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ABSTRACT

Human activity recognition using multi-modal sensing tech-
nologies to automatically collect and classify daily activities
has become an active field of research. Given the prolifer-
ation of smart and wearable devices and their greater ac-
ceptance in human lives, the need for developing real time
lightweight activity recognition algorithms become a viable
and urgent avenue. Although variants of online and of-
fline lightweight activity recognition algorithms have been
developed, realizing them on real time to recognize peo-
ple’s activities is still a challenging research problem due to
the computational complexity of building, training, learning
and storing activity models in resource constrained smart
and wearable devices. To navigate the above challenges,
we build Mobeacon: a mobile phone and iBeacon sensor-
based smart home activity recognition system. We investi-
gated the viability of extending Bagging Ensemble Learning
(BEL) and Packaged Naive Bayes (PNB) classification al-
gorithms for high-level activity recognition on smartphone.
We incorporated the semantic knowledge of the testing en-
vironment and used that with the built-in adaptive learning
models on smartphone to ease the ground truth data annota-
tion. We demonstrated that Mobeacon outperforms existing
lightweight activity recognition techniques in terms of accu-
racy (max. 94%) in a low resource setting and proves itself
substantially efficient to reside on smartphones for recogniz-
ing ADLs in real time.

Categories and Subject Descriptors

C.3.2 [Special-Purpose and Application-based Sys-
tems]: Real-time and embedded systems — Ubiquitous com-
puting; 1.5.5 [PATTERN RECOGNITION]: Implemen-
tation—Interactive systems

General Terms

Algorithm, Experimentation, Human Factors, Performance

Keywords

activity recognition, adaptive lightweight classification, se-
mantic knowledge, multi-modal sensing system

1. INTRODUCTION

Automatic Activity Recognition (AR) has becoming a fun-
damental research concern of the ubiquitous computing com-
munity [2] and plays an important role in the context-aware
applications and interaction design for cognitive computa-
tion. With the rapid advancement of wireless networking
and sensing technologies in recent years, recognizing Activi-
ties of Daily Living (ADLs) based on wearable sensors com-
bined with ambient sensors have drawn much research inter-
est. In this paradigm, wearable smart devices with sensing
and wireless communication capabilities are synchronized
with ambient sensors to capture different motion patterns
of a user. Continuous sensor readings are collected and pro-
cessed for extracting useful features, training an appropriate
activity model, and recognizing a variety of activities.

When aiming at building ubiquitous applications that are
ready to work in uncontrolled environments, it is often nec-
essary to retrieve activity data from one or more wearable
sensors i.e., multi-modal sensing. For daily living, even the
most compact solution tends to be computationally expen-
sive, intrusive and difficult to maintain. The ubiquitous us-
age of mobile devices makes these sensing platforms ideal
in terms of user adoption to gather low-level activity infor-
mation and further to get adherence to activity logging ap-
plications. For example, collecting locomotive data through
ambient motion sensor requires an intermediate server phase
to process the location signature. The extracted locomotive
information needs to be sent to mobile devices in real time
for online classification of activities. The entire process is
computationally inefficient and prone to transmit unreliable
and noisy data stream. Clearly, the use of the smartphones
as activity data loggers, transmitters, receivers and proces-
sors has operational and functional limitations (such as low
battery power). Although high-level activity recognition and
classification through hierarchical learning algorithms (e,g.,
Dynamic Bayesian Network [23], Hidden Markov Model [4]
etc.) offer better accuracy based on multi-modal environ-
mental sensing, offline training and apriori ground truth
data annotation, they can be hardly implemented on smart
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devices due to their heavyweight resource hungry computa-
tional need. On the other hand, activity classification based
on ambient sensor and wearable smart devices (such as wrist-
band, smart-phone etc.) is practically challenging due to the
unavailability of adequate resources (CPU, memory, battery
power etc.) to support real time recognition. Enumerating
the tradeoffs between activity recognition accuracy and cost
associated with the classifiers, and executing the pipeline of
the activity recognition tasks either offline (server) or online
(mobile) necessitate further investigation to benchmark the
performance of state-of-the-art hardware and viability of im-
plementing lightweight in-situ machine learning algorithms
there.

Existing activity recognition frameworks suffer from many
other practical problems. Many of them [9] are based on su-
pervised learning where the training data requires a ground
truth with accurate labeling of all activities. To ensure high
accuracy, the classifiers need to be trained with long traces
of data that may range from months to years. However,
gathering and accurately labeling ground truth data for such
a long period is difficult on smart devices and hinders the
real time decision making on activity recognition. There are
some existing unsupervised activity recognition algorithms
that do not require ground truth ( [11]) but they either re-
quire mining activity models from web definitions or they
depend on detailed domain knowledge about activities and
the environment.

1.1 Research Questions

Our research attempts to answer the following research
questions:

e Can semantic knowledge about the environment and
indoor localization help reduce the costs of ground truth la-
beling and bootstrap the classifier learning? If so, what kind
of non-intrusive sensor devices and software applications are
required to design lightweight activity recognition method-
ologies with reduced reliance on intermediate server and ease
the process of semantic knowledge base creation?

e What kind of algorithmic models and their embodiments
with the underlying learning parameters are required to sup-
port smart-phone based real time activity recognition that
can take benefit from prior defined semantic information?

e How we can scale the activity recognition approaches
across multi-modal sensing and indoor localization concern-
ing accuracy and battery power consumption?

1.2 Key Contributions:

The main contributions of our work are summarized as
below.

o We exploit indoor location contexts based on the iBea-
con provided signal and correlated that with the user pro-
vided semantic definition of smart home and accelerometer-
detected low-level activities as inferred by the smart-phone.

e We investigated Bagging Ensemble Learning (BEL) and
Packaged Naive Bayes (PNB) classification algorithm for
employing them on smart-phone for real time activity recog-
nition.

e We propose an intelligent inference caching technique to
opportunistically sense the semantic correlations of context
tuples and add a lightweight adaptive semantic definition of
smart home.

o We designed a Mobeacon smart home and evaluate our
proposed algorithmic models using real time data traces col-

lected from four individuals for a period of 2 weeks. The
experimental study shows that our system provides an ac-
curacy of up to 94% for high-level activity recognition. Our
high-level activity prediction methodology reduces classifi-
cation cost significantly compared to traditional high-level
activity recognition frameworks.

2. RELATED WORKS

The idea of combining ambient sensors along with smart
device sensors to recognize daily activities has been inves-
tigated in the past [6,7,10]. We briefly summarize several
works which have investigated activity recognition models
and algorithms.

Activity classification with multiple on-body sensor nodes
(i.e., wearable sensor devices or smart phones) along with
ambient sensor technologies have been proposed recently.
SAMMPLE [3] classified high-level activities exploiting dis-
criminatory power of activity structures along the dimension
of statistical features by using a sequence of individual lo-
comotive low-level activities. Roy et. al. [4] investigated
a Coupled Hidden Markov Model (CHMM) model to infer
spatial contexts and then considered spatial contexts as an
additional parameter to classify high-level contexts activi-
ties. Other works [17] proposed multiple on-body sensor
motes to detect user activities, body posture, or medical
conditions with an offline analysis which hinders user mo-
bility and real time analysis due to the periodic communi-
cation with a fixed base station. A model has been pro-
posed in [12] to train with a short amount of initial data,
but model updating was performed using a back-end server.
Pering et. al. in [13] proposed the use of a sensor mote with
an SD card attachment to interface with a mobile phone
in order to meet the computational requirements of body-
area sensor networks application. Lu et. al. [14] proposed
a component-based approach to mobile phone-based classi-
fication for different sensors and different applications, but
each sensor component required a separate classifier imple-
mentation. Activity recognition and energy expenditure was
calculated by Albinali et. al. [8] using an accelerometer spe-
cific sensing model for on-body wireless nodes. Peebles et.
al. [15] used AdaBoost for activity recognition with mobile
phones, but focused mainly on ground truth labeling incon-
sistencies without delving a practical system for long term
use. Wang et. al. [16] focused on duty cycling mobile phone
sensors to save energy based on a rigid rule-based recogni-
tion model that must be defined before runtime but failed
to provide any user-friendly interface to define the rules.

Our proposed framework is closest to PBN [17]. The cen-
tral difference between PBN and Mobeacon is that, prior one
does not exploit semantic location information which helps
train the classifiers in absence of ground truth data. Though,
PBN partially relies on ground truth labeling and offers sig-
nificant reduction of sensing cost, it incorporates multiple
wearable sensor devices and intermediate server dependen-
cies which hinders it’s use in practice. Combining the indoor
location knowledge with a semantic definition, we propose
a lightweight high-level activity recognition framework with
reduced reliance on ground truth labeling and any intermedi-
ate server. We propose lightweight classification algorithms
based on ensemble learning and packaged naive Bayes and
investigate the model building, training, storing and learn-
ing on the fly to recognize activity using smart-phone.



Table 1: Mobeacon Classification Groups
Context Semantic &

Location/Postural /High-level Contexts
Inference Category

Indoor Environmental | Exercise Bike, Couch, Dining Table,
Bed, Closet, Reading Table, Bookshelf,
Bathroom, Kitchen, Porch

Standing, Walking, Cycling, Lying,
Sitting

Exercising, Prepare Food, Dining,
‘Watching TV, Prepare Clothes,
Studying, Sleeping, Bathrooming,

Contexts

Low-level contexts

High-level contexts

Cooking, Past Times, Random

3. APPLICATION REQUIREMENTS

Our Mobeacon system design is motivated by the require-
ments of a real time application for activity recognition.
Data from multi-modal sensor devices are captured and an-
alyzed online on mobile devices. Thus the system must be
able to accurately and efficiently classify typical daily activ-
ities, postural and environmental contexts (Table 1). De-
spite these categories being common for many individuals
and previous work [17] has identified some of them, reliance
on ground truth and intermediate servers are disregarded.
From the Table 1, we break down our target classifications
into three groups: indoor environmental contexts, low-level
contexts and high-level contexts. With the environmental
and low-level contexts, we can infer high-level activity pro-
viding insight into the physical states of users for personal
health and physical wellness monitoring applications. Our
goal is to detect high-level activities in which a user engages
in different indoor area with particular low-level activity
sets, for example, ‘watching TV’ in ‘couch’ area where ‘sit-
ting’ represents a low-level context state or ‘preparing food’
in the ‘dining table’ area where low-level context is composed
of set {‘standing’,‘walking’}. We define this indoor areas of
interest in a smart home environment a-priori with the un-
derlying low-level contexts to infer high-level activities. This
piece of information is referred as Semantic Knowledge Base
(SKB) about the environment and user contexts in our work
and eventually aided in on-the-fly to accelerate the real time
high-level activity recognition on resource constrained de-
vices. The requirements to provide such a practical activity
recognition system are as follows.

Application Interface: Real time activity recognition re-
lies on different sensor modalities and knowledge base in-
put. Appropriate and user-friendly application design re-
quirement differs based on application goal and system ar-
chitecture. Both supervised and semi-supervised activity
classifiers need an user-friendly software application design
which must provide an intuitive interface for adding, remov-
ing, and configuring different sensors, ambient objects and
ground truth related knowledge base geared to detect the
user’s intended activities. Defining the correlations to build
such a semantic knowledge base should also be a simple,
adaptive and non-invasive effort, facilitated by an easy to
use mobile phone interface.

Reduced Reliance on Ground Truth: Ground truth
labeling is one of the major issue for supervised and semi-
supervised learning algorithms. Efficient ground truth data
annotation is challenging and generates some arduous prob-
lems such as time synchronization, labeling ambiguity, in-
terleaved activity dilemma, constant observer etc. There-
fore, reliance on ground truth should be reduced as much as

possible for mobile deployed real time activity recognition
system where time is critical. A minimal need for ground
truth reduces the burden on the user to label training data
and accelerate just-in-time processing and decision making
for activity recognition.

Minimal Need of Intermediate Server: Relying on
intermediate server and constant connectivity violate un-
derpinning requirements of real time activity recognition.
Involvement of intermediate server implies problems such
as, data inconsistencies due to lossy channel, network over-
flow and communication failure, security and privacy breach
of data etc. Thus, conducting efficient intermediate server
based classification, it is necessary to employ several energy
intensive fault tolerant encryption techniques. To design real
time lightweight energy efficient activity recognition frame-
work, the system should refrain from relying on intermediate
server.

Adapting Fault Tolerant Classifiers: The system must
be fault tolerant and adaptive in nature thus can accu-
rately maintain high accuracy in case of noises in sensing,
device position, data transmission etc., environmental am-
bient dynamics (changes in the semantic location of ob-
jects/furniture etc.) or spatiotemporal changes of user con-
text behaviors.

Implementing Lightweight Classifiers: smart-phone and
ambient sensing-based technologies are subject to severe pro-
cessing, storage and energy constraints. Redundant classi-
fications result huge computational overhead and unneces-
sary drainage of battery power. smart-phone-based activity
recognition system must be capable of selecting relevant sen-
sor for classifying activities while powering down the other
sensors. Furthermore, the system must avoid extensive pa-
rameter tuning as well as relying on complex sensing models
for activity recognition in real time.

4. OVERVIEW OF OUR SYSTEM

Our Mobeacon system assumes a multi-inhabitant smart
home instrumented with ceiling mounted iBeacons in each
room transmitting RSSI signals which are being captured in
the occupant’s smart-phone. Our system also assumes the
presence of a smart-phone in the right-pocket of each in-
habitant to collect the fine-grained postural-level activities.
The basic steps are summarized as follows: i) ‘Sensing pla-
nar’ gathers sensor data from smart-phone and RSSI signals
from iBeacons; ii) ‘Feature processing’ module is involved
with feature extraction of sensor attributes, signal process-
ing of RSSI signals and feature processing for small training
sets collected for low-level activity recognition; iii) ‘Seman-
tic knowledge processing’ engine is involved with building
semantic knowledge base (SKB), expression tree (ET) and
training classifiers based on the small training sets; iv) ‘Clas-
sification” module is involved with sub-region classification
and utilizing the context information and low-level activity
training sets, for classifying high-level activities employing
two lightweight classifiers, packaged naive Bayes (PNB) and
bagging ensemble learning (BEL). v) ‘Intelligent inference
cache’ opportunistically updates semantic knowledge based
on computationally lightweight rule mining technique. We
evaluate the practicability of our proposed system consist-
ing of the above processing engines by quantifying the re-
duction in computational complexity and improvement in
high-level activity recognition accuracy we perceive as a
result of combining iBeacon based indoor localization and



Table 2: Semantic Knowledge Base Correlations
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classifiers based naive Bayes and ensemble learning. The
schematic representation of all the components, and under-
lying logical steps are shown in Fig 1.

S. DESCRIPTION OF OUR FRAMEWORK

Our activity recognition framework consists of the follow-
ing components. 1) Semantic knowledge base; 2) Applica-
tion; 3) Ambient Sensors Positioning; 4) Semantic Correla-
tions Definition; 5) Building Expression Tree; 6) Occupied
Sub-Region Detection; 7) Bagging Ensemble Learning clas-
sifier; 8) Packaged Naive Bayes classifier, and 9) Intelligent
Inference Cache. Next we discuss each of these components
in detail.

5.1 Semantic knowledge base

Our proposed framework depends on a simplified domain
knowledge consists of the spatio-contextual correlations. Thus
we define two modules: a semantic knowledge base and a se-
mantic correlation rule sets. Prior to setting up Mobeacon
in smart home environment, user needs to define a set of
correlations to build semantic knowledge base. User also
needs to define the sub-regions prior to Mobeacon smart
home installation as follows: 1) First, presume the high-
level activity sets to be recognized. In Mobeacon smart
home, we selected 11 high-level activities as shown in Ta-
ble 1 which are relevant to functional health of older adults,
2) Identify and define the critical sub-regions which are in-
volved with pre-selected high-level activities, for example,
sub-region ‘SR1’ is involved with high-level activity ‘Exercis-
ing’ as shown later in Fig 9, We selected 11 sub-regions that
are involved with single or multiple high-level activities; 3)
Locate the ambient sensors and demark the area of each sub-
region; 4) Set an approximate minimum time threshold for
any high-level activity recognition (we consider 2 minutes).
Our adaptive heuristic changes the minimum threshold over
time based on the activity monitoring; 5) Finally, define the
correlations among high-level activities, low-level activities
and sub-regions. Table 2 shows our Mobeacon smart home
semantic knowledge base correlations.

5.2 Application

We design an Android (version 5.0 Lollipop) based user-
friendly mobile application that simplifies the procedures of
defining, controlling, and monitoring the semantic knowl-
edge and context recognition as shown in Fig 2(a). We
combine Estimote iBeacon SDKs with Android smart-phone
sensor manager and provide intuitive application interfaces
to confirm different sensors inclusiveness and their usability.

5.3 Ambient Sensors Positioning

For this task, user needs to localize the ambient sensor.
This localization process addresses two important scenar-
ios. 1) Single ambient sensor rooms; 2) Three ambient sen-
sor rooms. For single ambient sensor rooms (for example,
kitchen, bathroom etc.), user needs to select ‘single ambient
sensor room’ from the drop-down list of our develop app,
bring the smart-phone as close as possible to the ceiling
mounted iBeacon and then press the button ‘sensor localize’
to scan. This action records the particular sensor UUID,
major-minor values and the distance measure (in meters)
and stores the information as origin (x=0, y=0) coordinate
of the room. For three sensors room, user needs to do the
above procedure once for both the sensors 1 and 2 (illus-
trated in Fig 2(c)). Our application automatically calculates
X and Y values based on the average of [, m and n using
following equations:

2
X:l;Y:\/n2+% (1)

5.4 Semantic Correlations Definition

In order to define the semantic correlations though our
user-friendly application interface, user needs to bring the
smart-phone at the center of each of the pre-defined sub-
regions, select/add new sub-region, select correlated low-
and high-level activities, type approximate length of the re-
gion considering it as a square shaped one and click ‘Set’
button to confirm definition (Fig 2(a)). The above proce-
dure calculates the four corners’ coordinates using the iBea-
cons provided distance values (Fig 2(a)), and saves all values
in the smart-phone memory.

5.5 Building Expression Tree

An expression tree for a tuple a = v is a tree represen-
tation of the Boolean expression that implies the value v
for the attribute a. It is generated by combining various
rules that imply a = v directly, or indirectly via transitive
relationships with other rules. The expression tree for a
given high-level activity ‘cooking’ is constructed as follows.
We start with ‘cooking’ high-level activity and continue ex-
panding the rules stated in the semantic knowledge base
(‘cooking’=-‘walking’ AND ‘kitchen’, ‘cooking’=‘standing’
AND ‘kitchen’) until we reach the leaf nodes which can’t be
expanded any further(illustrated in Fig 3(a)).

5.6 Occupied Sub-Region Detection

This application takes the semantic knowledge base (SKB)
information where sub-region set is defined as SR = {sr1, sr2
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Figure 3: ‘Cooking’ high-level activity tuple ex-
pression tree (a) at the beginning of inference (b)
after 1 hour of running rule mining

...,sr1l}. Consider sr = {{(z1,yl), (22,y2), (x3,y3), (x4
,y4)} where z and y values define the four corner coordi-
nates of sub-region, sr. Our application continuously senses
the iBeacon features (id and distance measure) and calcu-
lates the coordinates of the smart-phone device inside the
smart home using trilateration [19]. It checks whether the
Trilateration provided values (z and y coordinates) are in-
side any of the pre-defined critical sub-region space not using
simple scalar dot products of vector method.

M of coordinates (z,y) is inside the
rectangle ABCD iff (0 < AM - AB < AB - AB)
A0 < AM -AD < AD - AD)  (2)

If it does not satisfy any of the pre-defined sub-region occu-
pancy, it returns ‘Other’ sub-region which is defined only for

Procedure Occupied_Sub-Region_Detection
(input: Sub-region definition SR, iBeacon IBj;
output: Occupied Sub-region ID S)
1. if IB.size = 1//one iBeacon is discovered
for each sr in SR
if sr.size =1 and sr.UUID = IB.UUID
Return sr
else if IB.size = 3// 3 iBeacons are discovered
{x, y} = Trilateration (SR,IB)
For each sr in SR
if {x, y} inside sr// Equation 2
Return sr
else
Return ‘Other’

OO0 NOOE WwN

= O

Figure 4: Subregion Detection Algorithm

Procedure BESTree_Training

(input: Training set S; Ensemble

classifier E; Integer T (number of bootstrap
samples

output: Trained Ensemble Classifier E)

for i=1to T
S, = bootstrap sample from S // sample with replacement
Soob =out of bag sample
train base classifiers in F on S}
E,; =BESTree_Selection(M,S)

Return E

OO WN -

Figure 5: BESTree Training Algorithm

‘Random’ type of high-level activity. The detailed algorithm
is stated in Fig 4

5.7 Lightweight Bagging Ensemble Learning

We propose an extension of bagging ensemble learning
algorithm adding an expression tree based inference engine
to help guide the activity recognition process in real time.
Our proposed algorithm is described in two folds, training
and classification.

We use BESTree selection algorithm [20] to train our light-
weight activity recognition model and Decision Tree (DT)
as a base classifier. We consider smart-phone provided ac-
celerometer values (z,y and z) and Subregion Detection al-
gorithm provided spatial context (SR), in other words the
locomotive micro activity contexts and location context..
We have also incorporated the minimum duration values of
activities as obtained from the semantic knowledge base.

Let x be an instance and m;; i = 1...k , be a set of base
classifiers associated with probability distributions m;(z, ¢;)
for each class label ¢j, 5 = 1..n. The output of the final
classifier ensemble y(z) for instance x can be expressed as:

k
y(x) = arg max Z wimi(z, ¢j), (3)
953
where w; is the weight of base classifier m;. We employ,
ensemble learning strategies as underlying methods for cal-
culating optimal weights for each base classifier given the
hierarchical approach consisting of micro activity recogni-
tion and combining this with SKB and location context for
higher-level activity recognition.
Bagging: Bagging is based on the instability of base clas-
sifiers, which is in our approach exploited to improve the
predictive performance of any unstable base classifiers. The
basic idea is that, given a training set 7" of size n and a clas-
sifier A, bagging generates m new training sets, T; , each
of size n’ < n. Bagging then applies classifier A with each
training set 7; to build m models and use simple voting
mechanism to finalize the output.
Lightweight Design: We extend BESTree classification al-
gorithm incorporating sub-region detection, expression tree
based high-level activity composition and activity duration.
We bring in lightweight expression tree based inference en-
gine after recognizing the micro-activities based on each bag
of BESTree base classifier. Expression tree based inference
engine extracts the expression trees saved in the inference
cache, augments the sub-region information obtained from
the Sub-Region Detection algorithm, applies inference on m



Procedure BESTree_Classification
(input: Test set 7T'; Trained Ensemble Selection classifier Ej;
iBeacon [B; smart-phone accelerometer values (x,y,z); Semantic
Knowledge Base SK B; output: High-level activity H)
1. F = Feature_Extraction(x,y,z)
2. C = BESTree_Ensemble_Classifier(F',FE)
3. LA(t) = Max_Vote(Hsct)// lou-level
// activity LA

4. HA; = Expression_Tree_Classification(L,ET)
// high-level activity HA

5. if HA(t) # HA(t — D&HA(t) = HA(t — 2)

6. &HA(t — 1) < MinDuration(HA(t — 1))

7. HA(t —1) < HA(t — 2)

8. Duration(H A(t))=Duration(HA(t — 1))+

9. Duration(HA(t — 2))

10. Return HA

Figure 6: Bagging Ensemble Learning Classifica-
tion

model predicted low-level activities along with sub-region
information and finally votes on each expression tree out-
put to predict high-level activities. In addition, we design
a duration model based heuristic algorithm to confirm more
fine-grained prediction of high-level activity. Whenever, we
find an end of a high-level activity, we check the last ended
high-level activity duration. If it does not meet the mini-
mum duration, it is merged with its previous one. The entire
algorithm is stated in 6.

5.8 Lightweight Packaged Naive Bayes Algo-
rithm

We investigate the viability of Packaged Naive Bayes (PNB)
for implementing real time activity recognition on smart-
phones. We consider PNB over hidden naive Bayes or naive
Bayes [1] due its advantage in terms of reduced test time in
the recognition phase and higher accuracy over multi-modal
sensor datasets [5].

Assume that A, As, ..., A, are n attributes correspond-
ing to attribute nodes in a Bayesian Network. An example
instance F is represented by a vector < ai,az2,...,a, >,
where a; is the value of A;. Let C represent the class vari-
able corresponding to the class node in a BN. We use ¢ to
represent the value that C' takes and ¢(E) to denote the class
of E. Assume that all attributes are independent given the
class, the resulting classifier Naive Bayes is represented by,

(1) = argmax P(c) [ J(aile) @)

If we denote hidden parent by a4, HNB can be defined as
follows.
¢(E) = arg max P(c)P(a1,az,as,..anlag,c) (5)
ce

In Packaged Naive Bayes (PNB) each attribute either has
a bag of HNB as its hidden parent node or a bag of NB.
During the classification phase, the attributes which have
bag HNB use HNB algorithm, and other attributes in the
bag NB correspond to NB algorithm. At training phase,
each attribute selects the attributes whose dependence with
it are greater than the threshold for being considered in cor-
responding bag HN B; (HN B; is hidden parent). However,
if none of the attributes are selected, the attribute is being
considered into the bag NB (similar to bagging). When the
dataset dimension is low, the threshold is set to a smaller
value, and that there are more attributes being chosen with

Procedure Training_ PNB
(input: nCL D;//D probability distribution
output: PNB Model M)
1. for each cr; € Cr// low-level activity state
2 Compute P(cyr;) from D// observation probability
3 for each pair of attributes A; and Aj
4. for each aj,a;, and cr; to A;,A;, and Cf
5 Compute P(aj|aj,cri) from D
// conditional probability between two attributes
6. for each pair of attributes A; and Aj
Compute I,(A;; A;|CL) and W;; from D
// Conditional Mutual Information between two attributes
8. for each A;
for each A; # A; in D
If I,(As; Aj|C) >threshold HNB; — Aj
// conditionally dependent attributes
9. else NB— A;// conditionally
// independence attributes
10. M = HNBU,,A,P,C,W)
11. Return M

Figure 7: Packaged Naive Bayes Training Algo-
rithm

its corresponding HNB bag with a higher accuracy. Though
the classification process in this case compared to ensemble
learning takes a little longer, it it performs better because
the dimension of datasets remain low. When the thresh-
old is small enough (such as a negative value), this model
evolves into HNB. So if the threshold is set an optimal value,
the model would be a perfect combination of HNB and NB,
which would have a high accuracy and short classification
time. The idea is if just the most correlative attributes are
concerned, it is not only reducing the classification time but
also improving the accuracy. The classifier corresponding to
PNB on an instance E is defined as follows:
number_of_HN B_bags

c¢(E) = arg max P(c) H

i=1

P(ailag, )

number_of_attributes_in_NB

I1 P(ajle)  (6)

The conditional probability of the attribute and its hidden
parent as well as W;; are defined below.

Ir(Ai; Aj1C)

Wi; = - 7
Soaprputes HNB: 15 (A5 A4|C) @

A0 — o P(ai, ajlc)
Ip(Ai Aj|C) = P(aua],C)logip(ai‘c)lj(aﬂc) (8)

aj,aj,c
#attributes_ HN B;

P(ailag, c) = >

J=1,j#i

Wij x P(ailaj,c)  (9)

We extend the PNB by adding an expression tree based clas-
sifier at the end of PNB based low-level activity classification
and applying our heuristic model to confirm a fine-grained
high-level activity classification. Fig 7 and Fig 8 show our
modified PNB algorithm training and inference algorithms
respectively.

5.9 Intelligent Inference Cache

The relationships among various context attributes (i.e.,
low-level, location and high-level context attributes) can-
not be static within an application. It is also tedious and



Procedure Inference_PNB

(input: an instance E; a PNB model M
output: classified instance HA)

1. for each value cp; of CL// each low-level

2. for each a; € E// each attribute

3. If HNB; # 0, Calculate P(ai|ag,cL)
//ag hidden parent attribute

4. else NaiveBayes(NB,E,C)

5. Compute K — cr(FE)

6. HA, = Expression_Tree_Classification(K,ET)
//high-level activity HA at time ¢

7. if HA(t) # HA(t — 1)&HA(t) = HA(t — 2)
&HA(t — 1) < MinDuration(HA(t — 1))
HA(t—1) < HA(t — 2)

8. Duration(HA(t)) = Duration(HA(t — 1))+

9. Duration(HA(t — 2))

10.Return HA

Figure 8: Packaged Naive Bayes Inference Algo-
rithm

error-prone for a single person to define all possible context
relationships within a smart-home environment. Behaviors
of the person are also volatile and they change over time
through a specific pattern, regularity or correlation remains
consistent. We introduce an intelligent inference cache mod-
ule to solve these problems employing an adaptive update
of the expression tree using rule mining techniques. Our in-
telligent inference cache learns additional rules that are not
so-obvious to semantic knowledge definers and dynamically
adapts over time. Meanwhile, applying rule mining in ev-
ery time segment may drastically consume battery power of
smart-phone device. Therefore, we propose to aid in rule
mining technique on temporal segments when there is con-
fusion within the classifier to recognize two activities. Thus
we propose to merge one activity with prior activity and
consider that new activity as an occurrence of behavioral
pattern change. We update this pattern change in the ex-
pression tree configuration to make our inference process
more robust. These techniques are described below.

Rule Mining: Through the rule mining, we aim to generate
rules that have the following general form: (Ci,Cs,...,Cy
= R) which implies that R holds whenever all the tuples
(C1,Ch, ...
kitchen="True = cooking_together=True) implies that if a user
is in the location ‘kitchen’ with low-level context state ‘walk-
ing’ then he is in high-level context state ‘cooking’. We
investigated Apriori algorithm to operate on naive activity
state space model to pinpoint the underpinning spatial con-
texts [18]. A threshold thresh is defined, that is used by
Apriori algorithm to identify the sets of low-level context
states which are subsets of at least T high-level activity.
We formulated the Association rules with a support and a
confidence. For example, if a state space model has 1000
context states, out of which 200 include both context states
A and B and 80 of these include context state C, the associ-
ation rule A, B — C has a support of 8% (= 80/1000) and
a confidence of 40% (= 80/200). The algorithm takes two
input parameters: minSup and minConf to generate all the
rules with support > minSup and confidence > minConf.
We assume minSup = 90% and minConf = 10% which help
strike good balance between tolerating occasional inconsis-
tencies and highlighting the viable rules for our hierarchical
context state space model. Our heuristic model based high-
level activity merging event activates rule mining, calculates

,Cy,) are true. For example, the rule (walking=True;

minSup and minConf over merged segments, generates rules
(if meets the threshold) and helps update the existing ex-
pression trees. Note that Inference Cache can sometimes
return results that are i. incorrect, if user’s behavior devi-
ates from context rules, or . stale, if results are inferred
from stale values due to idle nature of iBeacon and signal
strength distraction by human obstruction. The severity
of incorrectness is reduced by the rule miner conservatively
choosing rules that potentially hold in the activity merging
event. Similarly, to reduce the effect of staling, we choose a
small cache expiry time of 2 minutes.

Rebuild Expression Tree: Intelligent Inference Cache is
activated when a high-level activity merging happens and
generates a set of rules using Apriori algorithm based rule
mining. These set of rules are used to generate new expres-
sion tree for merged high-level activities as follows. Suppose
a new rule for ‘cooking’ high-level context is generated by the
inference cache: ‘cooking’=-{‘sitting’ AND ‘kitchen’}. The
rebuilding of expression tree for ‘cooking’ context starts with
expanding ‘cooking’ node with all associated base rules in-

cluding the new rule (i.e., ‘cooking’=-{‘standing’ AND ‘kitchen’

}, ‘cooking’=-{‘walking’ AND ‘kitchen’} and ‘cooking’={
‘sitting’” AND ‘kitchen’}). Finally a new expression tree
is formed and cached in our intelligent inference cache for
‘cooking’ activity classification as shown earlier in Fig 3(b).

6. EXPERIMENTAL EVALUATION

In this section, we introduce our, Mobeacon smart home
system setup, configuration and data collection. We per-
form preliminary experiments to show the performance of
our proposed lightweight algorithms for real time activity
recognition using bare minimal sensing, processing, comput-
ing, and storing resources.

6.1 Hardware Interfacing

We developed an integrated hardware software toolkit fo-
cusing on having an intuitive application interface and re-
duced reliance on ground truth and intermediate server. We
first describe two Bluetooth Low Energy (BLE) technology
based devices as part of our Mobeacon smart home system
setup.

Estimote iBeacon: Estimote Beacons [22] are small wire-
less sensors that can be attached to any location or object.
They broadcast tiny radio signals (RSSI) which smartphones
can receive and interpret, thus unlocking micro-location and
contextual awareness. With the Estimote Android SDK,
applications on Android based smart-phone are able to ap-
proximate their proximity to nearby locations and objects,
recognize their types, ownerships and measure temperature
and motion. We integrate Estimote Android SDK with our
Mobeacon Android application that gives distance measure
(in meter) between smart-phone and the Estimote Beacon
along with the UUID, major and minor values. A single area
covered by multiple Estimote Beacons generate same UUID
but different major and minor values. Thus we can sepa-

rate individual sub-room level occupancy using the unique
ID (UUID).

6.2 Testbed setup and Data Collection

We develop a real testbed for Mobeacon smart home sys-
tem in a family apartment with a bedroom, living room,
kitchen, long corridor, a porch and a bathroom (Fig 9(a)).
We installed 8 iBeacons and one SensorTag Beacon on the
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Figure 9: Mobeacon Smart Home Set Up

ceiling as displayed in Fig 9(b). The rooms which are in-
volved with multiple high-level activities and complex sub-
region correlations (such as, bedroom is involved with study-
ing, sleeping, pressing clothes etc.) are equipped with three
iBeacons. The rooms with less activities are equipped with
single iBeacon (such as porch area). We also set up three IP
cameras in three appropriate places thus we can exclusively
collect the ground truth of all the performed activities.

We recruited one married couple to live in this apartment
for two weeks. They were trained of using our Mobeacon An-
droid application and showed them how to build their own
semantic knowledge base of daily livings (took 20 minutes on
average to complete semantic knowledge base inputs). They
were asked to perform our pre-defined 5 low-level activities
keeping the smart-phone in their right pocket for two min-
utes each. During this phase we gathered a small amount
of sensor readings and created training sets for our study.
Finally, they were left alone to perform their natural daily
activities. Besides the two inhabitants we have recruited an-
other two participants in the test apartment to perform all of
the scripted ADLs several times without any prior instruc-
tions. They have been asked to keep the Mobeacon Android
application installed smart-phone on their right pocket. Af-
ter gathering entire testbed data, we recruited two graduate
students to label sub-regions, low-level activities and high-
level activities based on the recorded videos and validate
each others’ annotations. This generated 12 hours of fine-
grained labeled ADLs data with 35 chunks of continuous
data sets. These chunks are defined individually for (cou-
ple), (couple + 1) or (couple + 2) inhabitants smart home
activity logs. The entire dataset finally reflects the, natural
ADLs of 4 individuals with semantic knowledge base, smart-
phone accelerometer values (x, y and z axis), iBeacon values
(UUID, major, minor, distance), sub-region IDs and time.

6.3 Cost Accuracy Tradeoffs

In this section we present the results comparing the cost-
accuracy tradeoffs of our models with other traditional mod-
els. We implemented our proposed BEL and PNB algo-
rithms and investigated their performance over existing al-
gorithms. We chose threshold = 0.138 for PBN and a set
of parameters P = (num_bag = 4,num_execution_slots =
4, num_features = 2, num_trees_per_bag = 7) for BEL which
were found optimal through experiment for getting reduced
overhead and improved accuracy.

6.3.1 Accuracy Tradeoffs

We have taken different approaches in different accuracy
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Figure 10: (a) iBeacon distance accuracy (b) Tri-
lateration based localization accuracy for each
sub-region (sorted by area)

tradeoffs in our experiment. In each approach, we choose

the following equation to measure accuracy:
#TP+ #TN

#TP +#FP+ #FN +#TN

where TP, TN, FP and FN represent True Positives, True
Negatives, False Positives and False Negatives respectively.
To measure accuracy of activity classification, we used datasets
chunk by chunk to maintain its continuity.

iBeacon Sensing Accuracy: To test the accuracy of dis-
tance measures as obtained from the iBeacon, we calculated
errors between the actual and iBeacon SDK provided dis-
tance measures in a no obstacle environment. We tested
the distances ranging from 0 to 10 meters for 40 times each
and plotted the error measures as shown in Fig 10(a). We
observed that the error measures are not exactly linear but
proportional to the physical distances between the physical
phone and the iBeacon. The error within a range of 1 meter
was almost = 0 but it became ~ 2 meter at the range of 10
meters.

Indoor Localization Accuracy: We implemented tri-
lateration based sub-region detection algorithm using Java
and evaluated its accuracy through our Mobeacon dataset.
Fig 10(b) shows the regions with one iBeacon (‘SR9’, ‘SR10’
and ‘SR11’) and depicts &~ 100% accuracy for any number
of inhabitants. Other sub-regions that were involved with
multiple iBeacons, accuracies were proportional to their area
measure. Furthermore, we noted that the sub-region detec-
tion accuracy has been decreased as the number of inhabi-
tants are increased (87%, 71% and 65% average accuracies
are noted in case of 2, 3 and 4 inhabitants respectively).
Low-level Activity Recognition Accuracy: To clas-
sify the low-level activities, the 3-axis accelerometer data
streams collected from the smart-phone were broken up into
successive frames. We extracted a number of statistical fea-
tures (i.e., mean, variance, standard deviation, maximum
and minimum, magnitudes, energy etc.) for accelerometer
to create a 20-dimensional feature vector set. We chose 20
samples per second and 1.5 seconds windowing for enumer-
ating the feature sets for low-level activity recognition. The
low-level ground-truth annotated training set was then fed
into the classifiers. We identified 6 best optimized feature
sets (avg. X, max. Y, avg. magnitude, std. magnitude,
XY correlations and energy) through Correlation Feature
Selection (CFS) algorithm [24]. To employ BEL and PNB
for low-level activity recognition, we excluded the expression
tree based inference. We also fed the entire training dataset
into Weka toolkit [21] and trained 4 classifiers: Naive Bayes,

accuracy = (10)
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Figure 11: (a) Low-level activity recognition accuracy and (b) CPU utilization (%) (c) Memory Usage
(MegaBytes) and (d) Power Consumption (miliWatt) measure for Bluetooth Low Energy (BLE), Ac-

celerometer (ACC), Classical Bluetooth (CB) and WiFi

High Ac- | T- T- LB RF | HMM L- L-
tivities BEL | PNB BEL| PNB
Exercising 100 100 100 100 | 100 100 100
Prepare 76.9 90.6 76.9 | 75.5| 75.9 87 91
Food

Dining 94.1 100 94.1 | 93.2| 92,5 99 100
Watching 100 72.3 100 97.5| 96.2 100 75
TV

Pressing 93.6 96.3 93.6 | 93 95.2 96 97
Clothes

Studying 95.8 99.3 94.3 | 95 91.5 99 99.3
Sleeping 100 96.9 100 100 | 100 100 96.9
Bathrooming | 97.5 93.7 96.5 | 97 95.5 99 95.3
Cooking 99.6 94.2 98.3 | 99 94.2 99.6 | 94.8
Past Times 75.4 97.9 72.2 | 75.5| 72.6 85 98.2
Random 75.2 84.3 75.1 | 75.2| 81.2 87 85.2
Overall 92 92.2 91.1 91 93.7 94.5 94.3

Table 3: High-level activity recognition accuracy
using traditional BEL, traditional PNB, Logit-
Boost, RandomForest, HMM, lightweight BEL and
lightweight PNB

Decision Tree (DT), BEL and PNB. Fig 11(a) illustrates the
accuracy measures for each low-level activities. We note that
BEL and PNB outperform two most popular low-level activ-
ity classification algorithms, DT and NB, achieving ~ 87%
and ~ 88% accuracy respectively.

High-level Activity Recognition Accuracy: We im-
plemented several other popular activity classification algo-
rithms such as Hidden Markov Model (HMM), LogitBoost
(LB) and RandomForest (RF) using java APIs in Weka [21]
and compared the accuracy with lightweight BEL and PNB
implementation. From Table 3, we see that lightweight
model helps improve high-level activity recognition accu-
racy by 2%. Although, BEL and HMM show similar ac-
curacy, (lightweight BEL 94.5%, lightweight PNB 93.9%,
HMM 93.7%), classification accuracy in case of complex ac-
tivities like ‘cooking’, ‘prepare food’ etc. tend to be more
accurate in lightweight BEL model than the other ones.

6.3.2 Cost Tradeoffs

We define cost tradeoffs for classification in three different
perspectives: 1) CPU usage; 2) memory usage, and 3) power
consumption. We discuss the details cost tradeofls below.

iBeacon Sensing Cost: Bluetooth Low Energy (BLE)
has been used as a signal transmission protocol of iBeacon.
To compare iBeacon sensing power consumption with other
sensing technologies, we implemented four Android appli-
cations in Google Nexus 4 smartphone. Each application
was involved with accelerometer, iBeacon, Classical Blue-
tooth (CB), and WiFi sensing technologies. Each applica-
tion started with activating their relevant sensors, record-
ing sensing values and executing their individual tasks. We
transmitted data at 100 bytes per second rate over WikFi,
Bluetooth and BLE technologies to measure their respec-
tive performance. We ran the 4 applications separately for
10 minutes and measured average CPU, memory and power
consumption for each application using PowerTutor Android
application. We note that WiFi based data transmission
uses as much as 42 times of the power than Classical Blue-
tooth communication protocol. On the other hand, iBeacon
technology based data transmission consumes 1.3 times less
power than CB for data transmission (Fig 11)(d). iBeacon
and smartphone’s accelerometer sensing based approaches
also occupy much lesser CPU and memory usage that other
sensing technologies (Fig 11(b) and Fig 11(c)).
Classification Cost: We implemented WEKA in Android
platform (MobileWeka) to evaluate the performance of our
two proposed algorithms, lightweight BEL and lightweight
PNB. The advantage of using MobileWeka is that, it sup-
ports WEKA toolkit in Android platform that helps to im-
plement LogitBoost and RandomForest classifiers on smart-
phone too. We ran each algorithm separately for 10 min-
utes and measured average CPU, average memory and total
power consumption for each application using PowerTutor.
We illustrated these results in Fig 12 where we see that,
lightweight BEL performs better than other lightweight clas-
sifiers occupying ~ 4% less CPU and 30MB less memory and
consuming 24% less power.

6.4 Intelligent Inference Cache Performance

We incorporated an intelligent inference cache that peri-
odically senses the contexts (low-, high- and location) and
updates the expression tree over time. At the initial phase,
inference cache frequently updates the expression trees in-
curring higher cost with lower accuracy. When expression
tree becomes stable it helps improve the accuracy with a
lower cost as shown in Fig 12(d).
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Figure 12: (a) CPU utilization (%) (b) Memory Usage (MegaBytes) and (c) Power Consumption (mili-
Watt) (d) Accuracy measure for Bagging Ensemble Learning, RandomForest, LogitBoost and Packaged

Naive Bayes classifiers

7. CONCLUSION

Our iBeacon sensor assisted smartphone-based activity
recognition system holds promises to recognize activity in
real time with higher accuracy and lesser CPU, memory,
cache and power usage. Our contribution is mainly divided
into two parts: first, we set up a Mobeacon smart home
with cheap available energy efficient hardware and smart-
phone software system. Second, we extend two types of
lightweight robust classification algorithms separately: 1)
bagging ensemble learning classifier; and 2) packaged Naive
Bayes classification algorithms. We combine iBeacon with
smart-phone; and exploit an indoor localization based en-
ergy efficient activity recognition framework which help re-
duce the reliance on ground truth data collection and in-
termediate server processing. We also design an effective
smart-phone application interface for defining and creating
an initial semantic knowledge base about the smart home
environment. We effectively use our semantic knowledge
base, expression tree based activity construction, and in-
ference cache to accelerate the activity recognition process
of our lightweight bagging ensemble learning (BEL) based
approach. Our proposed BEL attests the promise of our
methodologies and outperforms several existing lightweight
classifiers in terms of CPU, memory, and cache occupancy
and power consumption performance. We also show that our
efficient duration model based high-level activity merging
provides higher accuracy in high-level activity recognition
even with less accurate low-level activity detection.
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