
Energy Efficient Scheduling for Mobile Push Notifications

Utku Günay Acer, Afra Mashhadi, Claudio Forlivesi, Fahim Kawsar

Bell Laboratories, Alcatel-Lucent

{utkuacer, afra.mashhadi, claudio.forlivesi, fahim.kawsar}@bell-labs.com

ABSTRACT
Push notifications are small and succinct messages used by mobile
applications to inform users of new events and updates. These noti-
fications are pushed to the user devices by a set of dedicated notifi-
cation servers (e.g., Apple Push Notification Server, Google Cloud
Messaging Server, etc.) as they arrive from the content providers of
the mobile applications. However, due to their intrinsic small size
and sporadic nature, the transfer of these messages is not power ef-
ficient, especially on cellular networks. To address this, we propose
a network centric scheduling mechanism that delays the delivery of
these messages as appropriate by sensing and predicting users’ cel-
lular network activities. A trace based evaluation with 60 users’
cellular network logs of 30 days shows that we can reduce the en-
ergy consumption of mobile devices by 10% for an average delay
of 150 seconds in notification delivery. As a network based system
that does not require any modifications to user devices, schedul-
ing push notifications opens up interesting opportunities for mobile
operators to provide value added and differentiating services, es-
pecially considering the sharp rise of non-critical push notification
messages.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Communications Ap-
plications

Keywords
Push Notification, Network Sensing, Activity Prediction, Energy
Efficiency

1. INTRODUCTION
The push notifications have become increasingly prevalent and

part of many smartphones applications, allowing the third party
content providers to initiate communication with the users even
when the application is not actively being used. This type of com-
munication provides a visual or audible cue to inform the mobile
users about new unattended short messages or event updates. These

messages have become so popular that users now receive hundreds
of push notifications per day, many of which are non critical and
does not require immediate attention (excluding SMS, and mes-
sages from other real time communication services, e.g., Skype,
WhatsApp, etc.) [13, 15]. While the impact of this increase has
been studied in terms of its disruptive aspects on the end users, little
attention has been given to the push notification delivery services
from a system perspective and their impact on energy consumption
on the mobile device.

The push notification messages are often small in size and spo-
radic in nature. Once issued by the third party content provider,
these messages are sent to the push notification servers, such as
Apple Push Notification service (APNs) or Google Cloud Messag-
ing (GCM) which then transfers this information to the user device.
The current implementation of push notification services is based
on store-and-forward mechanism, pushing any notifications to the
device as soon as the device is reachable. However, these services
do not account for the devices’ network interfaces and correspond-
ing impact on the energy consumption. For instance, the cellular
network interfaces in mobile phones do not immediately go into
the low power idle-state after a network operation, instead, they re-
main in the high-power state for a certain duration, often referred
to as tail time. Hence, the delivery of small messages instantly and
in isolation, as currently is done for push notification messages, is
an inefficient method which consumes unnecessary energy on the
mobile devices.

A number of past studies have reported the significant effect of
the tail time on mobile devices’ energy by demonstrating that the
energy spent during the tail time corresponds to the 60% of the to-
tal energy consumed by the device radio [5,12]. These works sug-
gested better utilizing the tail time, ideally by delaying or schedul-
ing the outgoing messages in the device end by modifying the mo-
bile operating systems. In contrast, we approach this problem from
the network’s perspective and propose a scheduling system for the
incoming push notification messages. Our method delays push no-
tification messages and sends them in batches or piggybacked with
data traffic in an effort to conserve the energy spent as part of the
tail time. More precisely, the system resides on the network oper-
ator hub and is capable of sensing and predicting a user’s network
activities. It intercepts and assign a time-to-live (TTL) to the in-
coming notification which best corresponds to the users temporal
activity pattern, and then uses the TTL information to delay the
notifications. Based on a trace based evaluation using cellular net-
work logs of 60 users for 30 days, we shows that it can decrease
the energy consumption of mobile devices by 10% for an average
delay of 150 seconds in notification delivery.

The remaining of this paper is structured as follows: we first pro-
vide the background context on the cellular network interface, its

MOBIQUITOUS 2015, July 22-24, Coimbra, Portugal
Copyright © 2015 ICST
DOI 10.4108/eai.22-7-2015.2260067

energy model and the existing push notification service architecture
in Section 2. We then describe the scheduling system and its com-
ponents in Section 3. We describe the dataset at hand in Section 4.1,
before presenting the results of our evaluation in Section 4. In Sec-
tion 5, we position our work against the current state-of-the-art that
addresses the tail inefficiency. Finally we conclude the paper by
discussing the limitations and implications of the proposed system
in Section 6.

2. BACKGROUND
In this section, we briefly cover the background information re-

garding i) how resource allocation works on UMTS (Universal Mo-
bile Telecommunication System) networks, and its implications on
mobile device energy usage, ii) the architecture explaining how the
push notifications currently work and are delivered to users devices.

2.1 UMTS and its Energy Model
The UMTSa network consists of three interacting elements: Core

Network (CN), UMTS Terrestrial Radio Access Network (UTRAN),
and User Equipment (UE). The UTRAN provides the air interface
access method for User Equipment to connect to CN. It consists of
two components Node-B (i.e., base stations), and Radio Network
Controllers (RNC). RNC is a key element in the UMTS network
and is responsible for the radio resource management as well as
management of the multiple Node B instances (i.e., Base Stations),
to which the UE connects through radio physical channel. The CN
is the backbone of the cellular network and its main functions are
to provide switching, routing and transit for user traffic, and to host
user database and network management functions. The CN typi-
cally performs these operations via its Gateway GPRS support node
(GGSN), responsible for the inter networking between the UMTS
network and external packet switched networks, like the Internet
and X.25 networks and Serving GPRS support node (SGSN), re-
sponsible for the delivery of data packets from and to the mobile
stations within its geographical service area.

The power consumption of the UE is influenced by the Radio
Resource Control (RRC) states and the Radio Link Control (RLC)
protocols. A single RRC state machine is maintained at both the UE
and the RNC (i.e., they are always synchronized), and its purpose
is to effectively utilize limited radio resources to improve power
consumption.

Typically there are three RRC states: IDLE, CELL_DCH, and
CELL_FACH as shown in Figure 1. Each of these states are allo-
cated varying radio resources and power.

• The IDLE state happens when there is no network activity
on the device, e.g., when a handset is turned on and the RRC
connection with RNC is not established. The power con-
sumption of the radio interface in this state is almost zero.
Any application traffic triggers a RRC state transition from
IDLE state to the CELL_DCH.

• In the CELL_DCH, a RRC connection is established, and a
dedicated physical channel is allocated for the UE in both
uplink and downlink providing higher data rates.

• In the Forward Access Channel (CELL_FACH) the UE is
assigned a default common or shared transport channel in
the uplink and monitors the downlink continuously. The UE
therefore can transmit small data packets at lower data rates
while at CELL_FACH.

aAlthough we focus 3G technology for the work in context, the
basic principles of networking remain the same for 4G/LTE.

Figure 1: RRC State Machine for UMTS Network

The RRC State transitions between these states are caused by traf-
fic volume and inactivity timers controlled by the RNC. Most of
the operators maintain statically set inactivity timers to control the
state transitions from CELL_DCH to CELL_FACH as well as from
CELL_FACH to IDLE. For example, when a UE is in the CELL_DCH
state for a specific time period without any or small data transmis-
sion, the RNC releases the dedicated channel and switches the UE
state to CELL_FACH. While the UE waits for the inactivity timers
to expire, it maintains transmission channels and its radio power
consumption is kept at the corresponding level of the state even
though it does not send/receive any data. This power inefficient
duration is often referred to as tail time. Due to this tail time, trans-
mitting even a small amount of data can cause significant radio
resource and power consumption.

2.2 Mobile Push Notification Service
Mobile push notification describes a style of internet-based com-

munication where cloud-based applications can send brief alerts
and updates to a client application running on a mobile device. The
service provides a simple, lightweight mechanism to tell mobile
applications to contact the server directly, to fetch the updated ap-
plication or user data. Mobile operating system providers facili-
tate this service through dedicated notification servers, e.g., Apple
Push Notification Server (APNs), Google Cloud Messaging Server
(GCMs), etc. They are also responsible for all aspects of queuing
of messages and delivery to the target application running on the
target device.

Figure 2 illustrates interactions in the push notification eco-system
where the stages are labelled numerically. The process starts with
a client application requesting for a device token from the mobile
operating system (1), which in turn contacts the respective notifi-
cation server (2). This device token is then passed to the device
operating system (3) and through the client application (4) to the
content provider (5), which uses it for pushing subsequent notifi-
cations (6). Finally, the notification servers send this notification
to the target device (7) by taking into account the notification type,
its priority, expiry time and the availability of the device. While
stage 1-6 describe an initialization and security handshake between
the third content provide and the application, we are interested in
stage 7 at which the delivery of the notification to the device oc-
curs. This is done through the persistently maintained connection
between the notification server and the mobile device. The typi-
cal payload of notification messages are fairly small. In addition,
recent notification protocols also provide service providers with op-

Figure 2: Architecture of Push Notification Service

tions for setting the expiry time and priority of a notification. For
example, with APNs a notification message may include an expira-
tion date that identifies when the notification is no longer valid and
can be discarded from the APNs queue. If this value is non-zero,
APNs stores the notification and tries to deliver the notification at
least once within the stipulated time otherwise APNs delivers the
notification immediately should the target device be reachable. Fur-
thermore, a notification might include a priority flag that could be
set by the content provider to indicate whether or not to delay the
notification when the device is idle. For example, Microsoft Push
Notifications(MPN) services allow for the content provider to ap-
pend the NotificationClass in the HTTP header of the notification
URI. The notification classes for Windows 8 are defined and fixed
to i) Priority indicating the notification is delivered within 450 sec-
onds; ii) Regular indicating the notification is delivered within 900
seconds; and iii) Real time indicating immediate delivery. These
different classes allow the mobile OS and the MPNs to work in
conjunction to batch notifications so as to save energy. Although,
the current extensions allow for some level of control over the de-
livery of the push notifications, the delaying period defined by the
push notification servers (e.g., MPNs) are arbitrary and not reflec-
tive of the device’s RRC state.

2.3 Device-Centric Notification Management
Notification management on the device-end can be done either

through applications or the OS itself. From the OS aspect, iOS,
Android and Windows OS all provide the user with settings that
allow them to indicate the willingness to receive notifications from
their installed applications. These settings are limited to true/false
with no personalization regarding the sensitivity and priority of the
notifications from different applications. With regards to applica-
tions, various notification management applications are designed
for Android OS. They mostly allow the user to classify notifica-
tions and organize them based on their preferences. While most of
these applications provide an alternative interface to the notification
center on Android devices, some also enable the user to ignore no-
tifications from unwanted contacts or applications. However, any
filtering on the notification is done at the device-end and requires
the notification to be delivered to the device at the first place.

Alternatively, recipe based approaches, such as IFTTT (IF THIS
THEN THAT), allow the user to set specific rules regarding their
content from various channels (e.g., Facebook etc.) and the ac-
tions that are to be applied once a condition is met. Using this
mechanism the user can create a more personalized notification
delivery (e.g., when tagged in Facebook), enabling the IFTTT to

pull content when the specified rule occurs. The IFTTT application
persists a connection with the content provider channel through a
polling period. However, in order to work as notification delivery,
the polling period would need to be set to a very short time pe-
riod (almost continuously). Thus making such application based
approaches even more energy consuming than the traditional push
notification delivery.

2.4 Push Notification Scheduler: A Remedy
Although, the notification servers offer some controls to content

providers to qualify a notification in terms of its priority and delay
tolerable property, they are not aware of the radio states of the target
devices. Hence, high frequency of the notifications could increase
the time during which the device ratio spends in tail time needlessly
and thus draining significant amount of battery. In addition, the
sporadic nature of the notifications also contributes to significant
energy drain. This is because the majority of the network operators’
dormant timerb is set to 30 seconds or less [2], thus making the
delivery of sporadic notifications even more energy consuming. As
Balasubramanian et al. have shown in [5], 60% of the total energy
consumed for data communication corresponds to the tail energy,
and the high frequency and sporadic bursts of notifications only
adds to this drain. This is a remarkable overhead considering the
past research has shown not all the notifications are perceived as
important to the user and many of the notifications are ignored [13].

The work presented in this paper primarily aims to address this
problem by delaying the notifications and piggybacking them with
larger data traffic when possible. To accomplish this, our system is
placed at the mobile operator end for accurate awareness of the ra-
dio states of the devices, and leverages a network traffic predicator
to determine the appropriate delay interval for the notifications.

Such a system is made possible with the advent of the Network
Function Virtualization (NFV), where the network components are
no longer provided in closed “black-box” but are placed in virtu-
alized servers [1]. This paradigm facilitates the network operators
to offer new services to their users at little cost without complex
modifications in the network components and any concerns about
scalability of the component. Similarly in this paper, we exploit
such underlying functionalities of NFV to design a push notifica-
tion scheduler.

2.5 Cellular vs WiFi
Service providers take different approaches for delivering the

notifications with respect to the access technology. Android de-
vices for example always use the default interface to access GCM
servers. iOS devices on the other hand use their cellular interfaces
to connect to APN servers even if they are connected to a WiFi net-
work. They fall back to WiFi only if the cellular connection is not
available. When the push notifications follow different paths than
regular data traffic, it is not possible to piggyback the notification
messages to non-notification packets. In addition, it has also been
shown that the tail energy is not a grave problem with WiFi [10]. As
a result, extending the notification scheduler to WiFi networks does
not add substantial value, and our system is exclusive for devices
that are only connected to a cellular network.

3. SYSTEM DESCRIPTION
In this section, we discuss the basic working principles of the

notification scheduler. We propose to extend the basic functional-
ity of the core network element of UMTS network by adding push
notification schedules as a component. We place the scheduler on
bThe time based on which RNC releases high power state channels

the data plane of the cellular core network instead of the RNC so
that it can sense when the device has any incoming or outgoing traf-
fic, essentially to be aware of the radio state of device even though
the actual state machine interface is not maintained there. It can
be co-located with either the Serving GPRS Support Node (SGSN)
or the Gateway GPRS Support Node (GGSN), due to their func-
tions on the data plane. The scheduler is designed as a modular
system composed of three elements, and leverages the Deep Packet
Inspection (DPI) capabilities available at the core network: These
elements are:

1. Burst Detector : This element is responsible for capturing a
group of traffic transactions (upload or download) that con-
stitute a single burst of network activity.

2. Prediction Model : This element uses the traffic burst pattern
to maintain a model of a user’s network activity, based on
which it can provide an estimated delay that a notification
can tolerate for that specific user.

3. Notification Scheduler : This element is responsible detect-
ing the push notification messages through TCP port mon-
itoring and leverages the prediction model to determine the
delay interval for the notification and accordingly schedule
the delivery of the notification.

3.1 Burst Detector
A traffic burst represents a group of transactions under one single

data transmission session. Typically a User Data Record (UDR) en-
try for a data transfer contains user identity as International Mobile
Subscriber Identity (IMSI), transaction time, the amount of data be-
ing exchanged in the transaction, Node-B information, host infor-
mation, etc. To determine a network activity session, it is necessary
to identify and group a set of UDR entries together that appear in
close temporal proximity and are separated by a specific time in-
terval from the subsequent group of UDR entries. These groups
of UDR entries or traffic bursts then can be ordered by time to
construct a network activity trajectory, which can later be used for
modeling temporal behavior of an individual. The Burst Detector
maintains a temporary storage for each individual IMSI. As UDR
entries come in for each IMSI, the Burst Detector checks the times-
tamp of the latest entry and compares it with the most recent entry
to determine the arrival interval. If the interval is longer than a se-
lected threshold, then the set of entries that are in the storage are
grouped as one burst and is passed to the Prediction Model as an
identified traffic burst. Otherwise the entry is added to the storage
as a constituent of ongoing burst. For the dataset presented in this
paper and discussed in section 4.1, the interval threshold is set to
31 seconds which was selected empirically to minimize isolated
transactions to appear as one small burst.

3.2 Prediction Model for TTL Assignment
In order to ensure that our system accounts for users individual-

ity and their different behavioral patterns, we require an adaptive
mechanism which would assign a time-to-live (TTL) to each no-
tification by evaluating its priority to the end user. It is possible
to model this priority in two different ways. A content-centric ap-
proach in which the priority is decided based on the nature of the
content and its sensitivity to delay. For example, a location shar-
ing application may not tolerate any delay in its notification and
thus require the TTL to be set to zero. It is worth noting that the
Notification Servers such as APNs and GCM already account for
this simple feature by allowing the application developers to set
a priority field. Alternatively the priority can be set based on the

1 1 1 0
1 0 1 0
1 0 1 0
0 0 0 0
0 0 1 0
1 1 1 0

Day j-4 Day j-3 Day j-2 Day j-1

Look up day, Nl=4

T

12:00

12:01

12:02
 .
 .
 .
 .

23: 59

2 Selected Candidate Days

1
1
1
?
?
?

Day jc

Lo
ok

 u
p

w
in

do
w

 (L
k)

DSj-4=0.6 DSj-4=0.7

Figure 3: Example of the Network Activity Prediction and TTL
Estimation Process

popularity of the content and based on how it would be perceived
by the user. A user-centric approach on the other hand accounts
for the sensitivity of the user to the delay at a given time. In other
words, the likelihood that the user would indeed attend the notifica-
tion. Mashhadi et al. [13] has previously shown that the likelihood
of a user attending a notification is much higher when the user is
already engage with their phone. Similarly we take into account,
user’s engagement in an online activity on their device to model the
delivery time of the notifications (i.e., TTL).

We design an algorithm that leverages the temporal activityc be-
havior of the user to estimate the likelihood of the user interacting
with their mobile device at a given time. Using this adaptive mech-
anism, we are able to predict the earliest time that the user will
start a data session and thus assign the TTL accordingly. Although
we grant a user-centric approach for our scheduling approach, it is
worth noting that the two approaches of content and user-centric
are not exclusive and could be combined in the future systems.

Our algorithm predicts upcoming network activity (i.e., next traf-
fic burst) of current day by matching patterns of similar days in the
past. We build a T ⇥ N

l

matrix U , where T denotes the number
of time slots in a day and N

l

is the number of look up days. Each
element u

ij

in U is a binary value that represents whether a user’s
was engaged in any network activity at the time slot i of the day
j (i 2 T and j 2 N

l

). Our algorithm uses U to predict whether
a network activity is likely to occur in the next prediction horizon
window (denoted as f) of the current day by matching patterns of
similar days in the past N

l

days. The current day and the current
time slot are denoted as j

c

and i

c

, respectively (i.e., the current
network activity value is u

icjc). As a day progresses, network ac-
tivity vector is constructed from midnight up to the current time.
To predict the next upcoming networking activity upon the arrival
of a notification at time t

notf

= i

c

, we set a look up window of
k immediate past slots denoted as L

k

and run a similarity measure
that compares the network activity of past L

k

slots of the current
with the corresponding time slots of previous N

l

days. M top most
similar days are selected where M < N

l

.
To obtain a similarity value of the current day to the past days we

compute a binary similarity measure [6]. We have examined several
binary similarity measures with our dataset by dividing our sam-
ples into subsets randomly. We have found that Sokal-Michener
measure offers the best discrimination capability [19]. Therefore,
to compare the similarity between two temporal activity vectors x
and y with length k representing network activity of past L

k

slots

cBy activity we refer to users activity on the device which generates
data traffic

of today and one of the past N
l

days respectively, we define a tem-
poral day similarity score for each of the j

th day as:

DS

j

=
1
k

kX

s=1

I(xt

s

y

s

||xt

s

y

s

), (1)

where I(r) is the indicator function, and I(r) = 1 if r is true or
0 otherwise, xt

s

y

s

denotes the positive match and x

t

s

y

s

denotes the
negative match at kth position between x and y,

Once the day similarity scores are obtained, the algorithm moves
to the selection of the M candidate days. This selection is per-
formed by sorting N

l

past days twice, first on the day similar-
ity score and sorting on the time difference from the current day.
It is worth noting that in cases where there are no similar days
(DS

j

= 0), the algorithm will pick the candidate days based on
the most recent ones. Finally, the prediction algorithm considers
the network activity vector of each candidate day for the upcoming
slots (prediction horizon window f) and computes the probability
of occurrence of a network activity, e.g., presence of network traffic
for each of the upcoming slots. If the probability is higher than a
selection threshold p

th

then that network activity in the prediction
slot is set to 1 or 0 otherwise. After ROC analysis, we set p

th

to
0.6. The algorithm performs this step by taking each slot at a time
and combining day similarity score to ensure that most similar and
more recent days have highest contribution in predicting the occur-
rence of a network activity. The ttl is then set to the first time slot
which is predicted to have an activity (u

if jc = 1).

u

if jc =

(
1 if

⇣P
M

j=1 DS

j

⌘�1 P
M

j=1 DS

j

I(u
if j

= 1) > p

th

0 otherwise
(2)

When the prediction slot i
f

is at the beginning or end of a day,
i.e. before midnight or just after midnight, the lookup slots for sim-
ilarity matching are determined from the immediate previous day,
and candidate slots for prediction are selected from the immedi-
ate next day. This avoids complexities in making predictions that
span midnight. Algorithm 1 summarizes the described prediction
method.

Figure 3 illustrates a simplified example, where the number of
look up days N

l

are set to 4 and the temporal granularity is in min-
utes that is T = 1440 (matrix U is 1440 ⇥ 4). In this example a
notification has arrived at time t

notf

= 12 : 03, and we want to
estimate the next upcoming slot i where there would be any net-
working activity. The algorithm starts with detecting the similar
past days to the current day j

c

from the look up window N

l

, where
2 days are selected. We then compute by considering the candidate
days (j�4 and j�2) the likelihood for the activity at i

c

+2 would
be 1 with p

th

= 0.6. The algorithm stops when it finds a candi-
date time slot (i.e., of predicted value 1) and would return ttl as 2
minutes, i.e., 120 seconds.

3.3 Notification Scheduler
The notification scheduler has the ability to detect if a packet is

a notification and can intercept traffic. The push notifications on
mobile device typically use a particular port number while con-
necting to the push notification servers. For example, Android
devices use TCP port 5228 to connect to GCM Servers. iOS de-
vices on the other hand use TCP port 5223 to connect to the APN
servers. Though the devices fall back to other ports in case they
cannot establish connection on these ports (e.g., TCP port 443 for
Android and iOS), it is safe to assume these ports are open on a
cellular network. Hence, notifications can be detected by looking
at the protocol field in the IP header to check whether TCP is used

Algorithm 1: The Network Activity Prediction Algorithm
Input: Lookup Days N

l

, Current Day j

c

, Current time slot i
c

,
Number of Candidate Days M , Lookup Window L

k

Output: ttl
1 Initialize the Matrix U and its elements with binary values

corresponding to the temporal network activity u

ij

, i 2 [0, T]
for N

l

days
2 Initialize a Column Matrix U

c

for current day j

c

, and its
temporal element u

ijc , i 2 [0, i
c

]
3 for j = 0 to Lookup Days (N

l

� 1) do
4 Construct lookup vector for jth day
5 Compute the day similarity score DS

j

using Equation 1
6 end
7 Sort N

l

Lookup Days first based on day similarity and then on
Time Difference from current day and select top M Days;

8 i

f

= i

c

+ 1;
9 ttl = 0;

10 while true do
11 Compute the activity occurrence probability at prediction

time i

f

using Equation 2
12 if u

if jc == 1 then
13 ttl = i

f

� i

c

;
14 break;
15 else
16 i

f

= i

f

+ 1;
17 end
18 if i

f

> MAXSLOT then
19 break;
20 end
21 return ttl;

and which destination port is included in the TCP header. Traffic
that corresponds to the data messages rather than isolated notifica-
tion messages are sent immediately to the users by the notification
scheduler. The notification messages on the other hand are delayed
to conserve energy on the devices. The decisions to delay the noti-
fications are governed by the outcome of the prediction model.

Recall from the previous section that each notification is asso-
ciated with a TTL by which the messages needs to be sent. In
accounting for TTL, the scheduler adds an expiration timer to the
queue that holds all the notification messages destined for a device,
that is set to the minimum TTL among the messages in the queue.
The scheduler sends all the notifications to the destination when
the timer expires. If a data message that cannot be delayed arrives
before the timer expires, the scheduler piggybacks the notification
messages to the data and cancels the existing timer.

4. EVALUATION
In this section, we first discuss the dataset used in our analysis.

We then describe the metrics and benchmark used in our evaluation.
Then, we discuss the performance of the prediction algorithm and
finally, we report on the results of out scheduler in terms of energy
gain and delay in comparison with the baseline approaches.

4.1 Datasets
We obtained a dataset of anonymized network activities of 60

users for over a month period in March 2013d .This data comprises
the size (both uplink and downlink), time and the duration of all in-
coming and outgoing network traffic for each user. In order to pre-
serve the privacy of the users, the users are presented by random ids

dSpecific details about the identity of the network provider, as well
as the location and time of the UDR data are omitted in order to
preserve the anonymity of the network operator.

Figure 4: Number of Notifications per User per Day.

and their phone number is dropped from the database. Additionally
any information regarding the location (e.g. the cell tower location,
GPS etc.) has been also removed from the dataset. The data at hand
is restricted in two aspects, firstly it does not contain any host URL
information, making it impossible to determine whether a packet
was sent by a push notification server; secondly it does not include
the destination port number, thus making it further difficult to de-
tect push notifications by monitoring the traffic to the specific port
(e.g., port 5028 for Android devices and 5223 for iOS).

In order to identify the push notifications for the purpose of test-
ing our scheduling algorithm, we require an alternative way for
identifying the notification messages. To do so, we assume that the
download traffic packets which are small in size and has occurred
in isolation, that is they are neither triggered or followed by any
upload requests from the device, correspond the push notifications.
In other words, the traffic that has occurred at least t

tail

seconds
after its preceding traffic and is not followed by any other traffic for
at least t

tail

seconds; where t

tail

is the tail time parameter. We set
the size for the determined notifications to less than 300 bytes as it
corresponds to the iOS notifications defined by APNs (256 bytes)
at the time data is collected. We set t

tail

to 30 seconds as it is
commonly used by the network operators.

Although we cannot ensure that all the detected small isolated
traffic from our dataset are indeed the push notification messages
(we may have false positive), we can argue that all the push no-
tifications in our dataset are detected (no true negative). In other
words, alongside those detected push notifications we may also ob-
serve other packets that are small isolated download traffic such
as those packets corresponding to advertisements. We argue that
should these false positive cases happen to be part of a larger traf-
fic, they would be have been followed by immediate data transac-
tion either before or after them. However, as they are detected in
isolation, they correspond to the cases where the data transmission
would have caused the cellular interface to stay unnecessary in the
tail state with no upcoming traffic.

The resulting dataset consists of 143,261 isolated notifications
and 765,739 traffic bursts. Figure 4 further illustrates the num-
ber of detected notifications for each user per day. On average we
find that the users received around 80 notifications per day (me-
dian=74). However, as seen from Figure 4, some users receive as
many as 200 notifications on some days and only a few on other
days. This trend corresponds in size and distribution to those push
notifications collected by Pielot et al [15] and also those observed

Parameter Value

DCH tail power base 803.9 mW
DCH tail duration 8088.2 ms
FACH tail power base 601.3 mW
FACH tail duration 824.2 ms
Transmission Power 991.67 mW
Uplink Bandwidth 200 kbps
Reception Power 939.89 mW
Downlink Bandwidth 1Mbps

Table 1: Power Parameters for 3G Radio State Machine

by Mashhadi et al. [13] from empirical study of notifications on the
mobile devices.

4.2 Metrics, Benchmark and Simulation Setup
For evaluation of the notification scheduler, we selected two met-

rics: delay, that is how long on average (in seconds) notifications
were delayed by our scheduler, and energy that is how much energy
(in Joules) our scheduler saved. Finally, we evaluate and discuss
the trade-off between these two metrics for our scheduler.

In order to measure the energy gain and delay imposed on the
notifications, we use a baseline scheduling approach. For this pur-
pose, we choose the state-of-the-art notification delivery in the net-
work that immediately sends the notification to the destination de-
vice. We refer to this approach as, Send Immediately. This ap-
proach serves as a baseline for delivery time, allowing us to cal-
culate the delay introduced by our scheduler. We also select a
second baseline approach which corresponds to minimum energy
consumption, albeit conveying maximum delay. In this approach
all the notifications are delayed and piggybacked with the next data
traffic. We refer to this baseline as Send with Next Non Notification
Data. Finally, we also report the performance of our scheduling
method for two variant settings of the TTL : fixed, where we set the
TTL to a fixed value, and adaptive where the TTLis set based on
the output of the traffic prediction.

We use a server-client model to simulate the cellular network. In
this setup, there exists a number of clients and each corresponds to
a base station. The client hosts a number of threads each model-
ing the radio state machine of a user. At the end of a simulation
run, each thread yields the cumulative energy consumption of the
corresponding user’s cellular radio in 15 days. This value does not
include other factors that contribute to the energy consumption of
the device such as display, processing, etc. The state machine tran-
sitions are triggered by the arrival or transmission of data messages
and the expiration of inactivity timers as explained in Section 2.1.
The power consumption levels in each state and the timer expira-
tion duration values are adopted from [10]. Relevant parameters
are summarized in Table 1e.

In our trace driven simulations, the first 15 days are used to train
the prediction algorithm. The second 15 days are used for evalua-
tion. The downlink traffic in this trace yields the data sent from the
server to the client. The client then pushes it to the thread that cor-
responds to the user radio state machine. The uplink traffic on the
other hand is originated by the user module and pushed to the client
and then to the server. The server acts as the location where noti-
fication scheduler is placed that forwards the packets to the their

eWe neglect the power associated with the radio state promotion.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
F−Score

C
D
F

Figure 5: Cumulative Distribution of Prediction Performance over
all 60 Users

Figure 6: Influence of Varying Slot Duration (in seconds) on the
TTL Estimation

destinations. The server also determines how long the notifications
are suspended using the baselines or our mechanism.

4.3 Performance of Prediction Algorithm
Predicting a network activity for a future hour slot is essentially

a classification problem and the performance of the algorithm can
be evaluated by standard Information Retrieval measures. For each
time slot i

f

, let T be the true network activity, and S be the pre-
dicted set activity. Accuracy is measured by the Hamming Score
which symmetrically measures how close T is to S, i.e., Accuracy =
kT\Sk
kT[Sk . Precision (P), Recall (R) and F-Measure (F1) are defined

as P = kT\Sk
kSk , R = kT\Sk

kTk and F1 =
2P (if)R(if)

P (if)+R(if) .
For evaluating the algorithm, we split 30 days of data into two parts.
The data of first 15 days are used to train the algorithm, e.g., as his-
tories of network activities and the data of remaining 15 days are
used to evaluate the performance of the algorithm.

Figure 5 plots the cumulative distribution of F-Score across all
60 users with 180 seconds as temporal slot duration, 3 hours as
lookup slot duration, 15 look up days, 5 candidate days, and 0.6 as
the selection threshold. As we observe, at least 60% of the users
have over 0.7 F-Score, which is considered reasonably high. Pre-
diction performance remains consistent with varying lookup and
candidate days. Figure 6 illustrates the impact of slot duration on
the TTL assignments (in seconds). We observe that larger temporal
slots increase the TTL duration. Based on these observations, in
the rest of this section, we evaluate the performance of notification
scheduler through a simulation model in which we construct the
prediction model with the parameter as depicted in table 2.

4.4 Performance of Notification Scheduler
We first start by measuring the energy gain of our approach for

all the users. Figure 7, illustrates the extent of energy consump-

Parameter Value

Lookup Days 15
Candidate Days 5
Slot Duration 180 Seconds
Lookup Slot 3 Hours
Selection Threshold 0.6

Table 2: Prediction Parameter for the Simulation Model

8 11 14 15 20 21 25 29 38 55

User Index
To

ta
l E

ne
rg

y
(J

)
0

20
00

0
60

00
0

10
00

00 Send Immediately
Send with Next Non Notification Data
Send After TTL Expiration or with Next Non Notification Data (180 s)
Send After TTL Expiration or with Next Non Notification Data (adaptive ttl)

Figure 7: Energy Consumption for Each User with Scheduling
Conditions

tion of our scheduler comparing to the baselines for 10 selected
users. Even though, we only show the energy consumption for 10
users for the clarity in the presentation, the observation is consis-
tent across all users. The figure also illustrates the inefficiency of
the current notification delivery approach (i.e.,Send immediately).
Looking deeper at the results, we also observe that our second base-
line that is suspending the delivery of the notification until the Next
non-notification data transfer, can on average conserve 15% en-
ergy (� = 0.06). These results suggest the maximum upper bound
that is possible in energy saving at the cost of maximum delay.

Next, we evaluate our scheduling mechanism (i.e. Send After
TTL Expiration or with Next Non Notification Data) both with a
fixed TTL and an adaptive TTL for each notification using the pre-
diction algorithm. In both cases the notification is sent with the
upcoming traffic or if the TTL reaches. We evaluate by setting
the fixed TTL value for this heuristic to 180 seconds. Comparing
the two, we can observe from the Figure 7 (and for the all the 60
users) that with the adaptive TTL the energy consumption is lower
than the fixed TTL. A pairwise t-test reports of this consistent ob-
servation across all users with the mean difference of 621 Joules
(t = 6.16, p < 0.0001, df = 59).

Figure 8 shows the amount of energy consumption by all the
users in the span of 15 days. Send with Next Non Notification Data
saves 16% energy in comparison to Send Immediately. The energy
savings for Send After TTL Expiration or with Next Non Notifica-
tion Data with adaptive TTL amounts to 11% energy savings. Even
with a TTL that is as low as 180 seconds, the mechanism save 10%
energy.

In Figure 9, we show how the total energy consumption across
all the users changes when Send After TTL Expiration or with Next
Non Notification Data uses various fixed TTL values. Note that

●

●

●

●

●

●

●

●
20

00
0

40
00

0
60

00
0

80
00

0

Send
Immediately

Send
w/ Next Non−

Traffic

Fixed
TTL

Adaptive
TTL

To
ta

l E
ne

rg
y

(J
)

Figure 8: Energy Consumption vs Scheduling Heuristic

●

●

●

●
●

● ● ●26
00

00
0

28
00

00
0

30
00

00
0

ttl value (s)

To
ta

l E
ne

rg
y

(J
)

0 180 360 540 720 900 1080

Figure 9: TTL value vs Energy

TTL=0 corresponds to Send Immediately, and the last data point
corresponds to Send with Next Non Notification Data baseline, which
gives the lower bound in energy consumption. We see that as the
TTL increases, the resulting energy consumption approaches the
lower bound. When the TTL=18 minutes (1080 seconds), the en-
ergy consumption is only about 1% more than the lower bound.

Figure 10 shows the latency caused by the notification schedul-
ing mechanisms for the set of selected 10 users. A t-test anal-
ysis indicates the significant difference between the adaptive and
fixed TTL approach for all the users (t = �4.9848, p < 0.0001,
df = 59). Since Send Immediately immediately sends the notifica-
tions without intercepting them, it does not cause any latency. As
expected the Send with Next Non Notification Data suspends the
notifications for the longest duration, providing an upper bound to
the delay. These findings are parallel with the energy observations
in Figure 7. To present this trade-off the overall latency introduced
by the scheduler is reported in Table 3 along with the average per-
centage of energy saving. These results are encouraging as they
confirm the performance of our scheduler. That is although Send
After TTL Expiration or with Next Non Notification with adaptive
TTL consumes only 5% more energy than the lower bound in Send
with Next Non Notification Data, it takes 32% less time to deliver
notifications, resulting in on average over 2 minutes delay only.

Also note that in this set of simulations, the tail time we use is
around 9 seconds which is adopted from [10]. Tail time values are
set by the operators and can be as high as 30 seconds. The benefits

8 11 14 15 20 21 25 29 38 55

User Index

Av
er

ag
e

N
ot

ifi
ca

tio
n

La
te

nc
y

(s
)

0
10

0
20

0
30

0
40

0
50

0

Send with Next Non Notification Data
Send After TTL Expiration or with Next Non Notification Data (180 s)
Send After TTL Expiration or with Next Non Notification Data (adaptive ttl)

Figure 10: Latency of the Notification Selivery for Each User

Scheduling Average Average
Condition Latency Energy

(in Sec) Savings

Send with Next Non
Notification Data 230 15%
Send After TTL Expiration
or with Next Non Notification
Data (TTL = 180 s) 136 9%
Send After TTL Expiration
or with Next Non Notification
Data (adaptive TTL) 157 10%

Table 3: Latency versus Energy Saving with the Scheduling Con-
ditions

of our approach would have been even higher with higher tail time
values.

4.5 Limitation
In this paper we have designed a system for scheduling the noti-

fications and where possible we have adhered to a generic solution.
However, due to the limitations imposed by the data at hand, we
had to apply some restrictions to the evaluation of the proposed
system.

We granted a trace-driven analysis in order to evaluate the en-
ergy savings on the end-user devices. We understand that as the
result of this approach, we are indeed facing a “Butterfly Effect”
where tempering with an initial condition (i.e., delaying a notifica-
tion) may result in a different course of future events (e.g., delayed
communication) than what we originally have in the traces. Al-
though, the course of future data traffic that is exhibited may be
different, we believe our main findings regarding the quantification
of the energy saving stays valid. The values reported in this section
are not meant to be taken as absolute values but rather as bounds in
the extent of energy savings.

In selecting the required parameters for our system, we had to ad-
here to an assumption that all the notifications are issued by APNs
and are intended for iOS devices, that is they are less than 300bytes
in size. We adhered to this choice as our data does not include
information regarding the individual devices or port numbers. Fur-

thermore, the alternative thresholding for Android notifications is
indeed much bigger in size which would have result in the detection
of many more notifications and a better performance of our system.

5. RELATED WORK
In [5], authors show that the energy consumed in the tail state

corresponds to the 60% of the total energy consumed for data com-
munications. They propose an algorithm that schedules and ag-
gregates the outgoing small transmissions into large ones so that
the occurrence of tails (and thus energy consumption) can be re-
duced. In [8], the authors use machine learning techniques to pre-
dict the network activity on the phone, which is used to manipulate
the state transitions on the phone. Another relevant technique is
TailTheft [12], which uses the duration of tail state to prefetch con-
tent and deferred messages for delay tolerant applications. Sending
location update messages in an energy efficient way is addressed
in [4]. In this work, messages to the location servers may be de-
layed as long as some quality measures such as time elapsed since
the last message, the distance from the last reported location etc.
are satisfied. In all these works, the traffic scheduling is considered
only for outgoing packets as the scheduler runs on the phone, and
requires modifications on the operating system or on the apps as
well as resources to perform these computations. In contrast, our
method requires no changes to the mobile phone and runs in the
network.

A broad body of research addresses tail tuning and termination.
In [7] and [9], different values for tail time has been suggested and
proven to reduce the energy consumption. In [11, 17, 18] dynamic
assignment of tail time based on usage pattern has been proposed.
In particular [18] relies on prediction and dynamically terminates
the tail time when it does not foresee an upcoming activity. Sim-
ilarly [3] proposes data mining approaches to detect end of com-
munication spurts to invoke fast dormancy with higher accuracy.
Finally [14, 16, 20] focus on modeling and profiling the resource
usage on mobile devices. In [16] the authors introduce ARO (Ap-
plication Resource Optimization) tool that helps the developers to
discover the inefficient resource usage by considering a cross-layer
interaction for layers ranging from cellular interface to application
layer.

6. CONCLUDING REMARKS
In this paper we have designed a system for scheduling the push

notifications that resides in the core network of a cellular network
and is added to the data plane. Our system leverages the paradigm
of Network Function Virtualization (NFV). With this paradigm,
network components are provided in software in virtualized servers
and not in dedicated and specialized hardware platforms. In this
way, our scheduler can scale up and down by simply initiating or
shutting down virtual machines in which the scheduler runs. The
proposed system suspends the notification messages in the network
and leverages a DPI that monitors and exploits its past activity to
predict when she will be engaged with her device in the near future.
This information is then used to schedule the queued notifications.
Our results show that in a UMTS network setting, by scheduling
notifications it is possible to save 11% in average.

Although, we presented our approach for the UMTS setting due
to the dataset at hand (extracted from UMTS network), our system
can easily be adapted to the younger generation networks such as
LTE. In a UMTS network, the scheduler can be situated along with
Serving GPRS Support Node (SGSN) or Gateway GPRS Support
Node (GGSN). In LTE evolved packet core (ePC), the scheduler
may be situated with data plane elements Service Gateway (SGW)

and the PDN gateway (PGW). SGW is a better option as the loca-
tion of the scheduling module a mobile device may use more than
one PGWs but is connected to a single SGW instance. This way,
the scheduler has access to a user’s all traffic activity. Due to the na-
ture of DRX (Discontinuous Reception) mechanism which involves
a state machine similar to the one used by UMTS, we believe the
savings could be more significant with LTE networks. As the pre-
vious work has shown that the effect of the tail energy is even more
drastic in LTE networks than 3G networks [10].

Another aspect of our implementation is that an instance of com-
ponents like GGSN and SGW only serve a particular geographical
area. We do not introduce any handoff mechanism for users moving
from one area to another area. Rather, we assume the notification
scheduler in an area only stores and uses data regarding user be-
havior in that geographical region. In so doing, we are implicitly
introducing a spatial element to the notification scheduler. As the
by product of this design decision, our activity prediction could be
extended to take into account the spatial features (e.g., activity in
significant places such as home) in addition to the current temporal
ones. Since the scheduler is implemented in virtualized servers, the
system does not need to concern with the inter radio access technol-
ogy handovers either. The same servers can be utilized with UMTS
and LTE network in areas where both services are available.

Moreover, our evaluation was performed on a dataset that ex-
tracted from a core network in early 2013. Since then, mobile op-
erating system vendors allow for a larger payload in the notification
messages sent by the application providers. In 2013, an APNs noti-
fication could fit in a single network packet. However, the payload
size can now be as much as 4 Kbytes. With a typical MTU size
of 1500 bytes, this can fit in at most four packets considering the
lower layer networking overhead. This is still not a large stream
and with the state-of-the-art optimizations in TCP, all packets are
sent at once without waiting for the acknowledgement for the first
packet. Therefore, our approach would work on the current imple-
mentation of push notification servers without a need to make any
modifications to our system to address such payload sizes.

Finally, this work has important implications regarding conserv-
ing tail time energy on end-users device. As our findings have
demonstrated, in many cases isolated notifications are pushed by
the notification servers such as APNs causing an inefficient es-
tablishment of the cellular interface on the device. While the im-
pact of this problem, might not be as exhaustive on today’s smart-
phones where the predominantly used lithium-ion batteries have
sufficiently hight capacity, it is to a much greater extent on wear-
ables and other devices where the energy resources are scarce due
to form factorf. Although, this problem could also be addressed by
including time-to-live and priority of the notifications at the con-
tent provider side while leveraging an activity prediction from the
device OS, such approach would not be feasible for devices with
limited processing powers. Therefore, we strongly believe the an-
swer in addressing this challenge lies within the network’s end as
they have a bigger picture of users activities and devices’ cellular
interfaces, without the need to rely on the device to perform any
calculations or communications.

7. REFERENCES
[1] Network Functions Virtualisation, An Introduction, Benefits,

Enablers, Challenges & Call for Action. White Paper, SDN
and OpenFlow World Congress, Oct 2012.

[2] G. Association. Fast dormancy best practices, version 1.0,
2011.

fhttp://www.newelectronics.co.uk/electronics-blogs/powering-
wearables-and-giving-batteries-a-better-life/64664/

[3] P. K. Athivarapu, R. Bhagwan, S. Guha, V. Navda,
R. Ramjee, D. Arora, V. N. Padmanabhan, and G. Varghese.
Radiojockey: Mining program execution to optimize cellular
radio usage. In Proceedings of the 18th Annual International
Conference on Mobile Computing and Networking,
Mobicom ’12, pages 101–112, 2012.

[4] P. Baier, F. Dürr, and K. Rothermel. Opportunistic position
update protocols for mobile devices. In Proceedings of the
2013 ACM international joint conference on Pervasive and
ubiquitous computing, pages 787–796. ACM, 2013.

[5] N. Balasubramanian, A. Balasubramanian, and
A. Venkataramani. Energy consumption in mobile phones: a
measurement study and implications for network
applications. In Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference, pages
280–293. ACM, 2009.

[6] S. Choi, S. Cha, and C. C. Tappert. A Survey of Binary
Similarity and Distance Measures. Journal of Systemics,
Cybernetics and Informatics, 8(1):43–48, 2010.

[7] M. Chuah, W. Luo, and X. Zhang. Impacts of inactivity timer
values on umts system capacity. In Wireless Communications
and Networking Conference, 2002. WCNC2002. 2002 IEEE,
volume 2, pages 897–903. IEEE, 2002.

[8] S. Deng and H. Balakrishnan. Traffic-aware techniques to
reduce 3g/lte wireless energy consumption. In Proceedings
of the 8th international conference on Emerging networking
experiments and technologies, pages 181–192. ACM, 2012.

[9] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and
D. Estrin. A first look at traffic on smartphones. In
Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement, pages 281–287. ACM, 2010.

[10] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. A close examination of performance and
power characteristics of 4g lte networks. In Proceedings of
the 10th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’12, pages 225–238,
2012.

[11] C.-C. Lee, J.-H. Yeh, and J.-C. Chen. Impact of inactivity
timer on energy consumption in wcdma and cdma2000. In
Wireless Telecommunications Symposium, 2004, pages
15–24. IEEE, 2004.

[12] H. Liu, Y. Zhang, and Y. Zhou. Tailtheft: Leveraging the
wasted time for saving energy in cellular communications. In
Proceedings of the sixth international workshop on
MobiArch, pages 31–36. ACM, 2011.

[13] A. Mashhadi, A. Mathur, and F. Kawsar. The myth of subtle
notifications. In Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing:
Adjunct Publication, pages 111–114. ACM, 2014.

[14] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy
spent inside my app?: fine grained energy accounting on
smartphones with eprof. In Proceedings of the 7th ACM
european conference on Computer Systems, pages 29–42.
ACM, 2012.

[15] M. Pielot, K. Church, and R. de Oliveira. An in-situ study of
mobile phone notifications. In Proceedings of the 16th
international conference on Human-computer interaction
with mobile devices & services, pages 233–242. ACM, 2014.

[16] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and
O. Spatscheck. Profiling resource usage for mobile
applications: A cross-layer approach. In Proceedings of the
9th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’11, pages 321–334,
2011.

[17] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. Characterizing radio resource allocation for
3g networks. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, pages 137–150. ACM,
2010.

[18] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. Top: Tail optimization protocol for cellular
radio resource allocation. In Network Protocols (ICNP),
2010 18th IEEE International Conference on, pages
285–294. IEEE, 2010.

[19] R. R. Sokal and C. D. Michener. A Statistical Method for
Evaluating Systematic Relationships. University of Kansas
Scientific Bulletin, 38:1409–1438, 1958.

[20] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M.
Mao, and L. Yang. Accurate online power estimation and
automatic battery behavior based power model generation for
smartphones. In Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software codesign
and system synthesis, pages 105–114. ACM, 2010.

