positive or negative correlations and others having weaker or no 

correlations. This analysis will be useful for identifying key predictors of machine failure and 

building a machine learning model that is able to accurately predict when maintenance should 

be performed on equipment. 

 

 
Fig. 3. Scatter plot of process temperature (K) versus air temperature (K),  

 

Figure 3 is scatter plot of process temperature (K) versus air temperature (K), where the points 

are colored according to their classification as either "good" or "fail". 

 

 
Fig. 4. Scatter plot of tool wear (mean) versus torque (Nm) 



 

 

 

 

Figure 4 is scatter plot of tool wear (mean) versus torque (Nm), where the points are colored 

according to their classification as either "good" or "fail" 

 

Fig. 5. Scatter plot of rotational speed (rpm) versus torque (Nm) 

Figure 5 is scatter plot of rotational speed (rpm) versus torque (Nm), where the points are 

colored according to their classification as either "good" or "fail". 

Table 2. Occurrence Rating 

 Rotational 

Speed 

Air 

Temperature 

Preocess 

Temperature 
Tool 

Wear 

Torque 

Air Temp 1 0.876 0.023 0.014 -0.014 

Process Temp 0.876 1 0.019 0.013 -0.014 

Rot Speed 0.023 0.019 1 0.000 -0.875 

Tool Wear 0.014 0.013 0.000 1 -0.003 
Torque -0.014 -0.014 -0.875 -0.003 1 

Performance Results and Evaluation 

In this study, we used a confusion matrix to evaluate the performance of the GBT model in predicting 

machine failure. The confusion matrix is a useful tool for evaluating the accuracy of a machine learning 

model because it shows the number of true positive, true negative, false positive, and false negative 

predictions made by the model. By analyzing the confusion matrix, we were able to determine the overall 

accuracy of the GBT model, as well as the precision, recall, and other important metrics.  

The confusion matrix for the GBT model, as well as the RF model and SVM model, is shown in Table 3. 

As can be seen, the GBT model had a total of 2725 true positive predictions, 42 false positive predictions, 

34 false negative predictions, and 57 true negative predictions. This resulted in an overall accuracy of 

97.3%. which means that it correctly predicted the likelihood of machine failure in 97.3% of cases. 

Specifically, the model had a high precision, with a low number of false positive predictions and a high 

number of true positive predictions.  

We also compared the performance of the GBT model to other machine learning algorithms, including 

random forests (RF) and support vector machines (SVM), as shown in Table 4. The accuracy of RF was 

96.5%, while the accuracy of SVM was 96.7%. Overall, the performance results and evaluation of the 

GBT model showed that it was a highly effective tool for predicting machine failure in the context of 

predictive maintenance. The model had a high accuracy and outperformed other machine learning 

algorithms such as RF and SVM. By accurately predicting when maintenance should be performed on 



 

 

 

 

equipment, the GBT model has the potential to improve the efficiency and effectiveness of maintenance 

operations, leading to reduced downtime and maintenance costs and improved equipment performance 

and reliability. 

Table 3. Confusion Matrix 

Confusion Matrix True Good True Fail 

RF SVM GBT RF SVM GBT 

Pred. Good 

RF 2717   51   

SVM  2764   93  

GBT   2725   42 

Pred. Fail 

RF 50   39   

SVM  0   0  

GBT   34   57 

Table 4. Accuracy and Runtimes 

Model Accuracy Runtimes 

Random Forest (RF) 96.5% 8 min 51 s 

Support Vector Machine (SVM) 96.7% 2 hours 53 min 1 s 

Gradient Boosted Trees (GBT) 97,3% 1 min 12 s 

4 Conclusion 

Predictive maintenance (PdM) is a proactive approach to maintenance that involves using data 

to predict when maintenance should be performed on equipment, rather than following a fixed 

schedule or waiting for equipment failure. This approach has the potential to improve the 

efficiency and effectiveness of maintenance operations, reducing downtime and maintenance 

costs and improving equipment performance and reliability.  

 

One way to implement PdM is by using data-driven models, such as machine learning 

algorithms, to analyze equipment data and make predictions about maintenance needs. In this 

study, we examined the use of gradient boosted trees (GBT) for predicting machine failure in 

PdM. Our results showed that the GBT model had an accuracy of 97.3%, which was higher than 

the accuracy obtained using other machine learning algorithms, including random forests (RF) 

and support vector machines (SVM). Specifically, the accuracy of RF was 96.5% and the 

accuracy of SVM was 96.7%. These findings suggest that GBT is a valuable tool for 

implementing PdM and improving the efficiency and effectiveness of maintenance operations.  

 

It is worth noting that this study presents preliminary results, and further research may be needed 

to confirm and expand upon these findings. However, the high accuracy of the GBT model 

indicates its potential for predicting maintenance needs in PdM. By accurately predicting when 

maintenance should be performed on equipment, PdM can improve the efficiency and 

effectiveness of maintenance operations, leading to reduced downtime and maintenance costs 

and improved equipment performance and reliability. 
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