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ABSTRACT
The Internet of Things (IoT) paradigm aims to interconnect a va-
riety of heterogeneous Smart Objects (SO) using energy-efficient
methodologies and standard communication protocols. A majority
of consumer devices sold today come equipped with wireless LAN
and cellular technology to connect with the world-wide network.
To discover Wi-Fi hot spots, there is a need for constant scanning
of Wi-Fi radio in these devices and results in significant battery
drain. We present PRiSM, a practical system to automatically lo-
cate Wi-Fi hotspots while Wi-Fi radio is turned off, by using the
statistical characteristics of cellular signals. Cellular signals are re-
ceived at zero extra cost in mobile devices and hence PRiSM is
highly energy-efficient. It is a lightweight client-side only imple-
mentation and needs no prior knowledge on floor plans or wireless
infrastructure. We implement PRiSM on Android-based devices
and show up to 96% of energy savings in Wi-Fi sensing operations
which is equivalent to saving up to 16% of total battery capacity,
together with an average prediction accuracy of up to 98%.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; H.3.4 [Information Storage and Retrieval]: Systems and
Software

General Terms
Design, Experimentation, Algorithm, Performance

Keywords
Wi-Fi Sensing, Cellular Signals, Smart Objects, Location Finger-
printing, Energy Efficiency

1. INTRODUCTION
The Internet of Things (IoT) paradigm aims to interconnect a va-

riety of heterogeneous Smart Objects (e.g., sensors, smart devices,
home automation equipment) using Machine-to-Machine commu-
nications. A majority of consumer devices sold today come equipped

with a variety of wireless communication technology (e.g., Blue-
tooth Low Energy, Wireless LAN, Near Field Communication, Cel-
lular) to connect with the world-wide network. With billions of
such devices predicted to connect with the future internet, bringing
the physical data from these devices to the digital world requires
energy-efficient methodologies and standard communication pro-
tocols. Devices that provide health monitoring, smart home and
workplace, enterprise data security, and many others need to con-
stantly sense their context and communicate with the network to
collaborate with others. But to connect to a hotspot, there is a need
for constant scanning of Wi-Fi access points (APs) in these devices
and results in undesired battery drain. To design an accurate and
an energy-efficient Wi-Fi sensing system is (still) a very non-trivial
task. The reasons include: almost 60% of battery drain in smart
devices result from Wi-Fi [2], not all public Wi-Fi hotspots offer
good connectivity and leads to poor user experience [5], frequent
disconnection and re-association events with APs incur high energy
costs than normal.

Prior works used optimal scanning intervals for Wi-Fi to identify
hotspots [16,30]. The scanning intervals are increased or decreased
based on parameters like AP inter-arrival time, AP density and user
velocity. Since the Wi-Fi connectivity times and movement pat-
terns vary among users, these methods do not adapt well for all
users. Wi-Fi signal fingerprinting techniques [7, 33] use extensive
offline pre-processing stage to construct signal strength models and
to calibrate the radio maps. Also, the techniques take more time
to converge. Multi-modal sensing techniques (e.g., Accelerome-
ters [16], GPS [11, 13, 21], Bluetooth [6], Zigbee [35]) are also
developed to identify context. Few others use average received sig-
nal strengths from connected cellular base stations to predict user
location [12, 27, 31]. However, averaging the signal strength val-
ues results in loss of granularity and use of additional sensors con-
sume significant extra battery energy (e.g., Accelerometers con-
sume close to 0.667mWh every 30 sec [22]). Some require in-
frastructural changes and extensive war-driving efforts to obtain
feature-rich data sets. Also, most commercial systems (e.g., WiFi
Sense [4], Place Lab [18]) turn on the radio interfaces continuously
to identify context which results in excessive battery drain where
Wi-Fi scan/association is observed to have high initial costs [9,24].
Upon observing the existing solutions, we sense a need for a new
system which is light-weight and does not require extensive data
pre-processing. It should consume minimal battery energy, provide
ways to continuously accommodate the signal fluctuations, and be
easily deployable in real world. Thus the question we ask ourselves
is, “How can we maximally discover Wi-Fi APs in a practical and
energy-efficient way with zero extra sensing costs?". Given that the
Wi-Fi scanning and transmission incur the same energy [31], this
question draws more attention.
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We develop a new Wi-Fi detection system, PRiSM (Practical and
Resource-aware Information Sensing Methodology), which utilizes
the freely available cellular signal information to statistically map
the Wi-Fi APs with a logical location information. The signal
strengths from these base stations are recorded however, the geo-
graphical coordinate location of these base stations is not required.
A Wi-Fi signature is defined as the set of probability density func-
tions (PDFs) of signal strengths from all connected and neighbor
Base Stations (BS) when the smart phone is associated with that
unique Wi-Fi AP. PRiSM runs in the background and reads cellular
signals based on a scheduling policy and hence consumes minimal
energy overhead. We use a novel technique to dynamically build
and update the signature clusters in near real-time and thus avoid
the need for an extensive training phase. We develop a specialized
statistical matching algorithm which uses a likelihood estimation
technique to automatically tune the decision thresholds for every
signature. The threshold values are tuned by connecting to APs
and comparing against the ground truth values (i.e., AP available,
unavailable). We also implement a novel selective-channel Wi-Fi
scanning framework to automatically connect to the APs without
scanning or association by utilizing their stored frequency chan-
nel information. The empirically constructed signal distributions
and decision thresholds for a Wi-Fi location can be adapted or
learned as time evolves. We implement PRiSM on Android devices
and perform both trace-based simulation and practical evaluation.
PRiSM obtains up to 96% of energy savings in Wi-Fi sensing op-
erations equivalent to saving up to 16% of total battery capacity,
together with an average prediction accuracy of up to 98%. We dis-
cuss design considerations in § 2, implementation in § 3, evaluation
results in § 4, related research works in § 5, possible improvements
in § 6 and finally conclude in § 7.

2. DESIGN

2.1 Wi-Fi Power Consumption
In a smart phone, a Wi-Fi scan is initiated in response to two

actions: by turning on the screen or when an application specifi-
cally requests for a scan. When an AP is available to connect, the
Wi-Fi driver scans the available channels and connects to the pre-
configured AP as shown in Figure 1 (a). If no such AP is found
in the pre-configured list, it periodically scans until the device is
successfully connected to an AP or until a connection time-out oc-
curs in the Wi-Fi driver after 15 mins. The default time interval for
consecutive scans vary between 5-30 sec in various wpa_supplicant
implementations. Upon screen off, the Wi-Fi radio chipset is turned
off after a delay of 2 mins to avoid race conditions in the driver.
CPU Wake locks are obtained for operations during screen off.
While in connected state, if the link quality deteriorates, the Wi-
Fi radio driver is kept in high power state constantly due to re-
peated scan and association requests. Also to avoid packet loss, the
driver operates at lower modulation rates. Our measurements using
a power monitor show the repeated scan/association operations in
Figure 2. When there is no AP available to connect, the Wi-Fi
radio driver scans continuously and results in energy wastage (Fig-
ure 1 (b)). The energy consumed by the Wi-Fi radio under various
screen conditions and AP availability conditions is shown in Fig-
ure 3. Thus, PRiSM can save substantial energy by intelligently
avoiding poor and no Wi-Fi conditions in an accurate manner.

2.2 Cellular Signal Signatures
We investigate the feasibility of constructing a database using

the statistical information of cellular signals for each Wi-Fi AP and
the ability to distinctly identify the APs in the database based on
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Figure 1: Working of default Wi-Fi when (a) an AP is available to
connect with, and (b) an AP is not available.
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Figure 2: Repeated scan/association events under poor AP signal
when the device screen is (a) ON, (b) OFF.
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Figure 3: Default Wi-Fi energy consumption for one minute under
various screen activation conditions.

their signatures. Cellular signals are ubiquitous in nature and are
received continuously by the phones. A smart phone can receive
signals from more than ten base stations (BSs) in dense urban ar-
eas [17]. GSM based Android phones can overhear signals from up
to seven (six neighbouring and one connected) BSs in ASU (Active
Set Updates) units at any time instant. The linear equation between
dBm and ASU values for GSM networks is dBm = 2ASU −113.
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Figure 4: The evolution of signal strength distributions from the most frequently connected base station for 3 different APs are depicted in
(a), (b), and (c). For each AP, the data is aggregated over time whenever connected with the AP.
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Figure 5: The personalized signatures for three APs: (a) APX (b) APY , and (c) APZ . The distance between APX and APY is about 7 km,
APY and APZ is about 30meters. APY and APZ are located in the same building. The observed base station IDs and their average signal
strengths are given in the legend.

ASU values range from 0 to 31 and 99, which indicates unknown
signal strength. The total time interval of observation of every base
station within the signature differs and depends both on the total
time spent by the user while connected to the particular Wi-Fi and
also on the occurrence pattern of the base station.

To capture the entire signal characteristics that a user uniquely
experiences for an AP, we propose to build cellular signal signa-
tures using “probability distributions” of signal strengths from all
observable connected and neighbor base stations rather than us-
ing abstracted information (e.g., “average signal strengths”). We
performed the statistical measurements for all users in our dataset,
but for explanation purposes, we will take random users to show
the following results. Figure 4 shows the evolution of signatures
recorded by a user over time for three Wi-Fi APs to which the
user has connected most frequently. For better readability, we plot-
ted only the signal strength distribution from the most frequently
connected BS per Wi-Fi AP. The figure shows the PDF of sig-
nal strengths received from the connected BS at different intervals
of time. Simply put, the distribution shown after 10 hrs includes
the data used for the distribution shown at 5 hrs plus five more
hours. Note that the signal strength distributions do not converge
to a Gaussian distribution even after 25 hrs of signal accumula-
tion. Hence, we develop a non-parametric algorithm which does
not assume anything about the underlying data distribution. The
correlation coefficient (ρX1,X2 ) between probability distributions
accumulating signals for different amounts of time clarifies the ex-
istence of characteristic patterns in the signatures. High value of
correlation coefficients for signatures after 25 hrs of signal accu-
mulation and low cross-correlation values indicate that our statis-

tical technique is likely to provide good performance in matching
accuracy.

Figure 5 further shows that the signatures recorded by a user
for different APs located far from or near to each other have sig-
nificant dissimilarities. We again choose three Wi-Fi APs: APX ,
APY , and APZ from a user’s database, where distances between
APX and APY is about 7 km and between APY and APZ is about
30 meters (APY and APZ are in the same building). In the fig-
ures, base station IDs and their average signal strengths are given
in the legend. As expected, the signatures for APX and APY con-
tain completely different sets of BSs and different patterns of signal
distributions. On the other hand, the signatures for APY and APZ

show similar sets of BSs. However, they are still distinguishable
because the signal distributions show unique patterns. Consider-
ing the possible differences in the environment and the behaviour
of a user, observing dissimilar signal distributions even for nearby
APs is not surprising and actually helps to identify the APs more
reliably.

2.3 Proposed Algorithm: ATiS
We design an algorithm that can utilize detailed statistical prop-

erties of cellular signals instead of the averaged signal strength val-
ues. A simplified version of ATiS (Automatically Tuned Location
Sensing) is explained in Algorithm 1. Since the entire signal dis-
tribution is available, ATiS predicts the location in near real-time.
A higher level intuition of the algorithm is that if the probability
of seeing a particular signal strength within the PDF of a base sta-
tion (BS) is high and the probability of the BS observed when con-
nected to an AP is high, the total joint distribution is maximized



Algorithm 1: ATiS Signature Score Generation

1: INPUT: Signature database for all Wi-Fi APs connected by the user
2: INPUT: Set of currently observed BSs and their corresponding signal

strengths at time t
3: INPUT: Hashmap of unique Wi-Fi APs and reverse Hashmap of ob-

served BS IDs to APs for fast lookup
4: OUTPUT: List of Wi-Fi APs in descending order of likelihood

5: Step 1. For given input BS, look-up the reverse Hashmap to identify the
signature cluster subset to reduce computation

6: Step 2. Calculate the score for the individual signatures
7: for all signatures in cluster subset do
8: for all Base Station ID′swithin signature do
9: if Base Station ID exists in input at time(t) then

10: if Requested signal strength bin isEmpty then
11: Normalize ‘x’ adjacent bins
12: end if
13: Evaluate likelihood of occurrence using expectation maxi-

mization technique
14: end if
15: end for
16: Accumulate final likelihood scores for all signatures
17: end for
18: Step 3. Apply the lower and upper bound thresholds ([CL, CU ]) on

generated scores
19: Step 4. Return Wi-Fi APs which satisfy the thresholds
20: Step 5. Check with the ground truth and update the signature thresh-

olds if needed

and we get a more accurate signature match. ATiS utilizes a set of
signatures (P ) each consisting of a set of base stations Rj and cor-
responding signal strength distributions fk,j(S), where k ∈ Rj

and j ∈ P . Note that j and k are signature ID’s (e.g., Wi-Fi
AP) and cellular base station ID’s respectively. Each signature
P has information pertaining to the number of occurrences made
by its individual base stations in n(k, j) and the total occurrences
of all its base stations collectively in Nj . At any time interval
t ∈ [t1, t2] during the testing phase, the signal observed from a
particular base station k is measured to be sk(t). For any signature
j which has observed this particular unique base station over the
course of its training time period, the likelihood of occurrence of
the currently observed signals from the base station k is calculated
as v(k, j) = (

∏t2
i=t1

fk,j(S = si(k))). Similarly, the likelihood
is calculated for every base station k1, k2, ..kn which is observed
during the time frame of measurement t and which matches within
the signature database. The overall maximum likelihood score of
simultaneous occurrence of all such base stations within a partic-

ular signature j is then calculated as s(j) =
(∏

k∈P (j) v(k, j)
)

.

For any input BS, ATiS does a local normalization of signal
strength values surrounding the target signal strength in the database
and hence, performs well even under signal fluctuations. For exam-
ple, assume in the signature database, a Wi-Fi location has recorded
signal distribution for a BS having signal strength values only for
asu values 17, 18, 20, and 21 out of the possible 0 to 31 val-
ues. During testing phase, if the input signal strength for the same
BS is 19, ATiS does not mark the probability of finding the sig-
nal strength 19 as zero, instead, it normalizes the values of sig-
nal strength bins 18, 19 and 20. If all the requisite bins (here
18, 19 and 20) are empty, ATiS normalizes the expected value to
be 1/|n(k, j)|. ATiS pre-emptively calculates the value ahead of
database update because after the current estimation time period t,
the observed signals for this particular base station will be updated
in the database. Hence, ATiS can perform well even under slight
signal variation conditions. The closer the match of input base sta-

Figure 6: PRiSM system architecture.

tions within a signature, the better is the score for the Wi-Fi. All
signatures whose likelihood scores s(j) satisfy the lower bound
(CL) and upper bound (CU ) thresholds are returned as output in de-
scending order of their scores. Note that the values of [CL, CU ] are
initialized with [1, 0] initially and are decreased or increased over
time to achieve a tight threshold range. The novel part of ATiS is
that it auto-tunes thresholds within 0−1 based on likelihood scores
by checking the ground-truth (i.e. Wi-Fi AP (un)available) after
each connection attempt and hence, does not overfit the data for
any particular scenario. Also, by design, PRiSM utilizes a cluster-
reduction approach to only compare the currently received signals
with a small subset of the signatures in the database irrespective of
the total database size and saves on computation time to compare
from all the signatures otherwise.

3. IMPLEMENTATION

3.1 PRiSM Architecture
The primary modules of PRiSM as shown in Figure 6 include:

PRiSM Manager at the application layer and PRiSM Controller at
the platform layer of the Android stack. The manager runs in the
system background and builds a list of unique signatures (inside
the phone for privacy) for all connected Wi-Fi APs through the
trainer service. The sensing service overhears the cellular signals
at programmed time intervals to predict AP availability. The de-
cision engine ranks the scores from the ATiS score generator al-
gorithm and outputs the result. The controller implements a novel
selective-channel Wi-Fi scanning framework to connect to APs di-
rectly without scanning or association via wpa_supplicant module
in the phone system. It uses appropriate frequency channel in-
formation of APs stored in the database. The existing configura-
tion file wpa_supplicant.conf is intelligently modified at runtime
to provide access to the manager and the controller simultaneously.
Hence, PRiSM can serve as a middleware for all Location Based
Service (LBS) applications in the smart phone. PRiSM suppresses
Wi-Fi connection to an AP in poor signal strength regions and when
the user moves closer to the same AP, it automatically matches the
good signature of the AP and connects to it.

3.2 PRiSM Operation
The three important tasks performed by PRiSM is shown in Fig-

ure 7 and they include: bootstrapping, signature matching, and on-
line training. Bootstrapping is the first process when a signature
database is created for every user for the first time. Here, an event
represents the process of connecting to a Wi-Fi AP. Since most peo-
ple show regular movement patterns on a weekly basis [14], the
signatures are continuously updated as time evolves but most signa-
tures get stabilized quickly within a week. The process of comput-
ing the likelihood score for an AP from all matching signatures and



Figure 7: PRiSM operation includes three tasks: bootstrapping,
signature matching, and online training.

threshold parameters is called as Signature Matching. The decision
engine notifies the Wi-Fi on/off decision along with the AP chan-
nel information to the Wi-Fi controller within a sub-second time
period. ‘LBS’ (Location Based Service) applications, though not a
main part of PRiSM operation, is shown here (shaded in Figure 7)
since PRiSM also can serve as a middleware for all such applica-
tions in the smart phone. Only upon successful connection to an
AP, we enter Online Training through which the signature database
is kept up-to-date. It is done to capture environmental changes such
as configuration updates in an AP, changes in indoor signal prop-
agation paths and behavioural changes in the user. PRiSM sup-
presses Wi-Fi connection to an AP in poor signal strength regions
and when the user moves closer to the same AP, it automatically
matches the good signature of the AP and connects to it.

When PRiSM predicts an AP, it tries to connect to the AP even
without scanning. If the ground truth (checked by connecting to
the AP after every prediction) has an AP (i.e., true positive), the
connection attempt becomes successful and hence reduces the time
to connect to an AP by 33.7%. If the ground truth has no AP (i.e.,
false positive), the connection attempt will be unsuccessful and it
auto-tunes the threshold parameters. PRiSM predicts no AP under
two conditions: Zero Match (i.e., overheard BS ID’s do not match
with any stored Wi-Fi signature) and Threshold Mismatch (i.e.,
overheard BS ID’s matched with some Wi-Fi signature but failed
to satisfy the threshold parameters). In the case of zero match,
PRiSM assumes the user is in a new place and scans all channels
once to provide the results to the user. Here, it simultaneously aids
for user experience and reduces energy on repeated scans until the
user decides to connect to any AP. In the case of threshold mis-
match, it first scans only those channels associated with its known
list of APs in the database. If the scan results match with an AP
in the database (i.e., false negative), it connects with the AP and
simultaneously tunes its threshold parameters and hence saves en-
ergy instead of scanning all channels. If no match is found (i.e.,
true negative), PRiSM stops further scans and turns off the Wi-Fi
interface to save energy from excessive unnecessary scans.

3.3 PRiSM Cost
Cellular signals are received and processed all the time by the

phone MODEM at no extra cost. PRiSM activates the CPU only to
read cellular signal values from the MODEM and to compute using
ATiS. At all other times, CPU is not activated by PRiSM and con-
sumes negligible energy (0.6 − 1.1μWh) on top of CPU base en-
ergy. The sampling policy is shown in Table 1. The overall energy

Table 1: PRiSM cellular signal sampling policy.

Screen
Wi-Fi State

Disconnected Connected

ON 1 sample every 20 sec 20 contiguous samples every 60 sec

OFF 1 sample every 20 sec 1 sample every 60 sec

Table 2: Dataset information.

Dataset # of Volunteers Total hours Avg. Wi-Fi %

D1 24 2592 89.6

D2 16 1440 81.3

costs for continuous Wi-Fi sensing using PRiSM is minimal when
compared to normal Wi-Fi scan. Using the reverse hashmap, the
signatures are computed only for the MACs with current observed
BS IDs. Hence, PRiSM only compares the currently received sig-
nals with a small subset of signatures in the database irrespective
of the total database size and saves on computation time. Thus the
space and time complexity needed for computation is a function of
the density of APs in the nearby environment and is almost con-
stant. In our traces, the signature comparisons never exceeded 35
even though some users had up to 337 unique signatures stored in
their database. Hence, PRiSM is more robust to handle database
explosion.

4. EVALUATION

4.1 Datasets
We obtained Institutional Review Board (IRB) approval from

North Carolina State University to gather datasets (Table 2) from
Android based devices running our customized monitoring appli-
cation. Data was collected for over two weeks from graduate stu-
dents (29), undergraduate students (6), and employees (5). Un-
dergraduate students predominantly covered locations within the
campus. Graduate students had both on-campus and off-campus
locations. Each employee data is from a different urban city in the
US. Dataset ‘D1’ is obtained from our lab Nexus One phones used
by volunteers as their primary device. It includes timestamp, Wi-
Fi signal statistics for connected and neighbor APs, screen unlock
info, and cellular signal statistics for connected and neighbor BSs.
Dataset ‘D2’ is obtained from personal phones of volunteers due to
non availability of test phones in large numbers. It includes screen
on/off information in addition to screen unlock information present
in ‘D1’ but lacks neighbor BS information due to the closed nature
of GSM API found in those phones. In both datasets, cellular sig-
nal and screen information are recorded at each second and Wi-Fi
information at each minute. Since fine-grained screen activity in-
formation is required to accurately predict energy savings, we use
‘D1’ to analyze the algorithm accuracy and apply those parame-
ters (false positives, false negatives, etc) to ‘D2’ to predict energy
savings. The devices recorded up to 35 APs in some campus loca-
tions. Also, the students recorded higher number of signatures for
unique APs (up to 337) than the employees due to their movement
patterns and the number of unique locations visited throughout the
data collection period.

4.2 Accuracy Measurements
A trace-driven simulator builds the signatures and evaluates the

accuracy of the algorithms by checking with the ground truth val-
ues in the dataset. The robustness of an algorithm depends on the
proportion of true positives and true negatives correctly identified.
In Figures 8 (a) and (b), the diagonal line represents the random
prediction of an algorithm, points above and below the diagonal
represent good and bad prediction accuracy. ATiS obtains higher
percentage of true positives and true negatives compared to other
algorithms because ATiS uses the entire signal distribution from
BSs and auto-tunes its threshold parameters as time evolves by ad-
justing itself to signal variations. However, other class of algo-
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Figure 8: (a, b) ROC curves and (c) ρFP Vs. ρFN values for a randomly selected user for all algorithms in dataset ‘D1’. ATiS achieves very
high true positive and true negative values and very low ρFP and ρFN values simultaneously.
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Figure 9: (a) Average ρFP and ρFN for users in dataset ‘D1’ and
(b) ρFP and ρFN for 5 consecutive days for a user.

rithms (BSSET and MSE are discussed in § 5.3) use average signal
strength values from BS and persistent threshold values which ei-
ther overfit or underfit the data. Though the results are shown from
a single user for clarity, we observed a similar pattern across all
users in the dataset.

False positive ratio (ρFP ) is defined as the number of cases that
an algorithm detects an AP when there is no such AP in the ground
truth divided by the total number of cases. Similarly, false negative
ratio (ρFN ) is defined as the number of cases that an algorithm de-
tects no AP when there is an AP in the ground truth divided by the
total number of cases. Higher ρFP indicates losing more chances
for energy saving and higher ρFN indicates losing more connec-
tion opportunities. Figure 8 (c) shows that BSSET and MSE class
of algorithms require very high threshold values to achieve lower
ρFP values, which results in undesired higher ρFN values. ATiS
achieves lower ρFP and ρFN values simultaneously and hence re-
sults in minimum lost opportunities for connection with maximum
energy saving. Figure 9 (a) shows the variation in mean ρFP and
ρFN values for individual users over their entire evaluation period
suggesting the difference in their mobility patterns and the places
they visit. The overall ρFP and ρFN values for all the users in the
dataset ‘D1’ averaged to 1.10% and 0.19%, which is very close
to zero (ideal value). Since PRiSM starts predictions from day-
1, we show the variation in the values after each day in Figure 9
(b). Hence, even with small number of samples in acquired data
during the initial few days, ATiS keeps the false positives and false
negatives low and it further improves as time evolves.

4.3 Energy Measurements

4.3.1 Measurement setup and energy calculations
Energy measurements are obtained from Monsoon power moni-

Table 3: Fine-grained measurements for Wi-Fi sensing.

Item
Energy Consumption (mWh)

HTC Nexus One Samsung Galaxy S5

Screen On Off On Off

Wi-Fi Radio Up 0.0943 0.1181 0.2528 0.3164

Wi-Fi Radio Down 0.0405 0.0606 0.0510 0.2993

Scan 0.1376 0.1955 0.5333 0.5811

Auth/Assoc 0.1588 0.2711 0.2570 1.4481

PRiSM Active 0.0019 0.0173 0.0015 0.0012

Wakelock NA 0.0241 NA 0.0527

CPU Normal 0.2706 0.0059 0.0871 0.0032

tor [3] with values recorded every 200μs. For practical purposes,
we avoid using mobile power monitors as in [27]. Since PRiSM
modifies default Wi-Fi connection framework, we obtain fine-grained
energy information for important Wi-Fi processes as shown in Ta-
ble 3. The Wi-Fi measurements are obtained by subtracting the
background energy (which includes CPU, LCD, and backlight) from
total consumed energy. Extensive trials are performed using an au-
tomated program to avoid finger touch events on the LCD screen
and to avoid sensitive fluctuations in power consumption. We also
remove all background processes and turn off other sensors not as-
sociated with the Wi-Fi to avoid energy variations. For trace-based
simulation, we first extract Wi-Fi event information (e.g., radio-
enable, scan, authentication) for various screen activity conditions
recorded in the dataset and combine with practical usage values
in Table 3 to accurately calculate the total energy consumption by
Wi-Fi usage specific to each particular user for each day.

4.3.2 Default Wi-Fi Vs. Footprint Vs. PRiSM
In Figure 10, we compare the energy consumed by PRiSM with

three other Wi-Fi sensing systems: Default Wi-Fi refers to Wi-Fi
in off-the-shelf phones, Footprint refers to the Wi-Fi sensing sys-
tem in [31], and Ideal refers to the imaginary oracle sensing sys-
tem introduced for user clarity. We define the characteristics of
an ideal system as: uses zero system/CPU energy to identify Wi-
Fi APs, connects automatically to the APs without scanning, and
shuts down Wi-Fi radio immediately in places where Wi-Fi is ab-
sent. PRiSM implements a full version of a sub-optimal algorithm,
PRiSM-SubOpt, which scans for APs before connection and a pro-
totype version of an optimal algorithm, PRiSM-Opt, which knows
AP channel information and connects directly without scanning.

Footprint triggers scan based on distance moved by the user (more
than 10m indoors or 20m outdoors). In no Wi-Fi areas, Foot-
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Figure 10: Wi-Fi energy consumed every minute for (a) screen ON, (b) screen OFF, and (c) under poor Wi-Fi signals. For Footprint, Δ1 is
estimated to be 0.673mWh for screen on and Δ2 is estimated to be 0.719mWh for screen off conditions.

print scans for Wi-Fi first and later records all places which do
not have Wi-Fi bloating its history list. Even in areas with Wi-
Fi, unless the user moves, it does not scan even if the Wi-Fi ra-
dio is turned off after screen off delay. PRiSM, however, checks
for Wi-Fi availability every sampling period and connects to Wi-Fi
if needed, else, it maintains the radio in off state. Also, it con-
nects directly to the AP without scanning and avoids turning on
Wi-Fi in poor signal strength areas and hence saves energy intel-
ligently. Since energy measurements for Footprint is not available
and implementing the entire system is out of scope in our experi-
ments, we combine the accelerometer energy value (0.667mWh)
obtained in [22] and our own test measurements to sample cellu-
lar signals thrice (0.006mWh for screen-on and 0.052mWh for
screen-off) to calculate the additional cost incurred by Footprint
in both screen on (Δ1) and off (Δ2) conditions to be 0.673mWh
and 0.719mWh per minute. For a stationary user, Footprint effec-
tively suppresses Wi-Fi scans in no Wi-Fi areas, but still incurs the
overhead energy from accelerometer usage, which is significantly
high compared to PRiSM. For a moving user, Footprint consumes
more energy than default Wi-Fi and PRiSM. When Wi-Fi is avail-
able, PRiSM-SubOpt consumes slightly higher energy than default
Wi-Fi since it uses extra energy for cellular overhearing. However,
PRiSM-Opt always consumes less energy than default Wi-Fi by
design. The Ideal system always consumes the lowest possible en-
ergy and provides a baseline to compare for the maximum amount
of energy that can be saved by any Wi-Fi sensing system.

4.3.3 Sensing intervals (δ) and threshold (τ) effects
The energy consumed by PRiSM and an Ideal system for vari-

ous sensing intervals (δ) and Wi-Fi thresholds (τ ) is discussed here.
We do not compare Footprint because of the non-availability of ac-
celerometer values in our dataset. Also, PRiSM does not measure
distance from APs or discriminate between indoor and outdoor lo-
cations. The energy savings vary between users and depends on
their individual mobility patterns and Wi-Fi availability (e.g., Users
who often experience poor and no Wi-Fi situations save more en-
ergy than users who experience good Wi-Fi. The reason is in good
Wi-Fi areas, the only avenue to save energy is to avoid scan costs).
We define battery capacity as the maximum amount of energy that
can be extracted from a smart phone battery and is assumed to be
5000mWh in our energy calculations.

Sensing interval of δ = 1 sec is equivalent to keeping the Wi-Fi
interface continuously ON. When δ increases, the average battery
saving for all users combined decreases steadily as shown in Fig-
ure 11 (a). The decrease in energy saving from that of 1 sec scan-
ning is because of following reasons: scan is not performed contin-
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Figure 11: Mean battery savings for all users in the dataset with
95% confidence interval. (a) vary δ given τ = −80 dBm, (b) vary
τ given δ = 1 sec.

uously and during the time slots (e.g., δ = 30 sec, 45 sec.. 5min),
only 20 sec of time slot is utilized for sensing operations and the
Wi-Fi radio is turned OFF for remaining time. Email sync applica-
tions are shown to take close to 18.54 sec [32]. Hence, we assume
a constant time of 20 sec for the purpose of evaluation and can be
varied if necessary. We see that PRiSM-Opt achieves close to 96%
in average battery savings to that of an ideal system. The variation
in average battery savings for all users for different thresholding
values (τ ) is shown in Figure 11 (b). The decrease in savings with
smaller thresholds (τ = −90) is due to increased energy usage to
connect to Wi-Fi in poor signal areas. Even under no thresholding
(τ = None), ATiS achieves close to 90% of that achieved by an
ideal system. This shows that the huge energy savings of PRiSM
are mainly due to the better performance of ATiS algorithm and
not just the RSSI thresholding parameter. However, to provide bet-
ter user experience and also to save on battery energy, PRiSM as a
system, uses a default value of τ = −80 dBm.

4.3.4 Overall energy impact of PRiSM
Wi-Fi sensing measurements in Table 3 show that latest Samsung

Galaxy S5 phones consume more energy compared to older Google
Nexus One phones because of powerful Wi-Fi chipsets. We infer
that in spite of all the commercial advancements made in recent
times to reduce the power utilization in Wi-Fi radio’s (e.g., bet-
ter sleep cycles, reduced idle times), scanning for Wi-Fi APs still
requires substantial energy. Hence, PRiSM in general can save sub-
stantial battery energy in all phones without discrimination. From
Table 4, users spend about 30% of battery energy on average for
Wi-Fi sensing operations. We observed that about 11.24% of that
energy is wasted for Wi-Fi sensing in regions with poor/no Wi-Fi



Table 4: Total Wi-Fi usage and battery savings for users in dataset
‘D2’ for Wi-Fi offloading with τ = −80 dBm.

User

Wi-Fi Avail (%) Wi-Fi
Battery

Battery Savings (%)

Good Poor No Usage
(%)

PRiSM-
SubOpt

PRiSM-
Opt

Ideal

1 82.92 6.69 10.40 21.79 6.45 7.24 7.79

2 94.62 0.49 4.90 21.26 1.96 2.91 3.57

3 48.60 6.03 45.37 20.15 14.52 14.83 15.24

4 74.56 2.56 22.87 19.95 6.37 7.11 7.63

5 11.73 74.69 13.58 60.08 57.04 57.20 57.83

6 71.12 25.29 3.59 42.24 23.23 24.22 25.00

7 61.82 10.92 27.26 36.11 23.18 23.86 24.62

8 71.52 9.54 18.95 34.65 18.97 19.77 20.57

9 97.71 0.80 1.50 15.29 0.34 1.10 1.57

10 91.36 4.37 4.27 33.39 5.42 6.82 7.74

Avg 70.59 14.14 15.27 30.49 15.75 16.51 17.16
% of Ideal achieved 91.79 96.20 -

combined, which is very significant. On average, PRiSM saves
about 16.51% of total battery energy, which is equivalent to saving
almost 825.5mWh worth of energy spent on Wi-Fi if we assume
the battery capacity to be 5000mWh. [10] estimates the average
battery lifetime1 of a smart phone to be 40 hrs and 27 hrs for ca-
sual and regular usage respectively. Using this result, we observe
that PRiSM on average can extend the battery lifetime by 6.6 hrs
and 4.5 hrs for casual and regular phone usage respectively. Given
that about 70% of users in our dataset travelled in ‘Good Wi-Fi’
areas, energy savings for PRiSM will be much higher if users had
high mobility patterns in ‘No Wi-Fi’ and ‘Poor Wi-Fi’ areas, which
happens more often in practice.

4.3.5 Practical verification of energy savings
We identified test phones with similar battery aging by compar-

ing the amount of time it took them for a full battery discharge
with bare-essential Android system processes. Practical verifica-
tion of energy savings shown in Table 5 involved two phones: one
normal phone and other running PRiSM-SubOpt. A mock appli-
cation was installed on both phones to check for Wi-Fi at different
sensing intervals. The application just connects to the AP and no
data transmission is done since energy consumption may change
with different data transfer rates even to same AP’s at a particu-
lar time instant. For an RSSI threshold setting of τ = None, the
sensing intervals for 30 sec, 60 sec, and 120 sec saw average Wi-
Fi availability of 55.20%, 77.32%, and 0% respectively. This
Wi-Fi availability is calculated by comparing the Wi-Fi connectiv-
ity information recorded from user logs and the signature database
file given to the users for test. For δ = 30 sec, PRiSM obtained
huge energy savings in no-WiFi areas and incurred minimal energy
overhead in areas with Wi-Fi. For δ = 60 sec, PRiSM should have
had more battery left at the end since the sensing intervals are less
frequent but recall that PRiSM only saves energy on scan costs in
areas with good Wi-Fi. Given that users saw an average of 77.32%
Wi-Fi, only about 9% of battery remained. For δ = 120 sec, we
specifically tested the scenario where user visits totally new places
(i.e., with zero stored information about the location in database
and hence 0% Wi-Fi availability to connect). Hence, the energy
savings by PRiSM is more in this scenario than previous sensing

1In this paper, ‘battery lifetime’ refers to the operating time of the
battery from one full charge to full discharge.

Table 5: Nexus One practical energy evaluation.

System
Wi-Fi Sensing Interval (δ)

30 sec 60 sec 120 sec

Normal lasted 14.5hrs lasted 24.3hrs lasted 33.0hrs

PRiSM had 54% left had 9% left had 65% left

intervals even though the Wi-Fi sensing operations are less frequent
at every 120 sec. The results show that in all cases, PRiSM-SubOpt
had substantial amount of battery left when the normal phone is
completely discharged. We believe that PRiSM-Opt will save even
more energy in these situations.

5. RELATED WORK

5.1 Wi-Fi Sensing and Power Reduction
Wi-Fi hotspots are scarcely distributed when compared to cel-

lular networks [25]. Hence, prior works developed optimal scan-
ning intervals for Wi-Fi to identify hotspots [16, 30]. The scanning
intervals are increased or decreased based on parameters like AP
inter-arrival time, AP density and user velocity. Since the Wi-Fi
connectivity times and movement patterns vary among users, these
algorithms do not adapt well for all users. Wi-Fi signal fingerprint-
ing techniques [7, 33] use extensive offline pre-processing stage to
construct signal strength models and to calibrate the radio maps.
Also, these techniques take more time to converge. PRiSM does
not assume anything about the underlying data model or distribu-
tion and hence takes a non-parametric approach.

Few others use multi-modal sensors (e.g., Accelerometers [16],
GPS [11, 13, 21], Bluetooth [6], Zigbee [35]) in addition to iden-
tify context. Unlike PRiSM, the sensors may not be available al-
ways and they consume extra battery energy (e.g., Accelerometers
consume close to 0.667mWh every 30 sec [22]). Some require
infrastructural changes and extensive war-driving efforts to obtain
feature-rich data sets. Also, most commercial systems (e.g., WiFi
Sense [4], Place Lab [18]) turn on the radio interfaces continuously
to identify context which results in battery drain. Previous works
also captured the high initial costs for Wi-Fi scan/association [9,
24]. Various other techniques reduced idle state power consump-
tion [28,34] and idle state time periods [20,26]. Others reduce cel-
lular data transfer costs by introducing delayed transfers [8, 19] or
data offloading [24] through Wi-Fi. However, PRiSM predicts Wi-
Fi availability at a location in real-time, without turning on the Wi-
Fi interface and reduces sensing costs (i.e., radio power up/down,
scan, association and DHCP) through use of cellular signals.

5.2 Location Prediction
Prior works use average received signal strengths from connected

cellular base stations to predict user location [12, 27, 31]. How-
ever, averaging the signal strength values results in loss of granu-
larity. Footprint [31] triggers Wi-Fi scans based on user movement
(greater then 10m indoors or 20m outdoors) irrespective of the
direction. The cellular signal information is used only to measure
the distance moved by the user based on signal changes. All loca-
tions with no available Wi-Fi are recorded in the history and used
to suppress scans at those locations later. As time grows, the list
size may increase exponentially and become practically infeasible
to maintain. Moreover, even in locations with Wi-Fi, a full scan is
performed before connecting to the AP.

PRiSM only shares the key idea of using cellular signals for Wi-
Fi prediction with Footprint but is fundamentally different in its
design, working and practical aspects. Unlike Footprint, PRiSM



efficiently stores the entire signal distributions of cellular signals
clustered into logical locations that have Wi-Fi availability. It dy-
namically builds and update the signature clusters in near real-time
and thus avoids the need for a specialized training phase. It com-
pares only a subset of clusters for signal match at runtime and re-
duces computation complexity. It uses a non-parametric statistical
matching algorithm to decide to either connect to the Wi-Fi directly
without scanning or to suppress scans in no Wi-Fi locations. Bar-
tendr [27] predicts future cellular signal strengths based on current
data set and direction of travel to schedule cellular data transfers.
SmartDC [12] predicts meaningful locations by observing a variety
of radio signals with 80% accuracy and a long computational de-
lay of 160 sec. But Wi-Fi decisions need to be taken much quicker
(order of few seconds) to maintain user experience and additional
sensors consume significant battery energy.

5.3 Existing Localization Algorithms
A class of algorithms (referred as BSSET) uses the set of cellu-

lar BS ID’s to evaluate the likelihood of matching a fingerprint in
the database. It can simply count the number of common BSs or
can sum up the weight values of common BSs, where the weight
is assigned to each BS based on its frequency of observation. An-
other set of algorithms (referred as MSE) use mean squared error
for matching [23], [29]. An error is defined as the difference be-
tween the signal strength in current observation and the average
signal strength recorded in the fingerprint for the same BS.

Most Artificial Intelligence (AI) techniques typically identify the
top k fingerprints showing the smallest MSE values and then cal-
culate the center from the locations paired with k fingerprints. This
extension is called kNN (k-nearest neighbor) but they have the fol-
lowing problems: minimal training phase but costly testing phase
including both time and memory, and assumes that data is in fea-
ture/metric space which means it is associated with some distance.
PRiSM requires entire signal distribution clusters of the training
data for quicker prediction and hence, uses a specialized hybrid
algorithm which includes lazy learning techniques and statistical
likelihood estimation. Both BSSET and MSE algorithms need their
own hard-coded threshold value (C) but PRiSM auto-tunes its thresh-
old parameters regularly. Some others [33] use a model-based ap-
proach to build radio signal maps. They take more time to converge
and require extensive war-driving to generate the data set. PRiSM
does not assume anything about the underlying data model or dis-
tribution and hence takes a non-parametric approach.

5.4 Screen Activation
Huge energy savings are reported for power measurements for

cellular radio/LTE traffic obtained during screen-off conditions [15],
Wi-Fi [9, 16, 24, 25]. In PRiSM, we perform measurements under
both screen on and off conditions, show that screen off energy is
more compared to screen on due to use of CPU wakelocks, and
use appropriate energy values for user logs. Hence, the final en-
ergy figures of PRiSM more accurately match actual Wi-Fi power
consumptions.

6. DISCUSSION
PRiSM places no restrictions to the users in the way they hold

their phones or the places they visit. Each user accumulated dy-
namic cellular signal variations from distinct antenna gains and an-
tenna placement in their devices. PRiSM constructs unique signa-
tures in every device and hence, operates on the assumption that a
user connected to the logical Wi-Fi location previously before eval-
uation phase. As discussed in § 3.2, for Zero-match case, PRiSM
creates signatures for the new location only after manual user input.

Hence, it only creates signatures for user specified logical locations
and reduces meaningless signatures but requires manual supervi-
sion. To reduce this limitation, a centralized signature database can
be implemented and shared using crowd sourced data. Initially, we
only used Nexus One phones to collect data since we get neighbour
cell information in addition to connected cell information from the
Android software stack. In recent months, many popular devices
from Motorola, HTC, Sony and LG started providing the neighbor
values. Hence, the scope and impact of PRiSM is wide.

Load balancing or Cell breathing techniques are used in CDMA
systems where the Base Station (BS) output power is split among
active users. Hence, coverage range of cellular towers is shrinked
based on user load. In GSM and current LTE systems, each BS
usually transmits with full transmission power in the downlink.
Based on the location of the mobile within the coverage area, it
receives a percentage of the transmitted power which PRiSM uti-
lizes to logically localize locations. PRiSM is not heavily impacted
by this because it uses both connected and neighboring cell tow-
ers for estimation and hence, absence of one or two BSs does not
affect its working. Also note that PRiSM periodically updates the
signal strengths for the signatures whenever the user visits the log-
ical locations and hence, provides a robust method to update the
database.

An example rule (not given in XML format for the sake of clar-
ity) input that can be implemented in the decision engine is “do not
connect to a particular AP on weekdays but do connect on week-
ends”. Hence, PRiSM filters its decision based on the day, even
though the AP is available at all days. We see many potential ap-
plications for the decision engine in PRiSM (e.g., Cellular network
carriers can dynamically modify data-offloading rules for their cus-
tomers based on their real-time network congestion levels at a lo-
cation. This can facilitate fast handover between Wi-Fi and cellular
data usage and readily complement commercial ISP solutions like
Hotspot 2.0 [1]. Note that Hotspot 2.0 promises seamless Wi-Fi
authentication and handoff, but still needs to identify places with
good Wi-Fi).

Some APs do not allow data transmission even after successful
connection with the AP (i.e., closed). PRiSM currently does not
handle this specific case, but works well for both open and pass-
word protected APs if the device has connected to those APs previ-
ously. This limitation can be rectified by first performing additional
data connectivity check on each newly connected AP. Closed APs
can then be added to a separate list to avoid future connections.
Recently, Apple c© blocked Wi-Fi scans initiated from any user ap-
plication and made its Application Programming Interface (API)
private. However, PRiSM does not initiate scans, instead, it records
information such as AP name, MAC ID’s, and the signal strengths
after system initiated connection. Though PRiSM is implemented
in Android, its functioning holds good for most mobile operating
systems in general.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented PRiSM to solve the Wi-Fi Access

Point (AP) discovery problem for smart devices by utilizing re-
ceived cellular signal information and the regularity in human move-
ment patterns. We developed a novel technique to dynamically
build and update the signature clusters in near real-time to avoid
extensive training time periods. We also developed a statistical
matching algorithm with auto-tuning capabilities to maximize Wi-
Fi detection opportunities and to simultaneously minimize Wi-Fi
sensing energy costs. To the best of our knowledge, we are the first
to report the energy usage of Wi-Fi for various phone screen activa-
tion scenarios and quantified the energy wastage if connected to an



AP with poor link conditions. We implemented PRiSM on Android
phones and show substantial energy savings for both trace-based
simulation and practical evaluation. In our future work, we plan to
use cellular multi-homing to achieve fine-grained location accuracy
by using multiple radio signal combinations (UMTS, LTE) and also
to develop a common Wi-Fi signature database for all users.
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