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Abstract

Towards the realization of smart building applications, build-
ings are increasingly instrumented with diverse sensors and
actuators. These sensors generate large volumes of data
which can be analyzed for optimizing building operations.
Many building energy management tasks such as energy
forecasting, disaggregation, among others require complex
analytics leveraging collected sensor data. While several
standalone and cloud-based systems for archiving, sharing
and visualizing sensor data have emerged, their support for
analyzing sensor data streams is primitive and limited to
rule-based actions based on thresholds and simple aggre-
gation functions. We develop OpenBAN, an open source
sensor data analytics middleware for buildings, to make an-
alytics an integral component of modern smart building ap-
plications. OpenBAN provides a framework of extensible
sensor data processing elements for identifying various build-
ing context, which different applications can leverage. We
validate the capabilities of OpenBAN by developing three
representative real-world applications which are deployed in
our test-bed buildings: (i) household energy disaggregation,
(ii) detection of sprinkler usage from water meter data, and
(iii) electricity demand forecasting. We also provide a pre-
liminary system performance analysis of OpenBAN when
deployed in the cloud and locally within a building.

Categories and Subject Descriptors:
H.4 [Information Systems Applications]: Miscellaneous
D.2.11 [Software Engineering]: Software Architectures

General Terms: Design, Architecture, Deployment

Keywords: Middleware, Building Management System, Smart

Buildings, Context Aware Applications
1. INTRODUCTION

Buildings are an attractive target for using novel Cyber-
Physical control systems to achieve energy sustainability
goals [1]. They are increasingly instrumented with many
subsystems that use heterogeneous sensors and actuators
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for monitoring, automating, and optimizing different build-
ing operations [2,3]. Sensors in buildings generate a large
number of data streams that are processed by different en-
ergy management applications for control actions. With in-
creasing availability and affordability of sophisticated sens-
ing, control and computational methods, a variety of novel
applications have been proposed in the recent past. Example
applications include occupancy based lighting, heating and
cooling control system for reducing energy wastage [4, 5, 6];
energy forecasting for demand response [7]; energy disag-
gregation for providing appliance level energy consumption
feedback [8], and activity recognition [9].

Despite their potential utility, these novel building energy
management applications are still not in widespread usage
today because, (i) these applications are mostly prototyped
as isolated implementations using off-line data processing
tools, (ii) current legacy building management systems of-
ten do not provide adequate support for integrating new
building management applications, and (iii) it is non-trivial
to replicate an application in a setting which is different
for which it was originally designed. Modern building man-
agement systems, proposed by the research communities,
provide rich and sophisticated support for communicating
with sensors and actuators, and for archiving, sharing, and
visualizing the data [10,11,12,13]. However, the support
for processing sensory data is far less mature, mostly lim-
ited to rule-based actions performed on the basis of simple
thresholds and ranges.

Realization of many of the novel energy management ap-
plications requires continuous computation of context in-
formation from sensor data. For example, “whenever the
meeting room is unoccupied, turn off the air conditioner”.
The ability to generate and utilize such context information
is absent from most of the existing building management
systems. To support the computation of context informa-
tion about building operations from distributed sensory data
streams, we propose OpenBAN, a sensor data analytics mid-
dleware for buildings. OpenBAN architecture is designed to
scale across local and cloud-based deployments, and to sup-
port diverse array of services and platforms designed for net-
worked sensors. It provides a runtime environment for de-
veloping and scheduling Contextlet — a pipeline of process-
ing elements for inferring a particular building context from
sensory data. Furthermore, OpenBAN is designed to enable
building facilities department to connect various building
sensor data streams with different existing and new control
applications through a powerful analytics engine capable of
inferring context information. Moreover, OpenBAN facil-
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itates inclusion of several analytical algorithms as part of
the sense-analyze-act pipeline for developing novel building
energy management applications.

Using our prototype implementation, we developed three
concrete applications to demonstrate the utility of Open-
BAN for a range of applications based on our testbed build-
ings: (1) disaggregating household appliance usage; (2) iden-
tifying sprinkler usage violation from water meter data, and
(3) forecasting hourly energy usage from smart meter data.

The primary contributions of our work are as follows:

e We propose OpenBAN middleware architecture that
facilitates integrating distributed sensor data streams
to infer rich context information about building op-
erations using different machine learning algorithms.

e We validate the suitability of OpenBAN by deploying
it for three real-world energy management applications
in our test-bed buildings.

e We release an open source implementation of Open-
BAN containing several analytical algorithms and a
host of features pertinent to building applications.

Rest of the paper is organized as follows. In Section 2,
we present the background details and motivation. We then
present the system architectural details in Section 3. In
Section 4, we present the implementation details of the sys-
tem. In Section 5, we present the details of three representa-
tive energy management applications developed using Open-
BAN and preliminary performance analysis. We present the
related work in Section 6. Section 7 outlines the future work
followed by Section 8 concludes the paper.

2. BACKGROUND AND MOTIVATION

Modern commercial buildings often employ a Building
Management System (BMS) for managing their complex
operations. A BMS consists of many subsystems includ-
ing, HVAC for indoor climate control; lighting systems for
ambient brightness; access control systems for security, and
smart meters (electricity, water and gas) for monitoring util-
ity consumption. Sensors and actuators in these subsystems
are networked using standard protocols such as BACnet!
and connected with their corresponding control applications
through BMS software. Generally, a BMS is installed with
a fixed number of closed-loop control applications which are
accessible only by the facilities department.

Similarly, residential buildings are increasingly instrument-
ed with Home Automation Systems (HAS). Several sensors
(e.g., temperature, light intensity, motion, door contact sta-
tus, and smart meters) and actuators (e.g., plugs, door locks,
and dimmers) are connected to a HAS controller using wire-
less protocols such as Z-Wave. The HAS controller box con-
tains a gateway for connecting it to the Internet. Unlike
BMS software stack, HAS controllers are flexible and exten-
sible. Some HAS controllers, such as HomeSeer?, provide
SDKs for developers to write home automation plug-ins and
allow sharing among different home owners. Home owners
install and configure the home automation applications us-
ing the provided web interface and/or mobile application.

2.1 Evolution of building middleware systems

Diverse sensor data streams generated in HAS and BMS
subsystems are often discarded after they are processed by

Thttp://www.bacnet.org
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Figure 1: Evolution of building middleware systems based on sup-
port for processing sensor data. (a) primitive middleware provides
no support for sensor data analytics, (b) rule-based middleware
provides trigger-actions based on thresholds, and (c) context-
based middleware provides sophisticated analytics for inferring
context from sensory data.

their corresponding applications. Since these sensor data
streams encompass several operational characteristics of a
building (e.g., occupancy information, energy usage pat-
terns), storing and thereafter analyzing them can help opti-
mize building operations. Motivated by this, recent efforts
have sought to redesign the legacy building management
systems for not only storing such rich sensory data, but,
also enabling novel applications to process them. Examples
of such research systems are HomeOS [10], SensorAct [11],
BuildingDepot [13], and BOSS [12]. Most of these systems
provide new abstractions, in the form of RESTful APIs or
RPCs, for accessing the underlying distributed network of
sensors, actuators, and their data. In addition to this, these
systems provide an application runtime environment for de-
veloping and executing novel applications that can access
and process the sensory data [10,11,13,14].

Such redesigned middleware systems for buildings, have
opened up opportunities for both researchers and developers
to experiment complex yet futuristic building control appli-
cations such as personalized HVAC control [14], occupancy
prediction [5], and energy monitoring [15]. Although these
applications are relatively complex, their processing pipeline
is still similar to existing commercial BMS and HAS appli-
cations: access raw sensory data, process it and perform
the desired control actions. While these redesigned mid-
dleware systems provide abstractions for accessing sensors
and their data, their inherent support for processing sensory
data within the middleware is limited. Based on support for
processing sensor data streams, existing middleware systems
proposed can be broadly classified into two categories: prim-
itive and trigger-based, as illustrated in Figure 1.

Primitive support middleware systems expose only the
raw sensory data to building management applications. The
applications can query historical data or subscribe to real
time sensory events. It is the responsibility of the applica-
tions to process the sensor data stream in accordance to the
desired application. Applications often match the queried
raw sensory data with some threshold value for identifying
a particular building context. As an example, AppDoorNoti-
fier security application in HomeOS detects abnormal activ-
ity by comparing the timestamp of door sensor events with
a predefined time period. Recent research systems such as
HomeOS [10], SensorAct [11] and BuildingDepot [13] are
examples of primitive support category.

Trigger-based middleware systems, on the other hand, al-



Table 1: Motivating energy management applications which require complex features and analytics on top of the collected sensor data.

Application Example features

Machine learning algorithm

Energy disaggregation

Power, Difference in successive power readings, Raw volt-
age and harmonics, Current, Power factor

Combinatorial Optimization

Sprinkler usage violation

Mean, standard deviation, range and time of the day

Support Vector Machine (SVM)

Energy forecasting
of the week, day of the month

Mean temperature, mean humidity, time of the day, day

Logistic regression

low applications to inject triggers for monitoring sensory
events. These triggers involve simple threshold based condi-
tions applied over raw or aggregated data, corresponding
to identifying a particular building context. Middleware
system monitors sensory data events and invokes the ap-
plications whenever the trigger condition is satisfied. Unlike
primitive support middleware systems, identifying the occur-
rence of a building context is done by the middleware and
applications are responsible for executing only the actions.
Most of the home automation systems support trigger-based
actions. For example, Vera® supports trigger-based action
schemes such as “when the temperature is below a threshold,
turn on the thermostat”.

Most of the existing building control applications are per-
forming relatively simple operations. However, novel appli-
cations proposed recently involve complex sensor data pro-
cessing methods. Often these applications apply computa-
tionally intensive machine learning algorithms for detecting
complex building contexts, such as activity monitoring [9]
and occupancy detection [5,6]. We argue that such essential
yet complex sensor data analyzing functions should be an in-
tegral component of the middleware system instead of imple-
menting them in each application separately. Moving such
complex algorithms into the middleware not only makes the
applications lighter but also provides better abstractions for
accessing them, as shown in Figure 1. Further, common con-
textual information can be computed centrally and shared
with multiple applications. Motivated by this, we seek to
design a sensor data analytics middleware, called Open-
BAN, that provides a runtime environment for developing
and scheduling complex context identification algorithms.

2.2 Motivating Applications

We now present the details of three motivating energy
management applications which require context of the build-
ing operation. Our aim is to understand the requirements
and goals of a middleware system enabling building appli-
cations involving complex computation.

Energy disaggregation: Previous studies have shown that
providing appliance level consumption feedback to consumers
can help them save upto 15 % energy [16]. However, instru-
menting individual appliances with power monitors to infer
detailed appliance consumption information can be expen-
sive, difficult to maintain and is considered intrusive. In con-
trast, Non Intrusive Appliance Load Monitoring (NILM) [8]
or energy disaggregation is a viable method for identify-
ing individual appliance level usage from the household to-
tal power meter readings. A typical NILM setup involves
complex pattern recognition algorithms to disaggregate to-
tal consumption (as measured at the meter level) into con-
stituent appliances consumption.

Inferring sprinkler usage policy violation: Sprinklers
for irrigating lawns, plants, and flower-beds are quite com-
mon in many households across the world. Since sprinklers
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consume large amounts of water (for example, a single sprin-
kler station may consume as much as 70 cc per second),
most cities impose restrictions on when and for how long
can sprinklers be used. For example, Los Angeles Depart-
ment of Water and Power (LADWP) has a policy according
to which “"Spray head sprinklers are allowed up to 8 min-
utes per watering station per day. They are restricted to
hours before 9:00 a.m. and after 4:00 p.m.” [17]. While the
law exists, the compliance is not good and enforcement non-
existent. We designed an application for detecting sprinkler
usage compliance with the help of the water usage trace of
an entire house, as recorded by the water meter.
Energy forecasting: Buildings are one of the largest con-
sumers of electricity, accounting for 71% of the overall usage
in USA [18]. Governments and utilities across the world have
proposed different strategies for optimizing the energy effi-
ciency of buildings. To assess the efficacy of such strategies,
various models for predicting future electricity demand have
been studied in the past. One such strategy, well known as
demand response (DR), focuses on modifying the building
energy consumption as per the demand on the grid [7]. To
facilitate assessment of such energy efficiency policies, we de-
veloped an energy forecasting application that predicts the
next hour electricity usage based on historical trends.
Table 1 summarizes the statistical features and machine
learning capabilities which these three applications require.
From our own experience with ad hoc implementation of
these applications, we concluded to design OpenBAN to
provide centralized and reusable analytical support for all
these and similar complex building energy management ap-
plications. Further, many of these applications require an
inference output on a continuous basis and thus, this is also
a requirement which OpenBAN adheres to.

3. SYSTEM ARCHITECTURE

Based on the specification of our motivating applications
discussed in Section 2.2, Table 2 lists the functional require-
ments of OpenBAN and its corresponding architectural com-
ponents that meets the identified requirements. As shown
in Figure 2, OpenBAN middleware consists of four major
components: (i) Data adapters, (ii) Feature repository, (iii)
Model repository, and (iv) Context Inference Engine.

3.1 Data Adapters

Data adapters are connectors that enable OpenBAN to
act as an interface between diverse Sensor Data Services for
receiving sensor data and sending out the context inferences.
It can be either pull-based or push-based. Sensors can also
be directly connected with OpenBAN if they are accessi-
ble through web APIs. The primary responsibility of these
data adapters is to handle the interoperability and data ex-
change issues across diverse sensors, actuators, applications
and their corresponding communication interfaces and APIs.

An Input data adapter retrieves sensor data from a partic-
ular service and converts it into a common format (<times-
tamp,value>) understandable by OpenBAN. Whereas, an



Table 2: List of system requirements for designing an analytics middleware and the corresponding system components.

System requirements

Architectural elements

Description

Integration of existing and new
sensor data streams

Data adapters

Provision to integrate internal and external sensor data
services. Support for pull and push based sensors.

Extracting features from sensor
data streams

Feature repository

A repository of commonly used features from sensor
data analysis literature. Provision for adding addi-
tional features and reusing them.

Support for including various an-
alytics algorithms

Model repository

A repository of commonly used analytics algorithms
and trained models. Provision for adding additional
features and reusing them.

Experimenting and deploying the

analytics application pipeline (CIE) and a scheduler

Context Inference Engine

An execution environment for scheduling the analytics
algorithms. Provision to scale up the computing power.
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Figure 2: OpenBAN architecture shows the Aggregate-Analyze-
Act pipeline of building management application. It integrates
multiple sensor data streams, and computes the required context
information in real time which can be used by multiple energy
management applications.

Output data adapter converts the computed result (context
inferences) into a format required by the target service and
sends it to the target service. Data adapters for existing
building subsystems, and external sensor data services, such
as GreenButton® and Xively®, are implemented and inte-
grated with OpenBAN as plug-ins.

Therefore, any building sensor data service with a compat-
ible data adapter can be integrated with OpenBAN. Such in-
tegration of multiple sensor data services into a single frame-
work enables the user to create a custom application pipeline
(in OpenBAN) that receives data from multiple sensor data
streams, computes relevant inferences, and then communi-
cates the learned inferences to external services.

3.2 Feature Repository

Once a Data adapter is available for a sensor stream, the
next step is to derive a set of suitable features from raw
sensor data values for further analysis, e.g. the average elec-
tricity consumption in an hour. In order to facilitate the fea-
ture identification step as a part of the “sense-analyze-act”
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application pipeline, OpenBAN provides a Feature Repos-
itory containing a candidate set of feature names which
are commonly used in the literature for processing sensor
data streams. Each feature mame in the repository is as-
sociated with a feature function that computes the corre-
sponding feature value over the specified time slice window.
A time-series sensor data stream is split into a sequence of
contiguous time windows at each N-second interval (feature
window size). Thus, each time window contains a tuple of
<timestamp,value> pairs. The feature function receives a
time window as a parameter and returns the computed fea-
ture value for each of the time windows.

These feature functions are enclosed with a piece of code
written in a high-level programming language, such as Python,
using various mathematical and statistical library functions.
Such shallow association of a feature name with a piece of
program code allows users to easily contribute additional
and reusable features to the repository. OpenBAN pro-
vides an interface for users to easily create additional fea-
tures. Once a new feature is created and made available
to the repository, other users can also use that feature for
their analysis. In this way, OpenBAN creates an ecosystem
wherein domain experts, researchers and application devel-
opers can collaborate, reuse and share features with others.
Table 3 lists a candidate set of different categories of features
that were derived from various sensor data streams to infer a
range of context information in buildings. These commonly
used feature names were populated from literature [5,9,19].
Several additional features can also be computed from these
basic features e.g. ratios of different quantities.

In addition to providing support for computing features
from the Feature Repository, OpenBAN also facilitates cre-
ating Feature templates. A feature template is an abstrac-
tion over a set of features derived from a particular sensor
data stream, which are required to infer a specific building
context information. Essentially, it is represented as a triplet
of { Context-inference-name, Sensor-name, { Feature-namel,
..., Feature-nameN}}. As an example, a feature template
for inferring binary occupancy information from electricity
meter readings could be {Binary-occupancy, {Electricity-
meter-power, mean, standard-deviation, range}} [20]. Simi-
lar to feature names, feature templates for a specific appli-
cation can also be created and shared with other users.

3.3 Model Repository

OpenBAN allows users to experiment and include sev-
eral analytics algorithms as an integral component of the
sense-analyze-act application pipeline. In order to facili-
tate complex analytical computations by non-experts, Open-
BAN provides a Model Repository. It provides a set of
analytical algorithms and their model instances that are



Table 3: List of different categories of features that can be identified from various sensor data streams to infer a wide range of context
information of a building. These features are computed for each time window (Tw) spanning a N-seconds interval.

Feature | Description with example usage Sensors Context and applications
Statistical features
min (Tw) Minimum light intensity level of a room
max (Tw) Maximum temperature of a workspace
mean (Tw) Hourly average electricity usage
. . . . Temperature,

median (Tw) Median C'O; level in an hour window : .

. Motion, Occupancy sensing (presence,
sum (Tw) Total water consumption of a day COs level ¢ identity. locati d
count (Tw) Number of times door closed/opened o2 Ve, coumt, 1dentity, location, af

. Light-intensity, prediction),

range (Tw) Temperate range of a workspace in a day Door status E dnta  dis t
mode (Tw) Mode of a list of active network ports s nergy  data - disaggregation,
stddev (Tw) Standard deviation of gas usage Electricity meter, Energy (electricity, water and
var (Tw) Variance in the power usage Water meter, gas) usage prediction and fore-

Temporal features

time-of-day Time of the day e.g morning and evening

hour-of-day | Hour of the day
day-of-week Day of the week
day-of-month | Day of the month
week-day Is’t a week day?
week-end Is’t a week-end?

Gas meter, cast,

Wi-Fi status, Load shedding for
Network traffic, response,

Security and access| Activity monitoring,
control, and RFID | and anomaly detection
tag data

demand-

commonly used for inferring various context information,
as listed in Table 3, from different sensor data streams in a
building. There are four categories of analytics algorithms
in the repository: 1) Regression analysis, 2) Classification,
3) Time series analysis, and 4) User contributed algorithms.
Similar to Feature repository, each analytical algorithm in
the repository is associated with some meta information,
such as model description and parameters, and a link for
invoking the corresponding analytics function. This link
points to a HTTP API endpoint in an Analytics Engine
(see Section 3.4) that hosts and executes the corresponding
analytics function. Users can integrate these algorithms eas-
ily, to infer a particular building context with the help of a
user interface (see Section 4.4). Additional analytics func-
tions, developed by OpenBAN users, can be made accessible
to other users by updating the repository with the required
meta information.

3.4 Analytics Engine

Sensor data analytics applications typically require sig-
nificant computing power as they inherently use complex
optimization functions. Analytics engines are dedicated ex-
ternal systems in the OpenBAN architecture, as shown in
Figure 2, that provide required computing power (CPU and
memory) for executing various analytics library functions in
real time. Analytics Engine is designed as a separate entity
to ensure system scalability as it manages a large number of
sensor data streams and draws the necessary inferences from
each of them. Moreover, such loosely coupled design allows
for easy integration of additional analytics engines or pro-
vision of multiple running instances of an analytics engine
which are hosted within buildings or in cloud.

In addition to providing a platform for executing the an-
alytics functions in real time, an analytics engine may also
provide persistent trained models. A handle of the persis-
tent trained model and its meta information can be updated
into the Model repository (see Section 3.3) for later use. Op-
tionally, these trained models can also be exchanged with
other analytics platforms using Predictive Model Markup
Language® standard.

6http ://www.dmg.org/v4-1/GeneralStructure.html

3.5 Context Inference Engine

Context Inference Engine (CIE) in OpenBAN is the over-
all coordinator of the system. Based on analytics appli-
cation requirements, it wires up other components in a se-
quence and creates an execution pipeline through which sen-
sor data streams flow. The CIE can be executed in two
modes: 1) Training mode to learn model parameters for a
specific building context, and 2) Ezecution mode to execute
a previously learned model over live sensor data streams.
Figure 3 illustrates the workflow of both the training mode
and the execution mode.

3.5.1 Training mode

Many novel building management applications require lea-
rning a model about a specific context of their interest. Typ-
ically, learning a model involves learning the correlation be-
tween the sensor data and the occurrence of the desired con-
text events over a period of time e.g. learning an occupancy
model using motion sensor data labeled with ground truth
occupancy patterns. OpenBAN provides integrated support
for training these models. The required parameters to train
a model are: (a) a list of sensor data streams and their cor-
responding ground truth labels for the training period, (b)
a list of feature names from the Feature repository for each
sensor data stream and feature window interval, and (c) the
model algorithm. Based on these parameters, CIE performs
the following steps:

1. Fetches sensor data streams for the given training pe-

riod using the corresponding data adapters.
2. Splits the time-series data, for each sensor, into a se-

quence of time windows and invokes the specified fea-
ture function for each time window to compute the

corresponding feature vector.
3. Combines the feature vector with the ground truth la-

bels to create a training data set by aligning the times-
tamps.

4. Invokes the corresponding API for learning the model,
provided by an analytics engine, given the training set.

After successfully learning the model parameters a handle
for the model is returned by the analytics engine. This han-
dle and the meta information about the learned model are
stored in the model repository for later use during the exe-
cution mode.
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Figure 3: The workflow of the Context Inference Engine for train-
ing and execution mode.

3.5.2  Execution mode

A user can integrate the previously trained model (or a
shared trained model from other users) into their analyt-
ics application pipeline. In the execution mode, previously
trained models are executed over live or historic sensor data
streams based on user specified intervals and time schedule,
e.g. “execute the occupancy prediction model every 2 min-
utes between 9 a.m to 7 p.m. everyday”. For each execution
instance of such a model, CIE fetches sensor data and com-
putes the required features, as explained in steps 1-2 for the
training mode, and creates an execution dataset. There-
after, CIE invokes the corresponding API function provided
by the analytics engine with the execution dataset and a
handle to the previously trained model. The computed re-
sults returned by the analytics engine can be sent to multiple
external services, based on application preferences.

4. IMPLEMENTATION

In this section we describe the details of a prototype im-
plementation of OpenBAN architecture, as described in Sec-
tion 3. We have leveraged several open source technologies
for our implementation, and have released the code as open
source’. We have used Java-based Play framework® to im-
plement the data adapters, feature and model repository,
context inference engine, and a sample user interface for
OpenBAN. The Context Inference Engine described in Sec-
tion 3.5 uses Quartz scheduler? to schedule and execute the
previously learned models.

4.1 Data Adapters

We implemented three data adapters in the released ver-
sion of OpenBAN: (1) Xively IoT platform, (2) sMap [21],
and (3) SensorAct [11], a research building middleware sys-
tem. These adapters convert their respective sensor data
formats into a collection of < timestamp,value > pairs,
represented in Java as a HashMap <DateTime, Double>. In
addition to receiving sensor data streams from these services,
OpenBAN can fetch files from Dropbox that contain ground
truth labels or archived sensor data in < timestamp, value >
pair format. Both UNIX epoch and ISO8601 timestamp for-
mat are currently supported. Data adapters for other ser-
vices, such as Green Button, weather, and variable pricing
and grid-load signals can be easily implemented and inte-
grated with OpenBAN.

"https://github.com/nes1/0penBAN
Shttp://www.playframework.org
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4.2 Feature and Model Repository

The released version of OpenBAN contains all the features
listed in Table 3. As these features can be directly computed,
they are mapped to existing mathematical library functions
in Java. OpenBAN also provides a simple user interface that
can be used to write a piece of Python code to extract addi-
tional feature from sensory data. All the details about each
user contributed feature are stored in a JSON file. Similarly,
details about available algorithms in each analytical engine
and their API endpoints for training and execution are also
stored in a JSON file.

4.3 Analytics Engine

OpenBAN leverages OpenCPU'? as its underlying ana-
lytical engines. OpenCPU is an open computing platform
which provides RESTful APIs for invoking various library
functions in R, a statistical computing language. R pro-
vides rich support for a wide variety of machine learning
and statistical algorithms. We have implemented an Open-
BAN wrapper library for the underlying machine learning
algorithms in R, that handles data format issues between
OpenBAN and R functions. It has wrapper functions for
regression, decision tree, neural network, SVM, naive bayes,
and k-NN algorithms. A separate HT'TP API endpoint for
training and executing each of these algorithm is also in-
cluded in the model repository. In addition to OpenCPU, we
have implemented our own analytics engine called OpenPy*!
for interfacing Python based machine learning packages, such
as scikit-learn. OpenPy shares similar goals with OpenCPU
and provides RESTful APIs for invoking Python functions.

4.4 User Interface

We implemented a web interface for OpenBAN which al-
lows users to interact with the system components. Using
this interface, users (developers and researchers) can create
contextlets that consists of three intuitive steps: Aggregate,
Analyze, and Act. Users are authenticated using their Drop-
box credentials through OAuth APIs. Current user interface
uses Dropbox as its back-end Datastore for storing a user’s
App profile, Data Repo profile, and any intermediate data
generated during the analysis.

Data adapter instantiation: In order to integrate a
sensor data service into OpenBAN; user first creates an in-
stance of a particular Data adapter. Such instantiated data
adapter is called a sensor Data Repository. User needs to
provide a name and access credentials such as user name
and/or api-key, to instantiate a data adapter. Thereafter,
OpenBAN connects to the specified service, pulls a list of
available sensor data streams and creates a Data Repo pro-
file which is stored in the user’s Dropbox account as a JSON
file and are referred back whenever OpenBAN needs to read
or write the sensor data into the associated service.

Contextlet flow: After instantiating the data adapters,
a user can execute the following steps for each phase of the
aggregate-analyze-act cycle:

Aggregate: In this step, the user aggregates the relevant
sensor data by first selecting the training period and
a set of relevant sensor data streams (that are then
fetched by OpenBAN) from the user specified Data
Repo profiles. Thereafter, the user specifies the data
stream that provides ground truth labels, which may

10http://opencpu.org
https://github. com/game-time/OpenPy
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Figure 4: Deployment setup of SensorAct and OpenBAN systems
for energy disaggregation application.

possibly be stored under their Dropbox account. Using
the integrated visualization tool, the user can also plot
the data.

Analyze: After aggregating various sensor data streams
the user now needs to 1) select a list of features for
each sensor data stream, 2) enter the feature window
size in seconds over which the selected features are to
be computed, and ¢) select an analytical algorithm and
specify its required parameter(s). Thereafter, the user
can initiate the training process by simply clicking on
the “Train the model” button. Once a model is trained,
the user can schedule its execution over the live sen-
sor data streams by specifying a date range and an
execution interval e.g. every 30 seconds between Jan-
uary 7-12, 2014 or every day at 12am. Based on the
user specified information, OpenBAN will initiate the
execution mode in background, as discussed in Sec-
tion 3.5.2.

Act: In this final step, the user can select a list of data
streams from the Data Repo profile to which the exe-
cuted model output should be communicated.

All the parameters for these three phases are packed into
an App profile. The User can save an app profile in their
Dropbox as a JSON file and reload the parameters into the
user interface when required.

S. APPLICATIONS

We developed three energy management applications on
top of our prototype implementation of OpenBAN to show
the wide applicability of the proposed system. For all these
applications, we deployed OpenBAN and analytical engines,
OpenCPU and OpenPy, on different virtual machines. Us-
ing OpenBAN user interface, we instantiated the required
data adapters and then created separate contextlet for each
application, and deployed them in our test-bed buildings.

5.1 IIIT-Delhi campus testbed

IIIT-Delhi campus was newly constructed two years ago
in a space of 25 acres. It consists of five buildings: aca-
demic, facilities, faculty apartments (30 houses), mess and
hostel (400 dorm rooms) buildings. All these buildings are
equipped with a commercial BMS system for managing the
various building operations, under the administration of a
facility manager (FM). In addition to the commercial BMS
system, all the buildings (each floor and flats) were instru-
mented with over 180 smart meters measuring various elec-
trical parameters. A SensorAct [11] instance, integrated
with sMap [21] adapter, was deployed for collecting meter
readings and BMS parameters at every 30 seconds.

5.2 Energy disaggregation

Recently, Batra et al. developed NILMTK [23] which con-
tains benchmark NILM algorithms implemented in Python.

We leveraged their combinatorial optimization based NILM
algorithm to detect refrigerator usage from whole home me-
ter data. A disaggregation function was implemented into
the OpenPy analytical engine and it was registered with
OpenBAN’s Algorithm repository. We chose refrigerator
as it contributes significantly to overall energy consump-
tion across different countries [23]. Figure 4 shows the de-
ployment setup of hosting OpenBAN as a private service
with SensorAct for this disaggregation task. In this setup, a
smart electricity meter installed for a residential apartment
was connected with SensorAct using a custom sMAP [21]
adapter. Smart meter readings were sampled at 30 seconds
interval and archived in SensorAct. We created a conteztlet
in OpenBAN for inferring the current status (on/off status
and power consumption) of a refrigerator. This conteztlet
is configured to read the smart electricity meter readings
from SensorAct, apply an energy disaggregation algorithm
to identify the usage traces of refrigerator, and then push
the inferred energy usage status back to SensorAct. Fur-
ther, the contextlet was scheduled to run every 5 minutes
and can provide real time refrigerator usage. An alert was
setup in SensorAct to notify any unusual refrigerator usage
(based on power consumption and duration) to the owner.
This experimental application shows that OpenBAN’s mod-
ular and extensible design makes it easy to integrate very
specific building analytics applications such as NILM.

5.3 Sprinkler usage policy violation

In this application, we explore the use of OpenBAN in de-
tecting sprinkler usage compliance with the help of the water
usage trace of an entire house, as recorded by the water me-
ter. Home owners can be notified of non-compliant sprinkler
usage (sometimes this happens inadvertently when the clock
on sprinkler timer goes off due to electricity outage) while
the utility company may use it to analyze real-time smart
water meter data to detect violators. Since sprinkler sys-
tems are mostly automated, they generate a unique pattern
when different sprinkler stations are used in sequence. Fig-
ure 5 illustrates an example of sprinkler usage pattern along
with other water usage activities in the morning.

Data for this experiment has been collected from a single-
family home in Los Angeles. Since the water meter in the
house was an old mechanical type, we instrumented the main
water service pipe feeding the house with a Shenitech STUF-
200H ultrasound water flow sensor providing whole-house
water meter reading at 1 Hz. A custom software package'?,
created for managing diverse forms of sensor data at home,
was used to collect the water flow data and upload in real-
time to the Xively cloud service. Our testbed household had
9 sprinkler stations scheduled to run at 5 a.m. and 7 p.m.

For this application, we created a contextlet in Open-
BAN and instantiated the Xively data adapter. Then, we
trained a SVM classifier from the Algorithm repository, on
6 months data from June 2013 to November 2013. We chose
mean, standard deviation and range features from Open-
BAN’s statistical feature repository and minute of day us-
ing temporal Feature Repository. For all of these features,
we chose a time window of 1 min. Since ground truth infor-
mation is not available, we manually annotated ground truth
labels for this training period at 1 min interval. We tested
the trained SVM model with water meter readings from the
month of December. The model was able to identify the

12ht',tps ://github.com/nesl/SensorActuatorManager
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Figure 5: Water usage patt-erllrr;;efor six sprinkler stations
sprinkler usage events with 99% accuracy, 96.2% F1-score
and 95.2% Matthews Correlation Coefficient. Since water
utilities have now begun to install smart water meters that
can easily collect water usage remotely in near real-time, an
extended version of this experiment can be used to identify
customers who are violating the sprinkler usage policy.

5.4 Energy forecasting

In this application, we showcase OpenBAN’s capabilities
to predict the next hour electricity usage of our test-bed
buildings. We created a conteztlet using OpenBAN’s user
interface and configured it to use weather (temperature and
humidity) and temporal features of the historical energy
usage patterns of our test-bed buildings to learn the pa-
rameters of a logistic regression classifier instantiated from
OpenBAN’s Algorithm repository. We selected the hour-
of-day, day-of-week and day-of-month temporal features
from OpenBAN’s Feature Repository. We chose these fea-
tures as they represent the energy usage pattern across dif-
ferent periods and seasons. We trained the logistic regression
classifier for four weeks of training data and predicted the
electricity usage for the next two weeks. With this configu-
ration, OpenBAN was able to predict the hourly usage with
78% accuracy. This contextlet was scheduled to run at ev-
ery hour to provide real time energy forecasting information
about our test-bed buildings to the facilities department.

In addition to these three representative applications, we
also developed and deployed (1) an indirect occupancy sens-
ing application using the real time Internet traffic, and (2)
an anomaly detection application for HVAC systems using
the BMS parameters and energy meter readings, in our test-
bed buildings.

5.5 System performance

We use the energy forecasting contextlet created in the
previous section as a candidate application to measure the
performance of OpenBAN with in our test-bed building.
Particularly, we measure the computation time for execut-
ing the contextlet and the forecasting model under two dif-
ference scenarios: (1) Hosting the analytics engine with in
the building, (2) Hosting the analytics engine on the cloud.

We created two contextlets for energy forecasting appli-
cation with similar parameters as described in the previous
section. One of them was configured to use local analytical
engine hosted on a VM (2x2.5GHz processor, 4 GB RAM)
and another was configured to use the public OpenCPU
(16 x2.8GHz processor, 16 GB RAM) instance®. For exper-
imental purpose, these contextlets were scheduled to be run
at every minute interval. In their each instance of execution,

13https://public.opencpu.org/ocpu/library/
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Figure 6: Comparison of execution time between local and cloud
hosted analytics engine for the energy forecasting contextlet

they read past 1 hour smart meter readings and invoke the
forecasting model which was learnt before for one month pe-
riod. We logged the computation time for 1) fetching past 1
hour meter readings, 2) computing the required features, 3)
executing forecasting model (including the network delay),
and the total computation time, for each execution instance
of the contextlets. Figure 6 shows the comparison of these
parameters (averaged from 200 execution instances) between
local and cloud hosted analytical engines. Although, the to-
tal execution times are not directly comparable (because
of different hardware configurations), they shows that up-
per time limit for each conteztlet instance which is about
700 milliseconds for cloud and 1350 milliseconds for locally
hosted anlaytic engines.

6. RELATED WORK

Existing middleware systems related to processing sensor
data streams can be broadly classified into four categories:
1) Middlewares for building management, 2) Cloud based
Internet of Things (IoT) platforms, 3) Ubiquitous and mo-
bile systems, and 4) General purpose analytical platforms.

Middlewares for building management: In the re-
cent past, several middleware systems have emerged from
both research and commercial communities for developing
sensory data driven building control applications. Build-
ingDepot [13] provides a dedicated ApplicationService for
writing and hosting building control applications. However,
no provision has been given within the service to perform
common sensory data processing functions. Similarly, Sen-
sorAct [11] provides a scripting framework for scheduling
periodic and trigger based applications. But its triggers are
based only on the arrival of a sensor data event. Further,
the APIs provided for reading sensor data are limited to
applying only aggregation functions over raw sensor data.
In contrast, OpenBAN provides a centralized service for in-
ferring common building contexts from multitude of sensory
data and allows applications to subscribe to the desired con-
textual event and perform actions thereof.

HomeOS [10] presents existing networked devices in homes
as PC peripherals. Applications can read the device status
or subscribe to events of interest. In either ways, the un-
derlying layers pass raw device data to the applications. On
the other hand, BOSS [12] which is specific to commercial
buildings, provides a set of operating system services for de-
veloping portable and fault-tolerant building control appli-
cations. It contains a time series service (TSS) for archiving,
querying, and processing sensor data. T'SS supports a data
transformation language that allows applications to apply a
pipeline of numerical operators for data cleaning and trans-



forming the retrieved data. Although these operators are
executed within T'SS, there is a vertical flow of data between
TSS and each application. Our approach is fundamentally
different in many ways: (i) applications can read or subscribe
to context of their interest instead of invoking data request
queries with a combination of numerical operators, (ii) con-
text processing pipelines in OpenBAN can be executed ei-
ther in real-time or periodically on sensor data streams, and
(iii) OpenBAN provides a centralized service for executing
context processing pipeline which involves learning and ex-
ecuting complex machine-learning models over multitude of
sensor data streams.

Many commercial BMS systems, such as Trane'?, are in
widespread use today. They are deployed with a predefined
fixed set of applications, e.g. HVAC and fire alarm sys-
tems. Their archaic and closed application model makes
them difficult to program and extend their functionalities
[14]. Whereas, HAS systems, such as Vera, provide a script-
ing framework for extending the home automation appli-
cations. However, their controllers are limited to inferring
simple contexts by applying aggregate functions over raw
sensor data, e.g., “if garage door is left open then notify the
user”. Mango automation®® supports a light weight script-
ing language for automating building operations but it can
be used to identify only simple contexts by fusing multiple
sensory data. BuildingOS*® is an another system specifically
designed for energy management operations of a buildings
but limited to providing a dashboard for integrating and
managing several energy meters.

Cloud based Internet of Things (IoT) platforms:
A number of IoT platforms have emerged recently for in-
terconnecting sensors to the Internet and developing novel
applications. Examples include Xively, Sen.se!”, among oth-
ers. While these [oT platforms provide good support for up-
loading, querying and visualizing the time series sensor data,
their inherent support for processing sensory data is limited
to applying only simple conditions and aggregation func-
tions. For example Xively supports threshold-based trig-
gers by applying simple relational operators over live sensory
data streams. The application programming framework in
Sen.se allows developers to write Data funnels which fuse
multiple sensor data streams based on aggregation functions.

Nimbits takes a different approach by supporting execu-
tion of several data filters on streaming sensor data (e.g. to
detect faulty data) and by providing a loose integration with
Wolfram Alpha'®. However, such loose coupling prevents
the use of Wolfram Alpha for continual real-time analytics
and offers limited support for statistical machine learning ca-
pabilities. IFTTT!® provides support for creating home au-
tomation recipes using WeMo?° devices. Its “if-then” model
triggers are limited to inferring contexts which are directly
derivable from individual raw sensor data. MathEngine in
SensorCloud allows developers to write sophisticated analyt-
ics scripts to process live sensor data streams on the cloud.

Mobile and Ubiquitous computing platforms: Sys-
tems for monitoring rich context information from sensor
data, proposed for domains such as mobile computing, are

14http://www.trane.com
'®http://infiniteautomation.com
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the closest in spirit to OpenBAN (e.g., MobiCon [24] and
Darwin phones [25]). OpenBAN shares similar goals with
Auditeur [26] for creating a context monitoring pipeline which
involves a learning phase and an execution phase of previ-
ously learned models. While the approach for inferring a
context from sensor data streams is similar in both buildings
and mobile systems, OpenBAN provides additional support
for extending the system. It allows developers to add and
reuse, features and classification algorithms to its repository.
Earlier works on “context-aware” applications for ubig-
uitous environments are different from context monitoring
approaches in buildings. While the former focuses on rea-
soning about the environment from a knowledge repository,
the latter focuses on monitoring the context from a multi-
tude of sensory data events. Several researchers have con-
ducted work [5,19] on modeling, analyzing and inferring rich
context information in buildings. However, all of them have
pursued a narrow goal of coupling the sensors with a partic-
ular building control application, such as occupancy based
HVAC control. Unlike them, OpenBAN seeks to create an
ecosystem for deriving inferences in which diverse building
related applications can subscribe to contexts of their inter-
est computed over streaming and historical sensor data.
General purpose analytical platforms: Standalone
tools such as Weka®' and cloud-based general purpose an-
alytics platforms such as BigML?? and OpenML?? have at-
tempted to make complex machine learning algorithms ac-
cessible to the users. For example, Weka provides an in-
terface for users to create data flows for common machine
learning algorithms. Other cloud based systems provide web
APIs and user interfaces for experimenting with complex
machine learning algorithms. But these platforms and ser-
vices are primarily designed as batch processing engines as
opposed to one that would perform real-time continual oper-
ation on time series sensor data. Further, all these services
require features extracted from raw sensory data as their
input. Esper?® is an in-memory Complex Event Process-
ing (CEP) engine which provides query based aggregation
and data fusion methods. But it is limited to applying only
aggregation functions over different time windows.

7. FUTURE WORK

There are many enhancements that we have planned to
include in the proposed system. At present, OpenBAN re-
ceives sensor data streams from existing sensor data services.
We assume that such existing systems already take care of
data cleaning issues. However, it is likely that real word sen-
sors in buildings misbehave and may send faulty data. So
we have planned to include a separate data pre-processing
component to the system. In the current implementation,
OpenBAN adapters are only pull-based, adapter reads the
data from sensor data services. We plan to implement push-
based adapters, where the adapter listens to sensory events.
While such a push based model would be suitable for pro-
cessing streaming data, adapters need to provide additional
buffering, as most of the learning based algorithms work on
features extracted over a time window.

In the current implementation, user needs to switch the
contextlet from training and execution mode manually. An-

2lhttp://www.cs.waikato.ac.nz/ml/weka/
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23http://openml . org
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other important feature would be making an adaptive an-
alytics engine that will automatically switch from learning
mode to execution mode on the basis of the accuracy of the
trained model by applying cross validation methods. Fur-
ther, in order to quantitatively evaluate the generality and
usability of OpenBAN, we intended to conduct a survey
among a list of developers after asking them to design the
same representative applications that we have developed.

8. CONCLUSION

In this paper, we proposed OpenBAN, an open sensor
data analytics middleware which facilitates the development
of novel building energy management applications. We de-
scribed the architecture of OpenBAN that consists of (a)
Data adapters to integrate multiple sensor data reposito-
ries into the system; (b) Feature Repository that provides
commonly used features that are derived from various sensor
data streams; (¢) Model Repository that contains commonly
used analytics algorithms and their trained instances to infer
various context information in buildings; (d) Context Infer-
ence Engine for coordinating other components and schedul-
ing the execution of an analytics application flow; and (e)
Analytics engines for executing the machine learning algo-
rithms. An implementation of OpenBAN, with these various
components has been released as open source. Using Open-
BAN user interface, users can create the Aggregate-Analyze-
Act flow for an analytics application for modern smart build-
ings. We developed several real-world energy management
applications to show the wide utility of OpenBAN . We also
perform a preliminary system performance evaluation and
find it to be satisfactory for the intended application.
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