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ABSTRACT
Falls are among the leading causes of hospitalization for the
elderly and illness individuals. Considering that the elderly
often live alone and receive only irregular visits, it is essen-
tial to develop such a system that can effectively detect a fall
or abnormal activities. However, previous fall detection sys-
tems either require to wear sensors or are able to detect a fall
but fail to provide fine-grained contextual information (e.g.,
what is the person doing before falling, falling directions).
In this paper, we propose a device-free, fine-grained fall de-
tection system based on pure passive Ultra-High Frequency
(UHF) Radio-Frequency IDentification (RFID) tags, which
not only is capable of sensing regular actions and fall events
simultaneously, but also provide caregivers the contexts of
fall orientations. We first augment the Angle-based Outlier
Detection Method (ABOD) to classify normal actions (e.g.,
standing, sitting, lying and walking) and detect a fall event.
Once a fall event is detected, we first segment a fix-length
RSSI data stream generated by the fall and then utilize Dy-
namic Time Warping (DTW) based k Nearest Neighbors
(kNN) to distinguish the falling direction. The experimental
results demonstrate that our proposed approach can distin-
guish the living status before fall happening, as well as the
fall orientations with a high accuracy. The experiments also
show that our device-free, fine-grained fall detection system
offers a good overall performance and has the potential to
better support the assisted living of older people.

Categories and Subject Descriptors
C.4 [Special-Purpose and Application-Based System
]: Realtime and RFID-based system
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Fall Detection, Device-Free, RFID, Anomaly Detection, House-

.

hold Monitoring

1. INTRODUCTION
Falls happen when human body suddenly changes from a

normal living status (e.g., sitting, standing, or walking) to
the reclining without control [25], which often occur in a very
short time without human attentions. Falls may cause mod-
erate to severe injuries including hip fractures, head trau-
mas, even more devastating consequences for the elderly.
Based on the Centers for Disease Control and Prevention,
one-third population of the elderly who aged 65 and older ex-
perience falls each year [32]. Researchers estimate that up to
50% of nursing home residents fall each year and more than
40% of them might fall more than once [32]. Moreover, stud-
ies have shown that the medical outcome of a fall is largely
dependent on the response and rescue time[16]. The delay
of medical treatment after a fall can increase the mortality
risk in some clinical conditions, especially for those who live
alone [29]. Thus, falls are a major health risk that dimin-
ishes the quality of life among the elderly people, strongly
motivating the necessity of fall detection systems.

Figure 1: RSSIs variation patterns when falls occur

Over the past decades, fall detection (FD) and prevention
have been an active research area with several proposed solu-
tions. Both wearable sensor based (e.g., inertial sensors [2],
accelerometer [3, 8], specialized cane [16]) and smart-phone
based [5, 14] fall detection techniques require the subject
to be attached with sensors or phones, which might not be
practical (e.g., sensors lost/damaged, or forget to carry by
the elderly with dementia). Vision based fall detection sys-
tems [9, 27, 18] employ activity classification algorithms on a
series of images recorded by a video camera, which is usually
regarded as being privacy invasive and causes uncomfortable
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feeling to the elderly. Vision-based systems also fail to work
in dimmed or dark environments, where falls usually hap-
pen.

Recently, some device-free techniques for fall detection
have been proposed [26, 20, 31]. However, in most of these
systems, some complicated or personalized devices (e.g., pres-
sure sensor, audio sensor, radar) are needed to be implanted
in the environment, and then the variations of audio, pres-
sure or microwave signals are used to infer a fall event. As a
result, most of them can only sense whether a fall happened,
but fail to provide more fine-grained information [23], which
is valuable to caregivers. One of the fine-grained contexts
is the status (e.g., sitting, standing or walking) before a fall
occurs. For example, when people fall down while standing
or siting, some serious diseases possibly have happened such
as cerebral haemorrhage or cardiopathy [32]. But when peo-
ple are walking, the falling is possibly caused by knocking
some obstacles. Another useful contextual information is
the fall orientations (e.g., fall to front, fall to back or fall to
the right side), such as falls to back may seriously damage
the subject’s head, while falling to the right side may more
likely cause injuries to arms or legs.

Based on these motivations and the prosperous develop-
ment of RFID techniques, this paper aims to investigate if
device-free, fine-grained fall detection can be achieved with-
out any carried devices by using pure UHF passive RFID
tags. Figure 1 illustrates the basic intuitions of our work.
When the subject falls from standing, the Received Signal
Strength Indicators (RSSIs) show different fluctuation pat-
terns, indicating the potential for detecting a fall. Compared
to other hardware platforms, RFID is cost-effective (passive
tags cost several cents each) and practical (e.g., no main-
tenance since no battery needed) [28]. Moreover, there are
few works so far studying the relationship between RSSIs
variations of passive tags and human activities (e.g., falls).

In this paper, we propose an unobstructive, fine-grained
fall detection system called TagFall, which can detect a fall
event, be capable to sense normal living actions (e.g., stand-
ing, sitting, lying and walking in our case), and can dis-
tinguish the falling directions. To achieve a fine-grained
fall detection, our TagFall mainly consists of two detection
phases: a) Detecting Normal Actions and Falls: we aug-
ment Angle-based Outlier Detection (ABOD) [15] method
to mine the clustering patterns of RSSIs (generating by nor-
mal human actions) and detect an anomaly pattern (caused
by falls) simultaneously; and b) Detecting Fall Directions:
once we detect a fall happened, we segment a fix-length data
stream, which we use to calculate the Dynamic Time Warp-
ing (DTW) [11] distance with profiled data streams (known
labels). So we can distinguish the fall directions by a ma-
jority vote of its k nearest neighbors based on the DTW
distances. In summary, the core idea of this paper is to
mine the clustering patterns and change rules of RSSIs when
the environment is affected by different human actions (e.g.,
normal activities and falls with different orientations). The
main contributions are listed as follows.

• We exploit the feasibility of using passive RFID tags
to achieve unobstructive, fine-grained fall detection.
To the best of our knowledge, this is the first work
to leverage RSSI signals for device-free fall detection
based on pure passive RFID tags.

• We propose a fine-grained fall detection pipeline, which

Figure 2: Hardware Deployment

not only can detect a fall event, but also be capable
of offering the contextual information of the subject’s
status before falls occur and the falling directions.

The rest of the paper is organized as follows. Section 2
introduces the hardwares and intuitions of our system. We
present our system architecture in Section 3 and propose
our solutions in Section 4. Section 5 presents experimental
results and analysis. Section 6 reviews related work and
Section 7 gives the discussion. Finally, Section 8 offers some
concluding remarks.

2. HARDWARE AND INTUITIONS
Figure 2 shows the system setup, including an Alien ALR-

9900+ Enterprise RFID Reader (20.3cm×17.8cm×4.1cm),
two-circular antennas (20cm × 20cm × 3cm), and squiggle
Higgs-4 passive tags (1cm × 10cm). The reader operates
at 840-960MHz and supports UHF RFID standards such as
ETSI EN 302 208-1. We set the sample rate as 0.5s and each
tag reading contains a time-stamp, a tag ID, an antenna ID
and an RSSI value, which is processed by a WINDOWS 7
PC with an I7-3537U 2.5GHz processor and 8G RAM.

Based on our preliminary experiments, we place the an-
tenna 1.5m above the ground, facing tags with approxi-
mately 60◦, and attach tags on the wall with an approxi-
mate 0.6m interval. When people perform activities in the
testing area, an antenna can not guarantee to read all tags
(interfered by human body), particularly for passive tags.
To avoid this, we send an RSSI request to all tags within a
sampling time. If we cannot receive RSSI readings of a cer-
tain tag, the RSSI value is manually set to 0. Thus, math-
ematically, for all time stamps, we have the RSSI vectors
with the same dimensions. In our settings, the tag detec-
tion range can be up to 6 meters. It is worth mentioning
that, the electromagnetic fields generated by the readers, in
any case, remain lower than the limitation of thresholding
value for humans based on the report [22], which means the
hardware used have no health risk to subjects.

Based on the hardware, we first run a series of pilot experi-
ments to validate our intuitions. Figure 3 demonstrates that
when the subject in different living status, the RSSIs display



Figure 4: System Architecture

Figure 3: RSSIs variation patterns when a subject
falls from different status

different invariant patterns. When the subject falls down
from normal status (e.g., sitting, lying, standing or walk-
ing), the RSSIs reflect some unique variations that are dif-
ferent from previous stable patterns. Underpinned by these
observations, it is possible for us to utilize some supervised
classification algorithms to distinguish resident’s regular liv-
ing actions, as well as adopt anomaly detection method to
detect an abnormal event (e.g., falls). In the next section,
we will introduce how to tackle both problems by extending
the traditional ABOD method.

Figure 5: RSSIs variation patterns when a subject
falls to different directions from standing

Figure 5 shows that the measured RSSIs can reveal var-
ied fluctuation patterns due to the subject’s falling down to
different directions (e.g., front, left, right or back side) from
standing, which allow us to utilize such underlying trends to
recognize the falling orientations. Motivated by the observa-
tion, we could adopt data-stream classification methods to
classify resident’s falling directions. In this paper, we solve
this problem by using DTW distance based kNN. Overall,
our preliminary studies have shown the feasibility and po-
tential of our TagFall system to achieve a fine-grained fall
detection.

3. SYSTEM ARCHITECTURE
Figure 4 shows an overview of proposed system. It con-

sists of five main phases: the sensing phase, the profile con-
struction phase, the fall detection phase, the falling direction
sensing phase, and the altering phase.

Activity Sensing phase: the antenna in the test area collects
RSSI readings propagated by passive tags and then sends
them to the reader, which delivers the data package includ-
ing RSSI values, time stamp, antenna ID and tag ID to a
desktop computer for further processing.

Profile construction phase: we first utilize slide average smooth-
ing to filter the noises caused by temperature, humidity
changes [28] and categorize daily activities into four cate-
gories (i.e., sitting, standing, lying and walking, shown by
Figure 12). Then, we calculate the angle variances of vector
pairs formed by same action category and decide the upper
and lower boundary of variances, which contain most likely
variances. In the meantime, we sample the most represen-
tative data point for each regular action category to speed
up the later online angle variance calculation. We also col-
lect segmented data streams generated by falls with various
falling directions to build the anchoring data streams for the
later DTW distance calculations.



Fall Detection phase: we perform the same smoothing as
Profile Constriction phase and then calculate the angle vari-
ances of vector pairs formed by an observed RSSI and pro-
filing data points for each normal action category. Based on
the calculated variances (i.e., 4 variances in our case) and
learned variance bounds, we identify the target’s current ac-
tions by judging whether the variance lie in corresponding
boundaries. If the variances are within the bounds of mul-
tiple action categories, we assign the activity label that has
the most likely variance. When all four variances are beyond
the bounds of known regular actions, the observed RSSI is
regarded as an anomaly, which means the subject currently
is experiencing a fall.

Falling Direction Sensing phase: once we detect a fall event,
we first segment a data stream with the same length as the
anchoring data streams. Then, we calculate the DTW dis-
tances between segmented data stream and all anchoring
data streams. At last, we can distinguish the falling direc-
tion by a majority vote of its k nearest neighbors regarding
the DTW distance.

Altering and Update phase: in the meantime, we issue an
alarm (e.g., ring an alarm bell) when a fall event is detected.
If the user does not timely stop the alarm, we send an ask-
for-help SMS or call. Also, if the alarm is timely stopped but
is a false alarm, we update the profiling data by adding the
error-detected samples into right action category to enhance
the detection performance.

4. THE PROPOSED SOLUTION
The key phases of our TagFall are how to efficiently dis-

tinguish the normal daily living actions and a fall event, and
how to accurately classify the falling directions. In this sec-
tion, we will introduce technical details on how these two
problems are solved.

4.1 Fall Detection
One of the challenges in this paper is to detect the anoma-

lous patterns in RSSI signals. A fall involves a series in-
tensive posture changes (e.g., human postures sudden alter
from standing, sitting or lying to the ground), which result
in sudden, wide range fluctuation of RSSI patterns (see Fig-
ure 3 and 5). To tackle the challenge, we propose a p-partial
Angle-based Outlier Detection that can identify p categories
of human regular actions and isolate the anomaly patterns.
Angle-based Outlier Detection is first proposed by Hans-
Peter Kriegel et al. [15] for finding anomalous data points
caused by a different responsible mechanism. Unlike purely
distance-based approaches (e.g., Local Outlier Factor [4]),
ABOD does not rely on any parameter selection influencing
the quality of achieved results. Here, we extend ABOD to
do both classification and anomaly detection by mining the
different patterns of angle variances paired by intra-action
and inter-actions.

Figure 6 illustrates the basic intuition of our approach.
For points (can be multi-dimension) generated by a same
human activity, the angles between different vector pairs
differ widely, which means a large angle variance (e.g., an-
gle α1, α2, the variance of angle paired by data points of
sitting is ranged from 1.17 × 10−10 ∼ 8.18 × 10−6). The
angle variance of vector pairs generated by different human
activities is smaller since most points are clustered in some
directions (e.g., angle β1, β2, the variance of angle paired

Figure 6: Intuition of angle-based outlier detection

from data points of falling to data points of sitting is ranged
from 4 × 10−14 ∼ 1.53 × 10−13). Therefore, we can classify
different regular actions (easily collected, e.g., standing, sit-
ting and walking), and detect abnormal actions (difficultly
obtained, e.g., falling) by measuring the angle variances be-
tween a testing data point and the constructed profiling
dataset. We first give the definition of Angle-based Out-
lier Factor (ABOF) [15] which measures the angle variance
of a data point paired with other data points.

Definition 1 (ABOF). Given a database D ∈ Rd, a
point A ∈ D, and a norm || ||. The scalar product is de-

noted by < ., . > . For two points B,C ∈ D, BC denotes
the difference vector C − B. The angle-based outlier factor
ABOF (A) is the variance over the angles between the differ-
ence vectors of A to all pairs in D weighted by the distance
of the points:

ABOF (A) = V ARB,C∈D

( < AB,AC >

||AB||2 · ||AC||2
)

=

∑
B∈D

∑
C∈D

( 1

||AB|| · ||AC||
·

< AB,AC >

||AB||2 · ||AC||2
)2

∑
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∑
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1

||AB|| · ||AC||

−
(∑

B∈D
∑

C∈D
1

||AB|| · ||AC||
·

< AB,AC >

||AB||2 · ||AC||2∑
B∈D

∑
C∈D

1

||AB|| · ||AC||

)2

(1)

Based on ABOF, our proposed p-partial ABOD works as
follows. Given that we already have profiling dataset regard-
ing the resident’s different regular living activities, we first
compute off-line the angle variances of vector pairs in the
dataset generated by the same activity for all p categories
(p = 4 in our case, i.e., sitting, standing, lying and walk-
ing, see Figure 7 (a)∼(d)). Then, based on the variances,
we decide the lower and upper bounds for the p categories
by a box and whisker diagram, which is a standardized way
of displaying the distribution of data (see Figure 12). We
then can online calculate the angle variances of an observed
RSSI vector paired with the p-category profiling datasets
(i.e., falling to sitting, falling to standing, falling to lying
and falling to walking, see Figure 7 (e)). We assign labels
to the test sample whose angle variances are within the cor-
responding boundaries. If multiple labels are assigned, we
choose the category that the corresponding variance of test-
ing data point lies in the middle of box as most (e.g., as-
sume that the angle variances of a test data point paired
with walking data and standing data are both 10−12, but
the variance for walking data is in the middle of the box



Figure 7: Intuition of pABOD

Figure 8: Outline of DTW based kNN

more, see Figure 12, we assign the test data as walking). If
no labels are assigned, we treat it as a potential outlier.

Unlike previous fall detection systems which usually either
utilize some learning-based classification to distinguish a
falling event from other activities [23], or first adopt anomaly
detection method to detect an outlier point and then per-
form one-vs-all classification [12], our method focuses on
mining the clustering patterns of RSSI data based on the in-
tra angle-variance and inter angle-variance of multiple-group
dataset to avoid parameter tuning.

4.2 Falling Direction Sensing
Sensing the falling direction in fact is a time-series clas-

sification problem. We need to classify the segmented RSSI
data stream with a label (i.e., falling directions). To tackle
the problem, we introduce a DTW based kNN method.

DTW is an efficient algorithm for measuring similarity
between two temporal sequences which may vary in time
or speed (e.g., walking pattern, speech recognition) [11].
Given two multi-dimensional time-series, X = {x1, ...,xN}
and Y = {y1, ...,yM}, where xi,yi ∈ RD, algorithm starts
by building the local cost matrix C representing all pairwise
distances between X and Y:

C ∈ RN×M : ci,j =‖xi − yj‖ , i ∈ [i : N ], j ∈ [1 : M ] (2)

Based on the Local Cost Matrix C, we can construct the Ac-
cumulated Cost Matrix M, which contains all possible warp-
ing paths (see Algorithm 1). Then Dynamic Programming
is used to find the optimal warping path and DTW distance,
starting from the point pend = (M,N) to the pstart = (1, 1)
(Algorithm 2).

To our case, when an anomalous RSSI pattern is detected,
we first segment a data stream with m continuous time sam-
ple (we choose m = 8), starting from where we detect as
an abnormal point. Then, we calculate all the DTW dis-

Algorithm 1: Accumulated Cost Matrix

Input: Two multi-dimensional time-series: X,Y, Local Cost
Matrix C

Output: Accumulated Cost Matrix M

1 N ← length of X
2 M ← length of Y
3 M← new[N ×M ]
4 M(0, 0) ≡ 0
5 for i = 1; i ≤ N ; i + + do
6 M(i, 1)←M(i− 1, 1) + C(i, 1);
7 end
8 for j = 1; j ≤M ; j + + do
9 M(1, j)←M(1, j − 1) + C(1, j);

10 end
11 for i = 1; i ≤ N ; i + + do
12 for j = 1; j ≤M ; j + + do
13 M(i, j)←

C(i, j) + min{M(i− 1, j);M(i, j − 1);M(i− 1, j − 1)};
14 end

15 end

16 return M

Algorithm 2: Optimal Warping Path

Input: Accumulated Cost Matrix M
Output: Optimal Warping Path Path and DTW distance Dis

1 Path[]← new array
2 i = rows of M
3 j = columns of M
4 Dis = 0
5 while (i > 1)&(j > 1) do
6 if i == 1 then
7 j = j − 1
8 end
9 if j == 1 then

10 i = i− 1
11 end
12 else
13 if Path(i− 1, j) ==

min{M(i− 1, j);M(i, j − 1);M(i− 1, j − 1)} then
14 i = i− 1
15 end
16 if Path(i, j − 1) ==

min{M(i− 1, j);M(i, j − 1);M(i− 1, j − 1)} then
17 j = j − 1
18 end
19 else
20 i = i− 1; j = j − 1
21 end
22 Path.add((i, j));Dis = Dis + M(i, j)

23 end

24 end

25 return Path,Dis

tances between the segmented data stream and the profiling
data streams using the multi-dimensional DTW by optimal
matching between two given RSSI sequences. Finally, we
can classify the falling directions based on a majority voting



Figure 9: Room layout and three representative ac-
tion paths

by its top k smallest DTW distances. Figure 8 illustrates
the general idea of our DTW based kNN.

5. EVALUATION
We evaluate our system in a real-world living bedroom

(size: 3.9m×3.6m). Fig 9 shows the experimental setup and
furniture deployment. Two subjects participate in the ex-
periments, one male (Age : 28, Height = 172cm,Weight =
68kg) and one female (Age : 27, Height = 163cm,Weight =
49kg).

5.1 Evaluation Metrics
For regular actions and falling direction classification, we

use standard precision, recall and accuracy to measure our
proposed approaches [23]. For fall detection, we evaluate our
result in terms of Detect Rate and False Detect Rate [12].

DetectRate =
True Positive

# of Fall Events
(3)

FalseRate =
False Positive

# of nonFall Events
(4)

5.2 Sensing Normal Activities and Falls
We first collect our profiling data, which involves normal

daily living activities (see Figure 10, time span is one day).
Then we mimic overall 20 different fall events, including var-
ious falling directions and locations, shown by 11. All fall
events are conducted by both participants repeating 3 times
each (i.e., 120 fall events).

Based on the collected profiling data, we first calculate the
angle variance of RSSI vectors paired by same action cate-
gory (i.e., sitting, standing, lying and walking, illustrated by
Figure 7 (a)∼(d)). The mean value of variances for regular
actions is ranged from 5.14× 10−14 to 4.73× 10−12, but the
maximum value of angle variance paired by falling to regular
actions (shown by Figure 7 (e)) is 1.36×10−14. Thus, we can
easily separate the space of regular actions with falls. Fig-
ure 12 shows our predefined regular activity categories and
the learned variance boundaries. We set the lower and upper
bound of box diagram as 15% and 85%, so the interquartile
range includes 70% of most possible variances. From the box

Figure 10: Types of normal activities

Figure 11: Different falls in the experiments

Figure 12: Regular activity categories and bound-
aries

and whisker diagrams, we can easily determine the variance
range for each action. The boundaries of regular actions are
ranged from 7.42× 10−14 to 1.23× 10−12, in which the low-
est value of all four lower boundaries (i.e., 7.42 × 10−14) is
bigger than the maximum value of angle variance calculated
by falling to regular actions (i.e., 1.36×10−14). This further



Figure 13: Confusion Matrix and Detection Perfor-
mance

verifies the feasibility of our method.
After the boundaries for each normal action are learned,

we collect 3,492 non-fall events (varies in time length) gen-
erated by regular activities to test our method (e.g., read-
ing book in bed, cleaning carpet, see Figure 10), which can
achieve overall 94.7% accuracy. Figure 13 (a) (b) illustrate
the performance of sensing regular activities. kNN and SVM
are two classification methods that are frequently used by
other fall detection systems [23]. Thus, we compare our
method to kNN [1, 20] (k = 5) and SVM [12, 14] (lin-
ear kernel, termination criterion=0.015, C=100, others as
default [7]). Our method performs well in distinguishing
sitting (98.7% accuracy) and standing (96.7% accuracy) ac-
tions but slightly worse in lying (92.4% accuracy) and walk-
ing (91.5% accuracy). kNN method only achieves 81.9%
in classifying walking action. Our method does not require
tuning any parameters and achieves comparable good accu-
racy, although SVM performs slightly better in distinguish-
ing walking (93.1% accuracy) and Lying (93.5% accuracy)
action.

Figure 14: Detection rate and false detection rate
varies with the boundaries size (X-axis only shows
the lower boundary, so upper boundary should be
100% − LowerBoundary, the boundary range should
be UpperBoundary − LowerBoundary)

Figure 13 shows the capability of our method in detect-
ing falls. We test overall 120 fall events, including falls
from working at desk, dressing up, cleaning the carpet, and
falling to different orientations (e.g., falling to front, to back,
to right and to left, shown by Figure 11) and 3,492 non-
fall events. The result shows that our method can achieve
90.8% detection rate and 12.1% false detection rate. As a
comparison, we also utilize LOF (adopted by WiFall [12])
to our dataset, which receives a 81.7% detection rate and
16.3% false detection rate. In this setting, we set the bound-
aries of box diagram (Figure 12) as from 15% to 85%. We

can choose different boundaries of the box diagram (e.g.,
5%∼95%, 10%∼90%, 20%∼80%, see Figure 14). It illus-
trates that both the detection rate and false detection rate
increase when the boundary size becomes smaller (spans
from 90% to 20%). However, the false detection rate expe-
riences dramatic growth but the true detection rate in fact
does not significantly increase (from 90.8% at 15% to 98.2%
at 40%). Thus, we choose 15% and 85% as our lower and
upper boundaries in term of the box and whisper diagram.

Figure 15: Confusion Matrix of DTW based kNN
(k = 3)

Figure 16: Accuracy of classifying falling direction
varies with parameter k

For falling direction classification, we choose 16 fall events
which contain falling directions (see Figure 11, some falls
have no direction context such as falling from bed). Each
fall is conducted by both participants and repeated 3 times
each (overall 96 fall events). Figure 15 shows the confusion
matrix of our DTW based kNN method choosing k = 3. We
can observe that the overall accuracy is 87.5%, but the pre-
cision and recall in classifying falling to front are only 69.2%
and 75%. The reason may lie in fact that falling to front
and falling to right/left are quite similar in some cases since
these two falling directions are adjacent. Our method per-
forms good at distinguishing the falling to back (precision
and recall are both 91.7%) which possible cause severe dam-
age to the head. The key parameter in DTW based kNN is
the k value that heavily affects the classification accuracy.
Figure 16 illustrates the relation of classifying accuracy with
parameter k. As it shows, the accuracy at first increases
with the growth of k value, climbing the peak at k = 3, then
gradually decreases along with the increase of k. Thus, we
choose k = 3 in our experiments.

Figure 17 shows performance of our system in three repre-
sentative action paths. The bold lines are the ground truth,



Figure 17: Detect fall events in action paths

the Y-axis from 1 to 5 represent action categories (i.e., sit-
ting, standing, lying, walking and falling). The three action
paths are shown by Figure 9:

• Lying in Bed (60 seconds) =⇒ Sitting in Chair (60
seconds) =⇒ Falling Down,

• Lying in Bed (60 seconds) =⇒ Dressing Up in Front
of Mirror (60 seconds) =⇒ Falling Down,

• Sitting in Chair (60 seconds) =⇒ Cleaning the Carpet
(60 seconds) =⇒ Falling Down.

We can see that in the first action path, our method can
timely distinguish the actions and detect the fall event, al-
though generating some unstable predictions when the resi-
dent transfers from getting up from bed to sitting in chair.
Our system on the second action path displays the same clas-
sifying capability, but it outputs some bad predictions after
the resident falls from dressing up although it successfully
detects a fall event in the first few points. From the third
action path, we observe that the classification result is not as
good as previous two paths when the subject is cleaning the
carpet, for the reason that cleaning involves plenty of activi-
ties that may generate some similar RSSI patterns as sitting
and standing actions. In summary, when an activity shift
occurs (e.g., from lying to sitting in the chair, from sitting to
cleaning the carpet), the sensing results are usually decayed,
which is normal due to unpredictable movements of human
body. After detecting a fall, the continuing sensing result is
unstable since people usually lie or sit on ground after a fall,
which is similar to our predefined regular activities.

6. RELATED WORK
Timely detecting a fall event can abbreviate the damage

degree and reduce the morality for the elderly. Fall detec-
tion for elderly has been a hot topic in health-care industry
and has attracted a lot of attention from academia in the
past two decades. Since early 1990s, many fall detection
systems have been proposed by researchers from different
communities. In [23, 25], the hardware and methods used
in existing fall detection systems have been thoroughly dis-
cussed and reviewed. Based on the hardware used by fall
detection, current systems can be classified into four groups:
wearable sensor based, smart-phone based, vision-based and
environmental sensor based techniques. From the point of

Figure 18: Design Space: comparing to related work

obstructiveness, the former two categories can be regarded
as device-free, the latter two are of intrusive in general.

Wearable sensor based fall detection systems rely on sen-
sors that are embedded in wearable stuff such as coat, belt
and watch or be taken by hand, such as smart cane. The
widely used sensors include inertial sensors [17], tri-axial ac-
celerometers [8], gyroscopes [19] and smart cane [16]. Lee et
al. [17] proposed a novel vertical velocity-based fall detec-
tion method to detect a fall event using a wearable inertial
sensor. Cheng et al. [8] designed a cascade-AdaBoost-SVM
classifier to realize a real-time fall detection method based
on tri-axial accelerometers worn on the body. Li et al. [19]
presented a fall detection system using both accelerometers
and gyroscopes, in which linear acceleration and angular ve-
locity are measured to determine whether motion transitions
are intentional. In [16], Lan et al. present and design an au-
tomatic fall detection system by using a smart cane. These
detection systems can only work on the premise that all the
devices are worn by the subject and connected correctly to
the human body. Such requirements give additional burden
and interfere subjects’ daily life, which are impractical for
some applications.

Most modern smart-phones have built-in sensors that can
measure motion, orientation, and various environmental con-
ditions. These sensors are capable of providing raw data
with high precision and accuracy. Thus, smart phone based
fall detection is promising and with good potential [1], which
can integrate all sensors into one single mobile device (e.g.,
inertial sensors [2], tri-axial accelerometers [5] and gyro-
scopes [14]). However, smart-phone based fall detection sys-
tems share the same mechanism as wearable sensors based
techniques. They also have the same problem with wearable
based methods. Most users may not take with their phones
all the time, especially at home.

Much work has also been done in investigating the use of
standard imaging sensors for fall detection. Approaches have
ranged from single cameras mounted on the wall to multiple
cameras placed around a room [10, 9], or to using a depth-
camera Kinect [30, 21]. Lee [18] detected a fall by analyzing
the shape and 2D velocity of the person. Rougier [27] used
wall-mounted cameras to cover large areas and falls were
detected using human shape variation. Despite the consid-
erable achievements that have accomplished in this field over
the recent years, traditional camera-based systems still suf-
fer from a number of limitations. The problem this method
brings is that people may feel uncomfortable with a camera
overhead, especially in bathroom. Besides the privacy in-



trusion, this method is also limited by line of sight problem
and fails in darkness, where falls usually happen.

Device-free fall detection that use environmental sensors
attempt to fuse ambient noise information including thermal
distribution [13], audio [20], floor vibrational [26], Channel
State Information (CSI) [12] data and microwave signal [31]
produced by a fall for the detection purpose. The princi-
ple is based on the fact that human movements in a living
setting will cause the signal variations of environmental sen-
sors (e.g., pressure senors [26], acoustic sensors [20], ther-
mal sensors [13] and wireless transceivers [12], radars [31]),
which can be regarded as being less intrusive. For example,
WiFall [12] employs the time variability and special diver-
sity of Channel State Information (CSI) as the indicator
of human activities to infer a fall event. However, current
device-free fall detection systems focus more on detecting a
fall event in some predefined areas and fail to provide fine-
grained information such as status before falling and fall
orientations, which may be valuable for rescuers. Figure 18
illustrates our device-free, fine-grained fall detection system
based on pure UHF passive RFID tags in the design space
of current FD systems. Compared to other hardware plat-
forms, RFID is cost-effective (passive tags cost several cents
each) and practical (e.g., no maintenance needs, no battery)
and promising in identifying environmental changes [24, 28].
In the meantime, our FD system can provide fine-grained
contextual information of a fall event, including what is peo-
ple doing before falls and the falling orientation.

7. DISCUSSION
Computation Cost: In the Profile Construction phase (off-
line part), for a daily recorded activities, based our config-
uration, the calculation time for angle variances is around
70 minutes. With the constructed profile data, we can on-
line process each given data sample (i.e., the fall detection
phase) within 0.4 seconds. For the falling direction sensing
phase, the calculation complexity of DTW is O(NM) [11]
(both equal to 8 in our case), so calculation itself is fast.
However, we need to segment a fix-length data stream be-
forehand, which results in a latency (about 4 seconds in our
case). However, in the direction sensing phase, we aim to
provide fine-grained contexts regarding the happened falls,
which does not affect timely detecting a fall and sending an
alarm (done in the fall detection phase).

Hardware: We use standard, commercial RFID system with
passive tags in our work. The passive tags are more cost-
effective and, due to their simple structure and protective
encapsulation, more robust than the sensor nodes. Passive
tags operate without batteries. Once deployed, no further
maintenance is required. The devices that require power in
our sensing system is the RFID reader and antenna. But
recent technical trends show that low-cost, low-power RFID
readers are becoming commonly available by integrating into
the smart phones, making our work potentially beneficial to
the more users in the future.

The Methods: As for fall detection techniques, current fall
detection systems mainly adopt supervised classification-
based method to detect a fall event, such as Support Vector
Machine (SVM) [2, 8, 12], Neural Network [9] or Extreme
Learning Machine [21], which have to tune plenty of param-
eters to achieve satisfied accuracy. But in our fall detection

phase, we aim to mine the clustering patterns of RSSIs based
on the variances of angle paired by data point of different
actions when the environment is affected by diverse human
activities. Thus, different to the traditional classification
or distance-based anomaly detection methods, our proposed
method relaxes the requirement of tuning parameters that is
time-consuming and sensitive to different test scenarios [6].

The Limitations: One of limitations is that the current sys-
tem is designed for and tested with only a single resident.
We believe that this is an important use case, particularly in
an aging-in-place setting, which aims to ensure that a single
person can live in his/her home and community safely and
independently regardless of age and ability level. However,
the number of profiles needed with multiple persons would
increase exponentially. A more promising approach there-
fore would be to find techniques that can isolate concurrent
activities in separate space from each other and match them
against profiles separately, which we will consider in our fu-
ture work. Another limitation is that labeling profiling data
is time-consuming and labor-intensive, which is also an is-
sue shared by other fall detection systems. In the Profile
Construction phase, we have to use a camera to record the
daily living activities, and then synchronize the camera and
RSSI reading based on the time stamp, finally label and seg-
ment data streams into different action categories to build
a labeled profile dataset based on the video records.

8. CONCLUSION
To detect a fall event in our daily living environments, we

present an unobstructive, fine-grained fall detection system
based on pure passive RFID tags. By proposing a p-partially
Angle-based Outlier Detection method, our system can si-
multaneously identify regular activities and detect a fall
event. By adopting DTW-based kNN, the proposed system
can distinguish different falling orientations. Our approach
relaxes the requirement of tuning parameters and provides
more fine-grained contexts regarding fall events comparing
to the current fall detection systems. In the future, we will
enhance our system in detecting falls of multiple subjects
and making the system more robust.
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